高速加工工具系统的动力学特性及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速加工是集制造技术、材料科学、信息科学和控制理论为一体的综合高新技术,在汽车、模具、航空航天等制造领域得到了广泛的应用,并取得了显著的经济效益。高速加工工具系统是高速精密数控机床的重要组成部分,其结构特性、动态性能和动平衡性等直接影响和制约着高速加工质量和生产效率,因此,系统开展工具系统动力学特性及基础应用技术的研究具有重要的学术价值和应用前景。本文采用理论分析、数值计算、振动测试和切削加工实验相结合的方法,以高速加工工具系统为研究对象,在建立其动力学理论模型的基础上,系统、全面地分析了高速加工工具系统的结构模态参数、工况振动特性和动态响应的变化规律,进而实现其动态结构的整体优化,主要工作及创新成果为:
     1.基于FEM和EMA相结合,首次构建了高速加工工具系统的动力学实体模型
     基于线弹性理论,采用有限元模态分析(Finite Element Method,简称FEM)和实验模态分析(Experiment Modal Analysis,简称EMA)相结合的方法,构建了高速加工工具系统在自由状态、工况约束条件下的动力学实体模型,计算出系统的各阶固有频率和振型,通过实验模态分析方法验证了有限元模型构建过程和计算结果的合理性,在此有限元模型的基础上,分析了刀杆直径、刀杆长度、联接过盈量等结构因素对工具系统结构模态参数的影响规律,分析了主轴和刀柄联接过盈量和接触效果对主轴—工具系统结构模态参数的影响程度。
     2.系统揭示出工具系统在动态激励下的动态响应特性及其变化规律
     在构建工具系统有限元动力学模型和分析工具系统所受动态激励类型的基础上,计算和分析了工具系统承受不平衡量和动态切削力的动态响应及变化规律。通过机床升速空运转振动测试,比较了主轴系统空运转和主轴-工具系统空运转各自的振动特性。测试了不同平衡量大小的工具系统在空运转时的振动特性,揭示了工具系统承受强迫振动的频响结构,为有效降低整个加工系统的振动响应提供了理论依据。
     3.基于不平衡量系统分析了工具系统的振动特性
     设计了不平衡量大小可调的工具系统和采用多因素正交切削试验,全面分析了不平衡量和切削用量对主轴振动、加工工件振动、三向动态切削力和加工表面粗糙度的影响程度、主次关系和变化规律,验证了工具系统不平衡量动态响应的理论计算结果,同时为高速切削选用合理的切削用量提供了重要参考。
     4.首次实现了刀柄和主轴接触疲劳寿命的预测预报
     在构建工具系统屈曲响应模型的基础上,计算和分析了工具系统在工况条件下屈曲响应的主要的影响因素及变化规律。进一步构建了主轴—工具系统接触的有限元模型,借助专用疲劳分析软件的基础上,评估了各个接触区域的疲劳应力因子和疲劳安全因子,预测了各个区域的疲劳寿命,为深入研究主轴/刀柄联接锥面疲劳失效机理提供理论参考。
     5.基于工具系统模态参数和结构优化,提出了开发新型工具系统的一种新方法
     在构建工具系统动力学有限元模型的基础上,以其工况固有频率为优化目标,根据工况要求对其模态参数和结构尺寸进行了优化,使其在工作状况下的动态性能到达了最佳化,为开发新型工具系统能够在高速工况发挥其最佳动态性能提供了一种新的方法。
     系统地开展高速加工工具系统动力学特性的基础理论、振动特性测试和基于不平衡量的切削加工实验的研究和运用,既丰富了工具系统共性技术的研究,在实际应用中也有助于充分发挥高速加工工具系统的动态性能,这对推动高速加工技术的应用、发展先进制造技术具有重要的理论价值和实际意义。
     本研究是国家自然科学基金项目《高速切削中毛刺的形成机理及其控制(No50675088)》、国家十五科技攻关项目《高速加工工具系统的开发与应用(No2001BA205B05/05)》和国务院重大专项《高档数控机床与基础制造装备中“高速数控机床用新型工具系统”(2009ZX04012-012)》的组成部分之一。
High speed machining is a combination of manufacturing technology, materials science, information science and control theory as an integrated high-tech, automotive, mould, aerospace and other manufacturing fields has been widely used, and has achieved significant economic benefits. High speed tooling system is an important part of CNC machine tools, their structural characteristics, dynamic performance, balancing capability and so directly affect and constrain the quality and efficiency of high speed machining, so as to the researching of basic theoretical study and applied technology of tooling system has great academic value and prospects. Combining with the methods of theoretical analysis, numerical computation, vibration test and cutting experiment, taking high speed machining tooling system as a study object and on the basis of establishing its dynamic model, the changing laws of the tooling system structural modal parameter, working vibration property and dynamic response were investigated systematically and comprehensively, and its optimization goal of dynamic structure was achieved, the main work and innovations of this paper as fellows:
     1. The dynamic soild model of the tooling system was established by the way of jointing FEM with EMA.
     Based on linear-elastic theory, by way of finite element modal analysis and experimental modal analysis, the FEM dynamic soild models of the high speed tooling system in the free state and operating constraint condition were established, and the all natural frequencies and vibration models were calculated. The construction and calculation of the finite element model were confirmed to be reasonable by experimental modal analysis method. On the basis of rational FEM model of tooling system, the influence degree and laws on tooling system structural modal parameters were calculated and analyzed according to various types, arbor diameter, arbor coolant hole diameter, arbor length, arbor/cutter coupling interference, contact effect and so on, and the influence degree and changing laws on spindle-tool system structural modal parameters caused by spindle/holder coupling interference were analyzed, then these research provided a theoretical basis for rational evaluation on dynamic performance of high speed tooling system.
     2. The performances of tooling system dynamic response in dynamic excitation and its variation were systematically revealed.
     Based on constructing the FEM dynamic model of high speed tooling system and analyzing the dynamic incentive types which the tooling system suffered, the dynamic response of its overall structure caused by unbalance and dynamic cutting force were calculated, and By way of the vibration testing of raising speed, the vibration characteristics of spindle system and spindle-tool system under the condition of idle running were compared. The vibration characteristics were tested and analyzed according to various value of imbalance when tooling system was idle running, and its frequency response composition under forced vibration was revealed, and also to effectively reduce the vibration response of the spindle-tooling system provided a theoretical basis.
     3. The vibration characteristeric of tooling system based on its imbalance was systematically analyzed.
     A tooling system with adjustable unbalance ring was designed, by way of the multi-factor orthogonal cutting experiment in high speed, the degree of influence and changing laws of the spindle vibration, workpiece vibration, three-dimensional cutting force and roughness of the machined surface caused by the imbalance and cutting parameters were analyzed comprehensively, and the dynamic response laws of the tooling system unbalance were verified, finally an important reference of choosing the reasonable tooling system for high speed machining was provided.
     4. The buckling response of tooling system was calculated and the fatigue lifetime of contact area between spindle and tool-holder was predicted for the first time. The structural stability of the tooling system itself was to ensure the stability of cutting process, so based on the buckling response model of tooling sytem, the influence factors and changing laws of the tooling system buckling response in operating condition were calculated and analyzed. On the basis of building rational FEM model and by way of special fatigue analysis software, the most likely occurring fatigue area on the spindle-toolholder in theory was found out, not only the fatigue stress factor but also fatigue safety actor of various regions were evaluated and the fatigue lifetime was also predicted, finally the research results offered a theoretical consideration for the further study of spindle-toolholder interface's fatigue failure mechanism and structure optimizational designing.
     5. Based on the tooling system structural modal parameters and its optimization, present a new way for the development of new-type tooling system. Based on setting up the parametric model of the tooling system and dynamic finite element model, the parametric model and structural size were optimized according to the working conditions and the dynamic performance was to be the best in working conditions, a new study idea was provided for researching and development the new type of tooling system and application in engineering.
     Systematically studying the basic theory, vibration testing and cutting experiment of dynamic characteristics of high speed tooling system, and this not only can enrich researching the common technologies of tooling system, in practice, but also can help to improve tooling syetm dynamic performance under high speed machining. These researching results have great theoretical and practical significance for promoting application of high speed machining technology and developing advanced manufacturing technology.
     This paper is the main part of the project'Develop and Application of Tooling System in High Speed Machining'supported by'Burr formation mechanism and controlling in high speed cutting'(Grant No.50675088), National Key Technologies R&D Program in the 10th five-year plan (Grant No.2001BA205B05) and project'New-type Tooling System in High Speed CNC Machine Subjected to CNC Machine and Basic Manufacturing Equipment'supported by the National S&T major project foundation (Grant No.2009ZX04012-012).
引文
[1]张伯霖.高速切削技术及运用[M].北京:机械工业出版社,2002.
    [2]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [3]王贵成,王树林,董广强.高速加工工具系统[M].北京:国防工业出版社,2005.
    [4]H.Schulz,王志刚译.高速加工发展概况.机械制作与自动化,2002,(2):4-8.
    [5]艾兴.高效加工技术及其应用研究.中国工程科学,2000,2(11):40-51.
    [6]袁哲俊.精密和超精密加工技术的新进展.工具技术,2006,(3):3-9.
    [7]黄红武,熊万里,陆名彰.高速大功率精密电主轴中的关键技术.湖南大学学报(自然科学版),2002,29(3):49-54.
    [8]师汉民.机械振动系统分析.建模.对策[M].武汉:华中科技大学出版社,2004.
    [9]廖伯瑜.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004.
    [10]于峻一,吴博达.机械加工振动的诊断、识别与控制[M].北京:清华大学出版社,1995.
    [11]顾定析.高等转子动力学—理论、技术与应用[M].北京:机械工业出版社,2000.
    [12]谢里阳.现代机械设计方法[M].北京:机械工业出版社,2005.
    [13]温熙森.机械系统建模与动态分析[M].北京:科学出版社,2004.
    [14]荣见华.结构动力修改及优化设计[M].北京:人民交通出版社,2002.
    [15]杨建刚.旋转机械振动分析与工程应用[M].北京:中国电力出版社,2007.
    [16]徐玉秀.机械系统动力学分形特征及故障诊断方法[M].北京:国防工业出版社,2006.
    [17]张幼桢.金属切削理论[M].北京:航空工业出版社,1990.
    [18]李晓雷.机械振动基础[M].北京:北京理工大学出版社,1996.
    [19]钟一谔.转子动力学[M].北京:清华大学出版社,1987.
    [20]曹树谦.振动结构模态分析-理论、实验与应用[M].天津:天津大学出版社,2001.
    [21]晏砺堂.高速旋转机械振动[M].北京:国防工业出版社,1994.
    [22]徐龙祥.高速旋转机械轴系动力学设计[M].北京:国防工业出版社,1994.
    [23]张文志.机械结构有限元分析[M].哈尔滨工业大学出版社,2006.
    [24]孙靖民.机械结构优化设计[M].哈尔滨工业大学出版社,2004.
    [25]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [26]隋允康,杜家政,彭细荣. MSC. Nastran有限元动力分析与优化设计实用教程[M].北京:科学出版社,2004.
    [27]屈维德,唐恒龄.机械振动手册[M].北京:机械工业出版社,2000.
    [28]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [29]Salomon C.J. Process for the machining of metals or similarly acting materials when being worked by cutting tools. German Patent.1931.
    [30]J.Tlusty. High-speed Machining. Annals of the CIRP,1993,42(2):733-738.
    [31]S. Smith, J.Tlusty. Current trends in high speed machining. Journal of Manufacturing Science and Engineering, ASME,1997.
    [32]M.Weck, I.Schubert. New Interface Machine/Tool:Hollow Shank. Annals of the CIRP,1994, 43(1):345-349.
    [33]M.A. Elbestawi, L. Chen, C.E. Becze and T.I.El-Wardany. High-speed milling of dies and molds in their hardened state. CIRP Annals-Manufacturing Technology, Vols 46 (1),1997,57-62.
    [34]L.N.Lopez de Lacalle.Improving the high-speed finishing of forming tools for advanced high-strength steels (AHSS). Int J Adv Manuf Technol,2006,29:49-63.
    [35]L.N.Lopez de Lacalle. Effects of tool deflection in the high-speed milling of inclined surfaces. Int J Adv Manuf Technol,2004,24:621-631.
    [36]J.Vivancos. Optimal machining parameters selection in high speed milling of hardened steels for injection moulds. Journal of Materials Processing Technology,155-156 (2004):1505-1512.
    [37]S.Ekinovic. Machinability of 90MnCrV8 steel during high-speed machining. Journal of Materials Processing Technology,162-163 (2005):603-608.
    [38]Jim Destefani. A look at toolholder technologies for high-precision machining, and how to choose the system that's right for you. Manufacturing Engineering May 2002 Vol.128 No.5.
    [39]Merlo, Mauro. Trends in machine tool spindle design. Fabricating & Metalworking.5/1/2005.
    [40]Eugene Kocherovsky, Ph. D. Intelligent Concept. West Bloomfield, Michigan. HSK:Characteristics and Capabilities. How HSK differs from standard toolholders and what advantages it offers. Modern Machine Shop Online.
    [41]William Popoli. High Speed Spindle Design and Construction. Modern Machine Shop Online, 8/15/1998.
    [42]Bernd Bossmanns, Jay ETu. Conceptual design of machine tool interfaces for high-speed machining. Journal of Manufacturing Processes,2002,4(1):16-27.
    [43]T. Aoyama, I. Inasaki. Performances of HSK tool interface under high rotation speed. Annals of the CIRP,2001,50(1):281-284.
    [44]J.S.Agapiou. Characterization of the tool-toolholder connections. Transactions of the North American Manufacturing Research Institute of SME,2006,34:103-110.
    [45]J.S.Agapiou,D.A.Stephenson. Operational practices for using HSK tool-holder-spindle system in machining applications. Technical Paper-Society of Manufacturing Engineers. MR, n MR02-191, p 1-8,2002.
    [46]I.M.Hanna, J.S. Agapiou, D.A.Stephenson. Modeling the HSK Toolholder-Spindle Interface. Journal of Manufacturing Science and Engineering, Transaction of the ASME,2002,124:734-744.
    [47]J. Agapiou, E.Rivin, C.Xie. Toolholder/spindle interfaces for CNC machine tools. Annals of the CIRP, 1995,44(1):383-387.
    [48]Tsutsumi M. Static and dynamic stiffness of 1/10 tapered joints for automatic changing. Int.j.Japan Soc. Prec.Eng.1995,29(4):301-306.
    [49]Tsutsumi M. Deformation and Interface Pressure Distribution of 1/10 Tapered Joints at High Rotation Speed. Int.j.Japan Soc. Prec.Eng.1996,30(1):23-26.
    [50]Kocherovsky E. HSK Handbook.1st Ed. Intelligent Concept. USA:west Bloomfield,1999.
    [51]John S.Agapiou. Estimating the stiffness for a spindle-toolholder-tooling system. Machining Science and Technology,12:77099,2008.
    [52]John S.Agapiou. A methodology to measure joint stiffness parameters for toolholder-spindle interfaces. Journal of Manufacturing Systems.2005,24(1):13-20.
    [53]E.Budak, A.Erturk, H.N.Ozguven. A modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics. Annals of the CIRP,2006.
    [54]A.Erturk, H.N.Ozguven, E.Budak. Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF. International Journal of Machine Tools & Manufacture,2006,46:1901-1912.
    [55]A.Erturk, E. Budak, H.N. Ozguven. Selection of design and operational parameters in spindle-holder-tool assemblies for maximum chatter stability by using a new analytical model. International Journal of Machine Tools & Manufacture,2007,47:1401-1409.
    [56]T.L.Schmitz, Kevin Powell, Dongke Won. Shrink fit tool holder connection stiffness/damping modeling for frequency response prediction in milling. International Journal of Machine Tools & Manufacture, 2007,47:1368-1380.
    [57]T.L.Schmitz, M.A.Davies, M.D.Kennedy. Tool point frequency response prediction for high-speed machining by RCSA. Journal of Manufacturing Science and Engineering,123(2001):700-707.
    [58]M.Weck, N.Hennes, M.Krell. Spindle and Tool Systems with High Damping. Annals of the CIRP,1999, 48(1):297-302.
    [59]Keivan Ahmadi, Hamid Ahmadian. Modeling machine tool dynamics using a distributed parameter tool-holder joint interface. International Journal of Machine Tools & Manufacture,2007,47:1916-1928.
    [60]S.Filiz, C.H.Cheng, K.B.Powell. An improved tool-holder model for RCSA tool-point frequency response prediction. Precision Engineering, Journal homepage:www.elsevier.com/locate/precision.
    [61]M.A.Salgado, L.N.Lopez de Lacalle. Evaluation of the stiffness chain on the deflection of end-mills under cutting forces. International Journal of Machine of Tools & Manufacture,2005,45:727-739.
    [62]Matti Rantatalo, Jan-Olov Aidanpaa. Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement. International Journal of Machine of Tools & Manufacture, 2007,47:1034-1045.
    [63]Cheng,C. H.Duncan,GS. T.L.Schmitz. Frequency Response Prediction for rotating rool-holder-spindle assemblies. Proceeding of American Society for Precision Engineering Annual Meeting,October 15-20, Monterey,CA.
    [64]S.W.Hong. An efficient method for the unbalance response analysis of rotor-bearing systems. Journal of Sound and Vibration,1997,200(4):491-504.
    [65]Y.S.Chen, Y.D.Cheng, J.J.Liao, C.C.Chiou. Development of a finite element solution module for the analysis of the dynamic behavior and balancing effects of an induction motor system. Finite Elements in Analysis and Design,44(2008):483-492.
    [66]An Sung Lee, Jin Woong Ha. Prediction of maximum unbalance responses of a gear-coupled two-shaft rotor-bearing system. Journal of Sound and Vibration,283, (2005):507-523.
    [67]R.Tiwari, V.Chakravarthy. Simultaneous estimation of the residual unbalance and bearing dynamic parameters from the experimental data in a rotor-bearing system. Mechanism and Machine Theory, www.elsevier.com/locate/mechmt.
    [68]Jong-Duk Moon, Bong-Suk Kim, Soo-Hun Lee. Development of the active balancing device for high-speed spindle system using influence coefficients. International Journal of Machine Tools & Manufacture,2006,46:978-987.
    [69]ISO 1940/1. Mechanical vibration balance quality requirements of rigid rotors,Part 1.
    [70]H.Schulz. Balancing Requirements for Fast Rotating Tools and Spindle Systems. Annals of the CIRP,1998,47(1):321-324.
    [71]T.L.Schmitz. The role of cutter eccentricity on surface finish and milling forces.2004 ASME International Mechanical Engineering Congress November 13-19,2004.
    [72]Zhou S, Shi J. The analytical unbalance response of Jeffcott rotor during accelerartion. Journal of Dynamic Systems,Measurement,and Control, Transactions of the ASME,2004,126(1):219-223.
    [73]Zhou S, Shi J. Active balancing and optimal balancing plane selection of rotors during acceleration. Journal of Manufacturing Science and Engineering, Transactions of the ASME,2001.
    [74]Zhou S, Shi J. Supervisory adaptive balancing of rigid rotors during acceleration. Transaction of NAMRI/SME,2000(27):425-430.
    [75]S. Yang. A study of the static stiffness of machine tool spindles. Internatioanl Journal of Machine Tool Design & Research 21 (1981) 23-40.
    [76]Yuzhong Cao, YAltintas. Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations. International Journal of Machine Tools & Manufacture,2007,47:1342-1350.
    [77]Adam G.Rehorn, Jin jiang, Peter E.Orban, Evgueni Bordatchev. Modelling and experimental investigation of spindle and cutter dynamics for a high-precision machining center. International Journal Manufacturing Technology,2004,24:806-815.
    [78]Osamu Maeda, Yuzhong Cao, Yusuf Altintas. Expert spindle design system. International Journal of Machine of Tools & Manufacture,2005,45:537-548.
    [79]J.Jedrzejewski, Z.Kowal. High-speed precise machine tools spindle units improving. Journal of Materials Processing Technology,2005,162-163:615-621.
    [80]B.R. Jorgensen, Y.C.Shin. Dynamic of spindle-bearing systems at high speeds including cutting load effects. Journal of Manufacturing Science and Engineering,1998,120:551-7560.
    [81]S.Vafaei, H.Rahnejat, R.Aini. Vibration monitoring of high speed spindles using spectral analysis techniques. International Journal of Machine Tools & Manufacture,2002,42:1223-1234.
    [82]Y.Kang, Y.P.Chang, J.W.Tsai, S.C.Chen, L.K.Yang. Integrated "CAE" strategies for the design of machine tool spindle-bearing systems. Finite Elements in Analysis and Design,2001,37:485-511.
    [83]Marti Rantatalo, Jan Olov Aidanpaa, Bo Goransson, Peter Norman. Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement. International Journal of Machine Tools & Manufacture,2007,47:1034-1045.
    [84]Chi-Wei Lin, Jay F.Tu. Model-Based Design of Motorized Spindle Systems to Improve Dynamic Performance at High Speeds. Journal of Manufacturing Processes,2007,9(2):94-108.
    [85]Kushnir, Emmanuil. Optimization of Machine Tool Structures Based on Static and Dynamic Criteria. American Society of Mechanical Engineers, Recent Advances in Soilds and Structures,2002:201-206.
    [86]Shih.C.J, Yu.K.C. Weighting objectives strategy in multicriterion fuzzy mechanical and structural optimization. Structural Engineering and Mechanics.1995,3 (4):373-382.
    [87]T.Ren. Using genetic algorithms and fuzzy control for spindle of CNC machine tool. International Conference on Intelligent Mechatronics and Automation,2004.
    [88]Jia-Jang Wu. Free vibration analysis of beams carrying a number of two-degree-of-freedom spring-damper-mass systems. Finite Elements in Analysis and Design,2004,40:363-381.
    [89]M.Alberti, J.Ciurana, M.Casadesus. A system for optimizing cutting parameters when planning milling operations in high-speed machining. Journal of Materials Processing Technology,168(2005):25-35.
    [90]YAltinatas, Y.Cao. Virtual design and optimization of machine tool spindles. CIRP Annals, manufacturing Technology,2005,54(1):379-382.
    [91]M.I.Friswell, J.E.Penny. Damping ratio and natural frequency bifurcations in rotating systems. Journal of Sound and Vibration,2001,245(5):960-967.
    [92]Vafaei, S.Rahneigat. Vibration monitoring of high speed spindles using spectral analysis techniques. International Journal of Machine Tools and Manufacture. V42,N11,Sepember 2002, Elsevier Science Ltd.
    [93]J.S.Wu, D.W.Chen. Dynamic analysis of a uniform cantilever beam carrying a number of elastically mounted point masses with damper. J.Sound Vib.2000,229(3):549-578.
    [94]Ueno, Shiqeru. Trend of machine tool performance evaluation. Transactions of the Japan Society of Mechanical Engineers,Part C,2005:1416-1420.
    [95]Simon S.Park, Yusuf Altintas, Movahhedy M. Receptance coupling for end mills. International Journal of Machine Tools and Manufacture,2003,43(9):889-896.
    [96]Park S S. Identification of spindle integrated force sensor's transfer function for modular end mills. Journal of Manufacturing Science and Engineering, Transactions of the ASME,2006,128(1):146-153.
    [97]Y.Zhang, B.McClain, X.D.Fang. Design of interference fits via finite element method. International Journal of Mechanical Sciences,2000,42:1835-1850.
    [98]Bahattin KANBER. Boundary Element Analysis of Interference Fits. Turkish J.Eng.Env.Sci.30 (2006), 323-330.
    [99]Pauli Pedersen. On shrink fit analysis and design. Computer Mechanical (2006)37:121-130.
    [100]Seung Woo Lee,Dai Gil Lee. Torque transmission capability of composite-metal interference fit joints. Available online at www.sciencedirect.com, Composite Structures 78(2006):584-595.
    [101]Adnan Ozel, Semsettin Temiz. Stress analysis of shrink-fitted joints for various fit forms via finite element method. Available online at www.sciencedirect.com, Materials and Design,2005(26):281-289.
    [102]Zhou Houming, Wang Chengyong, Zhao Zhenyu. Dynamic characteristics of conjunction of lengthened shrink-fit holder and cutting tool in high-speed milling. Journal of Materials Processing Technology, 207 (2008):154-162. [109].
    [103]David M.Shamine, Yung C.Shin. Analysis of No.50 taper joint stiffness under axial and radial loading. Journal of Manufacturing Processes,2000,2(3):167-173.
    [104]S.Filiz, C.H.Cheng, K.B.Powell, T.L.Schmitz. An improved tool-holder model for RCSA tool-point frequency response prediction. Precision Engineering,2009 (33):26-36.
    [105]O.Ozsahin, A.Erturk, H.N.Ozguven, E.Budak. A closed-form approach for identification of dynamical contact parameters in spindle-holder-tool assemblies. International Journal of Machine Tools & Manufacture,2009(49):25-35.
    [106]Mehdi Namazi, Yusuf Altintas. Modeling and identification of tool holder-spindle interface dynamic. International Journal of Machine Tools & Manufacture,2007,47:1333-1341.
    [107]T.L.Schmitz, M.A.Davies, K.Medicus. Improving high-speed machining material removal rates by rapid dynamic analysis.
    [108 T.L.Schmitz. Predicting high-speed machining dynamics by substructure analysis. Annals of the CIRP,2000,49(1):303-308.
    [109]T.Insperger, G.Stepen. Stability of high speed milling. Proceeding of the ASME 2000 DETC, Symposium on Nonlinear Dynamics and Stochastic Mechanics, Orlando,Florida, AMD-2000, 241:119-123.
    [110]Aleksandar J.Filipovic, John W.Sutherland. Assessing the performance of a magnetostrictive-actuated tool holder to achieve axial modulations with application to dry deep hole drilling. Journal of Manufacturing Processes,2007,9(2):75-86.
    [111]S.Y.Lin, Y.C.Fang, C.W.Huang. Improvement strategy for machine tool vibration induced from the movement of a counterweight during machining process. International Journal of Machine Tools & Manufacture,2008(48):870-877.
    [112]YAltintas, S.Engin. Generalized modeling of mechanics and dynamics of milling cutters, Annals of the CIRP,2001,50(1):25-30.
    [113]E.I.Rivin. Precision Compensators using giant super elasticity effect. CIRP Annals Manufacturing Technology,2007,56(1):391-394.
    [114]Chi-Wei Lin, Jay F.Tu. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation. International Journal of Machine Tools & Manufacture,2003,43:1035-1050.
    [115]David Te-Yen Huang,Jyh-Jon Lee. On obtaining machine tool stiffness by CAE techniques. International Journal of Machine Tools and Manufacture,2001,41:1149-1163.
    [116]Yong-Hwa Park, Youn_sik Park. Structure optimization to enhance its natural frequencies based on measured frequency response functions.Journal of Sound and Vibration,2000,229(5):1235-1255.
    [117]H.Y.Hwang. Identification techniques of structure connection parameters using frequency response functions. Journal of Sound and Vibration,1998,212(3):469-479.
    [118]S.Smith. The effect of drawbar force on metal removal rate in milling. Annals of the CIRP, 1999,48(1):293-296.
    [119]Y.S.Chen, Y.D.Cheng. Development of a finite element solution module for the analysis of the dynamic behavior and balancing effects of an induction motor system. Finite Elements in Analysis and Design, 2008(44):483-492.
    [120]S.K.Choudhury, J.B.Bajpai. Investigation in orthogonal turn-milling towards better surface finish. Journal of Materials Processing Technology,2005(170):487-493.
    [121]J.H.Wang, K.N.Lee. Suppression of chatter vibration of a CNC machine center-an example. Mechanical Systems and Signal Processing,1996,10(5):551-560.
    [122]Satoshi Ema, Etsuo Marui. Suppression of chatter vibration of boring tools using impact dampers. International Journal of Machine Tools and Manufacuture,2000,40(8):1141-1156.
    [123]M.Xiao,S.Karube,T.Soutome,K.Sato.Analysis of chatter suppression in vibration cutting.International Journal of Machine Tools and Manufacture,2002,42(15):1677-1685.
    [124]UGS Corp.NX Nastran5.0 Document:Advanced Dynamic Analysis User's Guide.
    [125]傅志方,华宏星.模态分析理论与应用.上海:上海交通大学出版社,2002.
    [126]沃德.海伦斯蒂芬.拉门兹波尔.萨斯著,白化同,郭继忠译.模态分析理论与试验.北京:北京理工大学出版社,2001.
    [127]管迪华.模态分析技术.北京:清华大学出版社,1996.
    [128]李沪曾,G.Spur,郭大津.机床振动学研究的历史回顾与展望.同济大学学报,1994,22(3):378-384.
    [129]张新玉,张文平,李全等.圆柱形薄壳结构的试验模态分析方法研究.哈尔滨工程大学学报,2006,27(1):20-25.
    [130]陈锋,陈小安,孟杰.高速电主轴的工作模态试验分析.现代制造工程.2008(8).
    [131]郑金兴,张铭钧,孟庆鑫.试验模态技术在机床结构动态特性研究中的应用.测控技术,2007,26(12):28-31.
    [132]武凯,何宁,廖文和等.基于变形控制的薄壁结构件高速铣削参数选择.机械科学与技术.2005,24(7):787-791.
    [133]查文炜,何宁.高速铣削淬硬钢刀具磨损机理的研究.机械设计与制造.2008,12:220-222.
    [134]周后明,王成勇,赵振宇.热缩加长刀杆与刀具配合的接触特性分析.机械设计与研究.2008,24(1):75-88.
    [135]缪红燕,高金吉,徐鸿.转子系统瞬态不平衡响应的有限元分析.振动与冲击.2004,23(3):1-4.
    [136]张鹏鹰,陈兵,曹跃云等.模拟转子不平衡响应数值分析及实验研究.海军工程大学学报.2008,20(1):12-15.
    [137]阮金彪,刘树春,刘荣强等.柔性转子不平衡响应与传递力的分析.哈尔滨工业大学学报,1995,27(6):117-120.
    [138]宋清华,唐委校.高速铣削系统动态实验方法研究.组合机床与自动化加工技术,2005,9:21-23.
    [139]王素玉,汪桂莲,郭培燕,赵军.高速铣削45#中碳钢切削力建模及实验研究.山东:山东科技大学学报(自然科学版),2005,24(3):9-13.
    [140]汪通悦,何宁,李亮等.薄壁零件高速铣削振动影响因素研究.淮阴工学院学报.2009,18(1):13-17
    [141]李光辉,冯平法.HSK刀柄与主轴联结性能的有限元分析.工具技术.2005,39(9):27-30.
    [142]张松,艾兴,赵军.高速主轴/刀具联结的参数化有限元法优化设计.机械工程学报.2004,40(2): 83-86.
    [143]张松,艾兴.HSK主轴/刀具联结的有限元分析.机械科学与技术.2004,23(6):631-633.
    [144]刘战强,艾兴.高速切削过程的优化.机械设计与制造.2002,3(6):102-104.
    [145]唐志涛,刘战强,艾兴.高速铣削加工铝合金表面残余应力研究.中国机械工程.2008,19(6):699-705.
    [146]高尚晗,孟光.机床主轴系统动力学特性研究进展.振动与冲击.2007,26(6):103-109
    [147]蒋炎坤.基于动力学方程及儿何模型的高速转子动力学特性.华中科技大学学报(自然科学版).2006,34(10):74-76.
    [148]郑凌云.机械振动中临界转速的工程意义及实践应用.机械研究与应用.2004,17(2):19-22.
    [149]邵红艳.基于遗传算法的机床主轴动态特性优化设计.现代机械.2005,(4):39-41.
    [150]郑玲利,吕文阁.基于竞选算法的机床主轴结构优化设计.机械设计与制造.2006,(8):35-37.
    [151]张红旗.基于CAE技术的机械结构优化方法.机械与电子.2005,(5):9-11.
    [152]管琪明,尹健,李屹,田军.机床主轴动态特性优化设计的遗传算法实现.贵州工业大学学报.2004,33(2):85-88.
    [153]肖曙红,张伯霖,陈焰基等人.高速电主轴关键技术的研究.组合机床与自动化加工技术.1999,(12): 5-10.
    [154]丁金华.机床主轴动力优化的逆摄动法.大连轻工业学院学报.2000,19(3):199-203
    [155]胡如夫,孙庆鸿,陈南等.高精度数控内圆磨床部件动态优化设计研究.设计与研究.2004(1):39-41
    [156]钱木,蒋书运.高速磨削用电主轴结构动态优选设计.中国机械工程,2005,16(10):864-868
    [157]王贵成,王树林,裴宏杰,沈春根,薛宏丽.高速加工HSK工具系统动态特性的研究.中国机械工程.2006,(5):441-445.
    [158]王树林,王贵成,梁彦学.高速加工刀具的动平衡失稳.中国机械工程.2003,(17):1454-1457.
    [159]董广强,王贵成,王树林,王柱.高速加工中HSK工具系统刚度的研究.机械设计.2005,22(10):44-47.
    [160]王树林,王贵成,梁彦学.HSK工具系统的力学模型及其应用.农业机械学报.2003,(4):122-124.
    [161]沈春根,王贵成,王树林.HSK工具系统临界转速的有限元计算和分析.机械设计与研究,2008,24(24):116-119.
    [162]吴卫国,王贵成,马利杰.高速加工系统稳定性的研究进展.工具技术,2007,(10)
    [163]王树林.高速加工中HSK工具系统性能及其应用基础的研究.[博士学位论文].镇江:江苏大学,2003.
    [164]吴卫国.高效精密切削及其振动特性的研究.[博士学位论文].镇江:江苏大学,2007.
    [165]薛宏丽BIG-PLUS工具系统的动态特性及其数值模拟.[硕士学位论文].镇江:江苏大学,2007.
    [166]李加坤.NC5刀柄性能及其工具系统研究.[硕士学位论文].镇江:江苏大学,2008.
    [167]房健.高速加工中KM刀柄及其工具性能的研究.[硕士学位论文].镇江:江苏大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700