固井封固理论与应用技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固井封固技术是钻井、完井过程中至关重要的技术环节,直接关系到后续的钻井、完井、以及压裂、酸化、射孔等一系列增产措施能否顺利实施。随着油田开发的不断深入,特别是调整井的注水开发,由于注采不均衡的影响,地下的原始压力系统已发生了很大变化,在纵向剖面上,高压、常压和欠压层相间存在。纵向上的多压力层系并存、渗流流量增加、层间矛盾突出,这些复杂的地质情况给油水井的封固造成了很大困难,固井质量难于保证,严重地制约了开发方案的有效实施。另外,为了提高油气井的产能,特别是为了一些低压、低渗透的油气藏、稠油藏的开发需要,一些增产措施相继被采用,如通过大幅度增加爆炸能量来提高射孔弹的穿深等,这势必在一定程度上对套管与井眼间的水泥环带来很大的损伤,影响水泥环与套管和地层两界面的密封胶结质量。
     为此,本文从水泥石胀缩性能、固井顶替机理、固井后水气窜规律、水渗流对固井质量的影响因素、射孔对水泥环损伤等方面入手,采用理论与实验相结合的方法,针对影响固井封固效果的因素进行实验研究,探索提高固井质量的有效途径。
     本文的研究内容包括:
     (1)水泥胀缩规律:设计建立了环状线性膨胀测试系统和水泥环应变测量系统;进行了水渗透、非渗透环境下不同硬度地层对水泥石胀缩及强度发展的影响实验。
     (2)固井顶替机理:分析了水泥浆的非Newton流体的流变特性,给出本构方程;研究水泥浆在井眼内的流动及顶替流动特性;分区段讨论“U”型管效应产生的原因;设计建立了当量模拟井筒,通过实验研究套管偏心度、井径扩大率、顶替排量等因素对固井顶替效率的影响。
     (3)固井后环空水气窜规律:研制了胶凝强度测试仪和气窜模拟仪;进行了井壁渗透性对水泥浆“失重”影响实验,井壁渗透性对水泥浆气窜影响实验,温度对水泥浆气窜影响实验;提出了“压稳系数”的概念,定量地描述了固井后高压层的压稳程度。
     (4)水渗流对固井质量影响:研制了水渗流模拟装置;利用该装置进行了环空静液柱压力与地层孔隙压力差对固井质量的影响实验,渗流流量对固井质量影响实验,给出了水渗流影响固井质量的临界流速,为现场钻关控制提供了依据。
     (5)水泥环抗冲击性能:设计建立了实弹射孔装置和验窜装置;引用“弹性模量”、“破碎吸收能”、“动态断裂韧性”来描述水泥石材料的抗射孔冲击能力;利用Hopkinson装置测量非金属材料的动态力学性能。
     (6)应用技术:根据上述机理研究的结果,进行了高抗窜水泥浆体系、加重隔离液体系、抗冲击韧性水泥浆体系、膨胀水泥浆体系等应用技术研究。研制开发的抗窜、增韧、膨胀水泥浆体系,满足现场施工要求,有利于改善固井质量。
     论文研究成果揭示了水泥浆候凝过程中的胀缩机理,深入阐述了水气窜的控制机理及渗流对固井质量的影响,提出了改善水泥石抗射孔冲击能力的方法,不仅为进一步提高油田固井,特别是调整井固井质量提供了理论和实验依据,而且丰富、完善了油井固井技术。所研制开发的水泥浆和前置液体系以及相应的配套技术措施,可以提高压稳程度和顶替效率,改善固井质量,延长油井寿命,提高油气田开发效益。
Cementing and channeling resisting, are key technologies in drilling and completion of oil and gas wells. They are related to the successful implementation of drilling, completion, fracturing, acid treatment and perforation. Large area high-pressure water injection, especially in adjusting wells, the original pressure system was changed, and forms one or more high pressure layers, normal pressure layers and underpressured layers at different depths in a well. Casing shears and unbalanced injection-production system further complicates the situation.
     Water seepage increases quickly. All these complicated geological conditions are serious obstacles to satisfactory cementing of oil & water wells. It slows down the effective implementation of production programs. In addition, in order to improve productivity of oil and gas wells, especially in low pressure, low permeability oil and gas reservoirs, some stimulation treatments were carried out. In order to extend the perforation range a charge with more explosive energy than ever used before was used. The resulting impact affected bond quality of cement sheath and cement sheath between borehole wall and casing.
     In this article, the following properties will be described, the compression-dilatation properties of cement sheath, cementing displacement ratio, regularity of water-gas channeling, effecting factors of water seepage to cementing quality, perforation damage to the cement sheath. By integrating theory derivation with the testing data verification, this thesis focuses on the factors affecting cement quality, and searches for the methods of improving cementing quality.
     The main content of this thesis are as follows:
     (1) The compression- dilatation property of cement sheath:
     Designed and built the ring linear dilatation test system and cement sheath strain test system. Tested the compression-dilatation properties and compressive strength of cementing stone in permeable and impervious conditions. Tested the effects of different layers to the compression-dilatation properties of cementing stone.
     (2) The theory of cementing displacement:
     Analysis of the rheological property of non-Newtonian fluid, and the flow and displacement properties of cementing slurry in casing and borehole. Wrote the constitutive equations; discussed the reason and theory of the“U”tube. Designed and made an equivalent modeling borehole, searched for the effects of casing eccentricity, borehole expanding rate, displacement capacity to the displacement ratio by test.
     (3) Water-gas channeling regularity in an annular borehole after cementing;
     Designed a gel strength test meter and gas channeling simulator, tested borehole permeability to weight loss, gas channeling of cementing slurry, and temperature to gas channeling of cementing slurry. Presents the concept of stable pressure coefficient and quantitatively describes the stable pressure in the high pressure layer.
     (4) The effects of water seepage on cementing quality: Designed a water seepage simulator. By use of this simulator, studied the effects of pressure drawdown on the hydrostatic column, pressure in annular and formation pore and how this affects cementing quality. Studied the effects of water seepage flow rate on cementing quality, found the critical flow rate and provided the technical reference for controlling the formation pressure.
     (5) Impact resistance of cementing sheath:
     Designed the real bullet perforating simulation equipment; introduced the concepts of“dynamic elastic modulus”,“broken absorbed energy”and“dynamic fracture toughness”to describe the impact resistance of the cementing stone. This is the first time that the Hopkinson instrument has been used to test the dynamic mechanical properties of nonmetal materials.
     (6) Application of the technology:
     According to the results of the research, channeling resisting cementing slurry was developed together with a weight spacer, impact resistant cementing slurry and a dilatation cementing slurry. All the cementing additives were tested using well site experiments. They have satisfied the demand for cementing operations and are used to improve the cementing quality.
     This thesis focuses on factors affecting cementing quality and presents the compression- dilatation theory of cementing stone. Developed the rules for water-gas channeling, water seepage and impact resistance of cementing stone are also explained in this thesis. Providing a technological guarantee for oil and water well cementing and especially for the adjusting of wells, but also, be helpful in cementing technologies. As a technological treatment, it improves the stable pressure and displacement ratio, and improves production.
引文
[1] American Petroleum Institute.World Wide Cementing Practices[S].API Dallas US.1991.
    [2]丁士东.国内外固井技术现状及发展趋势[J].钻井液与完井液,2002,19(05):35-39.
    [3]唐登峰,南步银.泡沫水泥浆固井工艺技术[J].石油钻采工艺,2001,23(06): 30-33.
    [4] Kevin Kopp,王培良.泡沫水泥用于层间封固∶现场实例[J].国外油田工程,2002,18(02):19-20.
    [5]李晓岚.泡沫水泥避免了墨西哥湾地区的压实损害[J].钻井液与完井液,2001,18(02):47-49.
    [6]贾芝,胡富源,郭卫军,常占宪,屈建省,宋有胜.用于封固气层的泡沫水泥浆固井技术[J].钻井液与完井液,2003,20(02):22-24.
    [7]温雪丽,马海忠,陈小荣,常占宪.防气窜泡沫水泥浆的研究与应用[J].钻井液与完井液,2003,20(04):7-9.
    [8]顾军,向阳,何湘清,王学良.泡沫超低密度油井水泥的试验研究[J].水泥,2002,(06):19-20.
    [9]屈建省,杜慧春,黄柏宗.泡沫水泥的研究与应用[J].钻井液与完井液,1994,11(05):1-7.
    [10]屈建省,杜慧春.新型泡沫水泥的研究与应用[J].钻井液与完井液,2000,17(04):11-14.
    [11]袁孟嘉,雷桐,路宁,贾芝,林恩平,孙富全.长庆天然气欠平衡钻井低密高强水泥浆固井技术研究应用[J].天然气工业,2002,22(06):72-74.
    [12]屈建省,宋有胜,贾芝.适用于长庆油田固井的低密度泡沫水泥浆[J].钻井液与完井液,1997,14(05):27-28.
    [13]康世柱,张永海,左训国,李元顺,沈勇,陶永金.高性能、低成本化学泡沫水泥浆在青海油田低压易漏井的应用[J].钻井液与完井液,2003,20(01)27-28.
    [14]杜乐清,赵东坤.泡沫水泥在充填巷道中的应用[J].煤炭科学技术,1994,22(06):1-3.
    [15]王武详,曹蓓.粉煤灰泡沫水泥的性能与应用[J].粉煤灰综合利用,1996,(03):67-68.
    [16]顾军,尹会存,高德利,王学良.泡沫水泥稳定性研究[J].油田化学,2004,21(04):307-309.
    [17]刘义生,温大维.应用泡沫水泥治理特大顶板垮落空硐[J].煤炭科学技术,2004,32(12):33-35.
    [18]杜乐清,连志斌.泡沫水泥的形成及充填机的设计研究[J].矿山机械,1997,(09):36-38.
    [19]张兴国,高兴原,冯明.固井质量影响因素分析[J].钻采工艺,2002,25(02):10-13.
    [20]黄柏宗,姜向东.90年代新兴的几种固井技术[J].石油钻探技术,1996,24(02):51-53.
    [21]杨振杰,李家芬,苏长明.钻井工程固井胶结界面研究现状[J].石油钻探技术,2005,33(06):1-4.
    [22]魏周胜,马国忠.Gj-1保护气层防气窜水泥浆体系研究[J].钻井液与完井液,2003,20(1):3-8.
    [23] Jain B,Raiturkar A M P,Holmes C.Using Particle Size Distribution Technology For Designing High Density,High Performance Cement Slurries In Demanding Frontier Exploration Wells In South Oman[R]. IADC/SPE 59134.
    [24]黄河福,田辉,王瑞和.MTC固井液二界面胶结强度实验研究[J].中国石油大学学报自然科学版,2006,30(06):46-49.
    [25]吴达华,谭文礼,邹建龙等.高密度抗盐水泥浆体系[C].十一五固井科研规划剂固井技术研讨会论文集,2004212.
    [26]黄河福,步玉环,王瑞和.固井防窜剂的优选试验研究[J].石油钻探技术,2006,34(06):42-44.
    [27]石向前,张财金,邹和均.吐哈油田固井配套技术[J].石油钻探技术,2002,(02):45-48.
    [28]陈书鸿.充分利用现有科技成果努力提高勘查固井质量[J].石油钻探技术,1995,23(12):39-42.
    [29]姚晓,兰祥辉,邓敏,许仲梓,唐明述.油井水泥多功能防窜剂的研究及应用[J].南京工业大学学报(自然科学版),2002,24(06):11-15.
    [30]严增涛,赵小龙,胡迈声.丁苯胶乳在油气田固井中的应用展望及粒子设计[J].石化技术与应用,2001,19(5):325-327.
    [31]关富佳,李云波,黄志文.丁苯胶乳水泥浆室内研究[J].海洋石油,2003,23(4):83-86.
    [32]赵林,丁苯胶乳对油井水泥浆性能的影响研究[C].第四届石油钻井院所长会议论文汇编,2004, 225-228.
    [33]姜宏图,肖志兴,鲁胜等.丁苯胶乳水泥浆体系研究及应用.钻井液与完井液[J],2004,21(1): 32-35.
    [34]张宏英.高性能聚合物水泥混凝土(砂浆)的研究[J].广西电力工程,1999(04).
    [35]侯贵华,许仲梓.白色阿利尼特水泥的形成及其矿物相研究[J].硅酸盐学报,2003,31(05):508-512.
    [36]张德成,黄世锋,吴波,王英姿.钢渣矿渣水泥碱性激发剂的研究[J].硅酸盐通报,2004,(03):118-120.
    [37]姜从盛,丁庆军,王发洲,李春.钢渣的理化性能及其综合利用技术发展趋势[J].国外建材科技,2002(03).
    [38]陈冬梅,张日华,张战营.大掺量粉煤灰特性水泥研究[J].硅酸盐通报,2006,25(05):191-194.
    [39]万惠文,林宗寿,水中和.适宜盐渍地区具有强抗腐蚀性混凝土的性能与特点[J].国外建材科技,2002(04).
    [40]侯贵华.碱渣烧制白色水泥熟料显微结构的研究[J].硅酸盐通报,2002(05):54-57.
    [41]吴其胜.碱矿渣水泥的研究与发展[J].中国建材科技,1999(01):1-4.
    [42]刘晓存,李艳君,单连梅. ZnO和CaF_2对C_3S和C_4A_3矿物形成的影响[J].建筑材料学报,2003(01):9-12.
    [43]戴民,唐明,聂元秋.超细硅灰石粉高性能彩色混凝土试验研究.2002年材料科学与工程新进展(下)—2002年中国材料研讨会论文集[C],2002.
    [44]司万春,郭朝辉,马兰荣.可膨胀尾管悬挂器技术及其应用[J].石油矿场机械,2006,35(04):100-103.
    [45]夏青.浅析Y441-114(2)型封隔器的现场坐封压力[J].石油钻采工艺,1994,16(03):34-36.
    [46]邹枫.自动坐封式耐高温封隔器用于蒸汽吞吐[J].石油钻采工艺,1999,21(02):40.
    [47]智勤功,谢金川,韩德民,高雪峰,曲昌学,杨朝辉.Y445-150型防中途坐封安全处理封隔器[J].石油机械,2001,29(12):31-33.
    [48]赵以凯.坐封阀与液压坐封封隔器配套使用技术[J].钻采工艺,1999,22(04):81-82.
    [49]马锐,刘建芝,陈艳萍,杜亚平.P-T封隔器验窜找漏探讨[J].油气井测试,2005,14(01):44-45.
    [50]王吉庆,王红梅,王方林,张宝辉.新型K341型测试封隔器及改进[J].油气井测试, 2001,10(06):66-67.
    [51]孟祥鹏,任龙,朱安庆.ZJY341—114型注聚井套保封隔器[J].油气田地面工程,2001,20(05):71-72.
    [52]王守芳,刘猛,周普清.上提加压式封隔器坐封高度的确定[J].油气井测试,2002,(04):40-43
    [53]胡玉志,刘克勇,王黎阳.Φ90mm金属封隔器的研制[J].河南石油,2005(02):66-67.
    [54] Jones, P.H, Berdine.D. Oil-well Cementing:Factors Influencing Bond Between Cement and Formation[S].Drill and rod.Prac.API,Dallas,Mar.1940,45-63.
    [55] G.C.Howard and J.B.Clark.Factors to be Considered in Obtaining Proper Cementing of Casing[S].D.P.P.API,1948,257-272.
    [56] Owsley,W.D.Imp roved Casing Cementing Practices in the United States[J],Oil and Gas Journal,1949, 12,15.
    [57] J. W. Brice and R. C. Holmes.Engineered Casing Cementing Programs Using Turbulent Flow Techniques[J].JPT(1964),PP.503-508.
    [58] R.H.Mclean etc.Displacement Mechanics in Primary Cementing[J].JPT,1967,251-260.
    [59] Parker, P. N. ,Ladd, B. J. , Ross, W. N. , and Wahl, W. W. , An Evaluation of a Primary Cementing Technique Using Low Displacement Rates[R],SPE1234,1965.
    [60] Parker,P.N.Cementing Successful at Low Displacement Rates[J].World Oil,1969, 93.
    [61] R.C.Haut,R.J.Crook.Primary Cementing:The Mud Displacement Process[R].SPE8253,1979.
    [62] R.C.Haut,R.J.Crook.Primary Cementing:Optimizing for Maximum Displacement[J]. World oil,Nov.1980.
    [63] R.C.Haut and R.J.Crook.Laboratory Investigation of Light Weight, Lo-Viscosity Cementing Spacer Fluids[J].JPT,1982.
    [64] Bannister,C.Eand Benge,O.C.Pipe Flow Rheometry:Rheological Analysis of a Turbulent Flow System Used for Cement Placement[R].SPE10216,1981,5-7.
    [65] Smith,R.C.Check List Aids Successful Primary Cementing[J].Oil and Gas,1982:11(1)72-75.
    [66] Arnold,E.S.Cementing:Bridging the Gap from Laboratory Results to Field Operations[J],JPT,1982,1843-2852.
    [67] Sauer,C.W.and Landrum,W.R.Cementing: A systematic App roach[R]. SPE11981,1983(10): 5-8.
    [68]张德润,张旭.固井液设计及应用(上册)[M].石油工业出版社,2002.
    [69] Jakobsen J etc. Displacement in Eccentric Annuli During Primary Cementing in DeciatedWells[J].SPE21686,1991.
    [70]郑永刚,非牛顿流体流动理论及其在石油工程中的应用(第一版)[M].石油工业出版社,1999(5).
    [71] M.R.Wells and R.C.Smith.Analysis of Cementing Turbulators[R].SPE19542,249~262.
    [72]岳建,李小平,李刚.固井计算机优化设计与实时监测系统[J].石油学报,1994,20(05):70-75.
    [73]徐璧华,郭小阳,张玉隆.运用固井设计与仿真模拟系统辅助现场提高固井质量[J].天然气工业,1996,16(06):34-37.
    [74]徐璧华,郭小阳,刘崇建.固井注水泥仿真模拟系统的开发应用[J].西南石油学院学报,1996,18(03):38-43.
    [75]陈明亮,刘硕琼,刘顶运,韩永友,固井工程技术服务支持系统CEMSS[J].天然气工业,1997,12(2)82-84.
    [76]夏宏南,陶谦,杨明合.固井注水泥过程计算机动态模拟微模型研究[J].断块油气田,2006,13(04):55-57.
    [77]周向东,张国友.底特律S60系列柴油机在固井车中的应用[J].石油机械,2000,28(01):53-55.
    [78]邬春学,余镇危,邬春学,江琼琴,胡强.TF1000ms固井设备自动监控系统[J].微计算机信息,2003,(03).
    [79]郑满圈,姚道广,李军,刘启伟.新型400型固井水泥车的结构特点[J].专用汽车,1998,(02).
    [80]李克向.实用完井工程[M].北京:石油工业出版社,2002.
    [81]钻井手册(甲方)编写组.钻井手册(甲方)[M].北京:石油工业出版社,1990.
    [82]姚晓.油井水泥膨胀剂研究(1)—水泥浆体的收缩与危害[J].钻井液与完井液,2004,21(04):52-55.
    [83]杨杰,刘海静,张明玉,朱贵攀,江家良.提高水泥环二界面胶结质量方法的探讨[J].钻井液与完井液, 2004,21(05):36-39.
    [84]姚晓.油井水泥膨胀剂研究(2)—膨胀机理及影响因素[J].钻井液与液,2004,21(05):43-47.
    [85]李玉海,刁胜贤.氮气膨胀剂在胜利油田固井中的应用[J].石油钻采工艺,2003,25(01):31-32.
    [86]唐登峰.SEP-1水泥膨胀剂在长封固段固井中的研究与应用[J].石油钻采工艺,1995,17(06):38-42.
    [87] D.K史密斯.美国油井注水泥技术[M].北京:石油工业出版社,1980.
    [88] Tosun I Axial. Laminar flow in an eccentric annulus: an approximate solution[M].AichEJ. 1984, 30(5) :877-878 .
    [89] Ballal B, Rivlin R S.Flow of a viscoelastic fluid between eccentric cylinders[J].Rheologica Acta.1975,14(10):861-880.
    [90] Iyoho A W, Azar J. An accurate slot_flow model for non_Newtonian fluid flow through eccentric annuli[R].SPE.1981.565-571.
    [91]赵金洲,张桂林.钻井工程技术手册[M].北京:中国石化出版社,2004.
    [92]贺成才.幂律-牛顿流体圆管分层层流的数值模拟[J].天然气与石油,2003,21(1):18-21.
    [93]贺成才.幂律流体在偏心环空中流动的数值模拟[J].石油学报,2002,23(6):85-89.
    [94]汪海阁,刘希圣.幂律流体偏心环空波动压力数值解[J].石油学报,1998,19(3):105-109.
    [95]崔海清,杨元健,高涛,孙智.幂律流体在内管做轴向往复运动的偏心环空中的非定常流的流量计算[J].石油学报,2005,26(03):106-109.
    [96]崔海清,季海军,蔡萌,修德艳.流体在内管做行星运动的环空中流动的二次流[J].大庆石油学院学报,2005,29(02),16-18.
    [97]王春生.粘弹性流体在内管做轴向运动的偏心环空中的速度分布[J].大庆石油学院学报,2005,29(1):110-111.
    [98]张新.Newton流体在内管做行星运动的环空中流动的稳定性参数[J]大庆石油学院学报, 2006.
    [99]郭军辉.偏心环空中做轴向运动的内管所受粘弹性流体作用力的数值计算[J].大庆石油学院学报,2006,36-42.
    [100]历玉英,刘杨,陈建业,周立杰.应用PIV技术测量幂律流体在环空管道内的流场[J].大庆石油学院学报, 2006,30(05):42-45.
    [101]贺成才.小井眼固井一维顶替流理论研究[J].石油钻采工艺,2002,24(03),5-7.
    [102]赵仁宝,崔海清,李邦达.Robertson-Stiff流体环空螺旋流的解析解[J].大庆石油学院学报,1994,18(01):36-42.
    [103]郑永刚,郝俊芳.偏心环空紊流注水泥顶替理论研究[J]石油学报,1994,15(03):139-144 .
    [104]岳湘安,陈家琅.非牛顿流体流动的稳定性参数Y及其应用[J].水动力学研究与进展A辑, 1987,(03).
    [105]周凤石.偏心环隙流动的基本特征及其对钻井的影响[J].石油钻采工艺,1983,(03):7-16.
    [106]岳湘安,陈家琅,黄匡道.幂律流体在偏心环形空间中轴向层流的速度分布[J].水动力学研究与进展A辑,1988,(03).
    [107]吴疆.偏心环空中非牛顿液轴向层流流动规律[J].石油钻采工艺,1985,(02):1-14.
    [108]翟应虎,刘希圣.纯粘性流体环空螺旋流层流流场的理论分析[J].石油大学学报(自然科学版),1985,(02).
    [109]郑永刚.非牛顿流体偏心环空紊流流动及顶替机理[J].钻井液与完井液,1994,11(02):12-19.
    [110]杜伟程,黄柏宗.新的固井防窜理论及措施[J].钻井液与完井液,1997,14(01):33-35.
    [111]罗长吉,刘爱玲,程艳.固井防水窜机理研究与应用[J].石油钻采工艺,1995,17(05):35-42.
    [112]李泽林,常伟,王秀玲,逯振东,陈利.高温防窜水泥浆体系的研究及应用[J].断块油气田,2004,11(04):68-70.
    [113]王立平,刘爱玲,罗长吉.大庆油田固井后水气窜实验研究[J].石油钻采工艺,1992,14(05):25-31.
    [114]纪宝华,王明升.大庆长垣北部影响固井质量的地质因素分析[J].断块油气田,1999,6(06):49-51.
    [115]肖志兴,卢丽文,梁洪权.地层流体影响水泥环胶结质量的机理分析[J].钻采工艺,1999,22(02):4-8 .
    [116]王祥林.射孔对水泥环损伤的综合研究[D].地震工程与工程振动.1994,(01).
    [117]冯乃谦.高性能混凝土的强度与断裂韧性[J].混凝土与水泥制品.1995,(4):20-23.
    [118]王祥林等.提高水泥环韧性的实验研究[J].地震工程与工程震动.1997.2.
    [119] K J Googwin.水泥环的应力破坏[C].1992年油井水泥外加剂译文集.1992,11-13.
    [120]林凯,杨龙,廖凌,史交齐,宋延鹏,唐继平.水泥环对套管强度影响的理论和试验研究[J].石油机械,2004,(05).
    [121]盛国富.水泥环对套管强度影响的理论和试验研究[J].国外油田工程,2004,(10).
    [122]宋明,杨凤香,宋胜利,杨秀娟.固井水泥环对套管承载能力的影响规律[J].石油钻采工艺,2002,22(04):7-9.
    [123]邓金根.油井套管、水泥环组合体抗非均匀围岩外载强度特性[J].岩石力学与工程学报,1994,13(02):160-166.
    [124]李军,陈勉,陈志勇.不同地应力条件下水泥环形状对套管应力的影响[J].天然气工业,2004,(08):50-52.
    [125]华苏东,姚晓.高韧性油井固井材料的性能与应用(英文)[J].硅酸盐学报.2007,35(06):787-790.
    [126]陆岳屏等.“Hokinson”压杆法测定砂岩、石灰岩动态应力和杨氏模量[J].岩土工程学报,1983,3:9-11.
    [127]罗长吉,王允良,张彬.固井水泥环界面胶结强度实验研究[J].石油钻采工艺,1993,15(03):47-51.
    [128]林恩平,邢秀平,王建东,徐滨,王国敏,修留永.G60S防窜剂在板深78-1井长封固段固井中的应用[J].钻井液与完井液,1998,15(06):43-45.
    [129]张明深,高温防窜水泥浆体系的开发与应用[C].中国海上油气工程,1999,11(1):46-50.
    [130]孙清德.国外高温深井固井新技术[J].钻井液与完井液,2001,18(5):8-12.
    [131]杨香艳.一种水基广普前置液体系的研究与应用[D].西南石油学院硕士研究生学位论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700