蓝藻与红藻中藻胆蛋白的活性构象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藻胆体是存在于蓝藻和红藻中的一类捕光复合物(light-harvesting complex),是蓝藻和红藻光系统最主要的捕光天线(antennae),由多种藻胆蛋白和连接蛋白组成。根据光谱性质,藻胆蛋白可以划分为三个大类:异藻蓝蛋白、藻蓝蛋白和藻红蛋白,此外在部分蓝藻中还存在藻红蓝蛋白。藻胆蛋白以共价键连接多个色素基团,这些色素基团使得藻胆蛋白具有十分优良的捕获和传递光能的能力。
     在蓝藻和红藻细胞中,水溶性的藻胆蛋白位于类囊体膜的表面,直接暴露于细胞质或者类囊体基质中。当细胞内环境发生波动的时候,藻胆蛋白将受到直接影响,其构象很容易发生扰动。对于藻胆蛋白来说,在构象发生一定程度变化的时侯仍能维持捕获和传递光能的能力,对蓝藻和红藻在逆境条件下的生存是非常重要的。很多种类藻胆蛋白的晶体结构已经得到了解析,这些晶体结构提供了藻胆蛋白在平衡态下的静态结构信息。而藻胆蛋白在生理条件下的溶液中具有功能活性的构象,包括在受到环境干扰而发生结构扰动时的构象,必然是一个动态的变化范围。晶体结构只是提供了藻胆蛋白众多可能的构象当中的一种静态信息。因而2009年Liu等提出了藻胆蛋白活性构象的概念(Liu et al.,2009),并且把对藻胆蛋白的晶体结构的分析与藻胆蛋白在溶液中活性构象的动态变化的研究相结合,研究了在溶液中具有功能活性的藻胆蛋白的结构与功能的动态变化关系
     本文对来源于蓝藻和红藻的各种种类的藻胆蛋白的活性构象进行了系统研究,主要研究内容和结果如下:
     一、异藻蓝蛋白高效分离纯化方法的建立
     异藻蓝蛋白是存在于蓝藻和红藻中的一类色素蛋白,在生物技术领域尤其是作为荧光标记物方面有着非常广泛的应用和巨大的市场价值。但异藻蓝蛋白无论在蓝藻中还是在红藻中都是一种低丰度的蛋白,含量很低,迄今为止仍缺乏高效制备型的分离纯化技术。现已报道的纯化技术均无法进行大量、高纯度的异藻蓝蛋白提取。本论文首先建立了一套从钝顶螺旋藻中高效、快速、低成本制备型分离纯化异藻蓝蛋白的方法。粗提液首先经过预处理,然后使用羟基磷灰石富集后再提取的方法,就能非常方便的提取出大量的异藻蓝蛋白。这种方法不仅能够在短时间快速提取出大量的异藻蓝蛋白,而且得到的异藻蓝蛋白纯度系数(A650/A280)达到2.0。提取出的异藻蓝蛋白再通过一步离子交换层析进行进一步纯化,得到高纯度的异藻蓝蛋白,其纯度系数(A650/A280)达到5.0,大大超过了国际上常用的商品化异藻蓝蛋白纯度系数(A650/A280)4.6的纯度标准。
     二、钝顶螺旋藻异藻蓝蛋白活性构象问题的研究
     异藻蓝蛋白是藻胆体核心部分的主要组成成分,能够吸收光能并且将能量传递到类囊体膜上的光系统中,推动光合作用顺利进行。本工作首先从螺旋藻中分离纯化了异藻蓝蛋白,然后以其为实验材料对异藻蓝蛋白光谱性质受溶液pH变化的影响做了研究。以紫外-可见光吸收光谱表征异藻蓝蛋白对光能的吸收能力,发现异藻蓝蛋白在650nm处的最大吸收峰能够在pH 4到10的范围之内,其峰形和峰值都能保持比较稳定,而在酸性环境中pH降低到4以下65nm处光吸收则完全消失,吸收峰蓝移至620nm。碱性环境中pH升高到11时异藻蓝蛋白在650nm的特征吸收峰才完全消失。异藻蓝蛋白在pH4到10范围之内稳定的光吸收能力通过荧光激发光谱的检测也得到了印证。使用荧光发射光谱表征异藻蓝蛋白的光能传递能力,发现异藻蓝蛋白的特征发射光谱峰位于660nm处,而且在pH值4到10的范围之内能够稳定的维持其发射荧光的强度,说明其光能传递能力是稳定的。使用圆二色谱检测了异藻蓝蛋白二级结构变化,发现异藻蓝蛋白的主要二级结构是α-螺旋,但是α-螺旋的含量随着溶液环境pH值的变化而发生一定程度的变动。同时还通过紫外-可见光吸收光谱、荧光光谱和可见光区圆二色谱分析了异藻蓝蛋白聚集状态的改变,发现异藻蓝蛋白在pH从4到10的范围之内,能够稳定的维持住其具有活性功能的三聚体聚集形式。因此光谱分析结果表明异藻蓝蛋白在一定pH值范围内,其光能吸收和传递的能力保持在一个相对较稳定的范围,同时异藻蓝蛋白维持聚集体的形式,而其二级结构则会发生一定程度的扰动。在pH值比较极端的情况下,异藻蓝蛋白三聚体发生解聚,二级结构发生剧烈变化,其光能吸收和传递能力迅速被破坏。通过分析异藻蓝蛋白的晶体结构发现异藻蓝蛋白α亚基和β亚基直接相互作用面上有一些关键的相互作用位点。因此,可能是通过这些相互作用位点,异藻蓝蛋白能够在局部结构发生一定程度的构象变化的情况下维持其蛋白的基本架构稳定,从而保证了其生理功能的稳定。
     三、钝顶螺旋藻藻蓝蛋白活性构象问题的研究
     藻蓝蛋白是蓝藻藻胆体杆部的最主要组成成分,具有执行吸收光能并且将光能传递到藻胆体核心部位的重要功能。本论文选择钝顶螺旋藻作为实验材料,分离纯化了藻蓝蛋白,对藻蓝蛋白在不同溶液pH值影响下的结构与功能的动态变化进行了研究。对藻蓝蛋白的光能吸收能力(以紫外-可见光吸收光谱表征)和光能传递能力(以荧光光谱表征)进行了监测,并且研究了藻蓝蛋白在功能受到影响时其二级结构的动态变化(以圆二色谱表征)和聚集状态的变化(以可见光区圆二色谱进行表征)。藻蓝蛋白在中性溶液环境中吸收光谱的最大吸收峰位于620nm处,在酸性环境下藻蓝蛋白会呈现一个复杂的变化过程,最大吸收峰会从620 nm处蓝移到615nm处,并且通过二阶导数分析发现峰形发生了变化。但是可见光区的吸收峰面积没有减少反而有所增强。在pH值从3.5到10这一比较宽泛的范围内,藻蓝蛋白对光能的吸收能力保持稳定。通过对藻蓝蛋白荧光激发光谱的研究也发现藻蓝蛋白能够在pH3.5到10的范围之内保持稳定的光吸收能力。藻蓝蛋白的荧光发射光谱最大发射峰在639nm处,其荧光发射峰的峰位随pH的变化有微小移动,但是峰值变化较小,反应了其能量传递能力的稳定性。通过分析藻蓝蛋白可见光区圆二色谱647nm处肩峰的谱线变化,发现藻蓝蛋白在功能保持稳定的pH范围之内聚集状态也是保持稳定的。通过使用紫外区圆二色谱对藻蓝蛋白二级结构的动态变化过程进行分析,发现藻蓝蛋白中的二级结构以α-螺旋为主,在藻蓝蛋白功能和聚集状态保持稳定的pH值范围内,其二级结构中α-螺旋的含量有一定程度的波动。因此,对光谱结果的分析表明藻蓝蛋白在溶液环境发生一定程度扰动的时候,能够保持其天然聚集状态,同时其对光能的吸收和传递的能力能够在一定范围内保持相对稳定,而此时其二级结构却发生了一定程度的扰动。随后分析了藻蓝蛋白的晶体结构,重点研究了藻蓝蛋白分子内部的亚基之间维持聚集状态的相互作用面,发现在α亚基和β亚基之间相互接触的面上的一些相互作用区域中存在一些关键的作用位点。通过这些相互作用位点,藻蓝蛋白得以维持其稳定的聚集状态。因此在受到一定程度的环境干扰时,这些相互作用位点能够比较稳定的维持藻蓝蛋白的聚集状态,而此时在蛋白结构的一些非关键区域中,肽链的构象能够呈现一定的柔性变化,这种蛋白折叠方式维持了藻蓝蛋白生理功能的稳定。
     四、多管藻藻红蛋白活性构象问题及溶液酸碱度对其光谱性质的影响
     藻红蛋白位于藻胆体杆的最末端,是红藻中最具有代表性的一类藻胆蛋白。本论对多管藻的藻红蛋的活性构象和去折叠过程中的光谱性质进行了研究。研究发现藻红蛋白在pH值从3.5到10的范围内,藻红蛋白中色基的构象相对稳定,光吸收能力也较为稳定。藻红蛋白在pH值从3.5到10的范围内荧光发射能力也保持较为稳定,并且在此范围内,藻红蛋白的各种二级结构含量有小幅波动,但总体上以α-螺旋结构为主,基本没有β-片层结构,转角和无规则卷曲含量略有波动。在pH低于3.25的酸性环境中,芳香族氨基酸暴露出来。在碱性环境中pH升高到10之后,蛋白构象的改变引起色基构象发生一定程度的变化,在此过程中可能还涉及色基的去质子化过程。在pH值比较极端的条件下荧光发射能力消失。当pH偏酸(小于3.5)或偏碱(大于10)时,α-螺旋结构开始急剧减少,β-片层结构和无规则卷曲结构开始大量增加。在极端pH条件尤其是碱性条件下,藻红蛋白的藻尿胆素(PUB)色基受溶液环境变化的干扰要比藻红胆素(PEB)受到的影响小。通过分析推测藻红蛋白在二级结构发生一定程度扰动的时候,仍然能够稳定的保持其光能的吸收和传递的能力。为了解释这个问题本论文同时分析了藻红蛋白的晶体结构,发现与其它藻胆蛋白相似的是,藻红蛋白在其亚基之间的相互作用面上有一些有相互作用较强的位点,正是这些位点之间的相互作用,使得藻红蛋白分子能够比较稳定的维持其聚集状态。在外界环境对藻红蛋白分子产生干扰的时候,藻红蛋白执行功能的区域也能够维持一定的稳定性,使得其能量吸收和转移的能力得到维持。而其它非关键区域则表现出一定程度的柔性,在蛋白结构受到干扰的时候发生一定的柔性变化。通过对藻红蛋白在pH影响下的光谱动力学变化的分析,发现藻红蛋白内部能量转移并没有受到溶液pH值改变而导致的藻红蛋白变性的影响。但是极端溶液pH值不仅可以导致藻红蛋白完全变性,还会修饰藻红蛋白的光谱性质,而且在酸性和碱性条件下修饰的方式是不一样的。
     五、藻胆蛋白中芳香族氨基酸与色基之间的相互作用
     藻胆蛋白中富含芳香族氨基酸,芳香族氨基酸的荧光随着藻胆蛋白的去折叠过程而发生变化,使用芳香族氨基酸荧光跟踪监测了藻胆蛋白在pH介导下的去折叠过程,发现在对藻胆蛋白中的芳香族氨基酸进行激发时,在可见光区发现了藻胆素的发射荧光,说明在藻胆蛋白内部存在着由芳香族氨基酸向藻胆素传递能量的路线。研究还发现,在通过激发芳香族氨基酸间接激发异藻蓝蛋白的藻胆素时,异藻蓝蛋白的藻胆素的发射荧光呈现出与直接激发藻胆素时得到的发射荧光不同的状态。通过对比其它藻胆蛋白的间接激发藻胆素得到的荧光以及对各种藻胆蛋白藻胆素构象的分析,推测在异藻蓝蛋白中存在两种不同构象的藻蓝胆素,它们在受激时能够分别发射出660nm和639nm的荧光。并且本文对间接激发下639nm荧光的出现等问题进行了讨论。
Phycobilisomes (PBSs) are the major light harvesting pigment-protein complexes in cyanobacteria and red algae, and they are composed of various phycobiliproteins (PBPs) and linker polypeptides. Based on spectra properties, phycobiliproteins are commonly divided into three main groups:allophycocyanin (APC), phycocyanin (PC) and phycoerythrin (PE). PBPs are covalently linked with several co-factors named phycobilins, which enable PBPs to harvest solar energy and transfer it.
     PBSs in cyanobacteria and red algae locate on the surface of thylakoid membrane, directly exposing to cytoplasm or plastid stroma. PBPs may be directly affected by changes in cytoplasm or plastid stroma. For the PBPs in cyanobacteria and red algae, it is crucial to maintain their light-harvesting and energy transfer ability with respect to certain conformational changes. Crystal structures of PBPs provide us with static information. For a better understanding of the protein conformation, crystallography information of the proteins of interest is required to be combined with active structural and functional investigations.
     This thesis discussed the active conformations of the PBPs from cyanobacteria and red algae. The main results are as follows.
     1. Efficient separation and purification of APC from Spirulina platens is
     APC is the core component of a PBS. It plays important physiological role in cyanobacteria and red algae, and it is also widely used in biochemical techniques and food industry. Here we established a method for extracting APC from Spirulina platensis with high efficiency. After pretreating the crude extract, we used hydroxylapatite to enrich and extract APC from PBP solution, and large amount of APC could be separated from other PBPs. This extracting method could not only separate large amount of APC in short time, but also obtain high purity of APC. APC extracted from crude extract could be further purified with single step of ion-exchange chromatography to obtain APC with higher purity.
     2. Research on the active conformation of the APC from Spirulina platensis
     We used the APC purified from Spirulina platensis, and studied its spectra property variations in response to pH changes. Light-harvesting ability was monitored by absorption spectra. Energy transfer ability was monitored by fluorescence emission spectra. Secondary structure was monitored by circular dichroism (CD) spectra. At the meantime, we studied the aggregation state of APC by absorption spectra, fluorescence spectra and vis-CD spectra. By analysis of spectra properties, we found that APC showed good absorbance and fluorescence stability at varying pH, with only minor changes between pH 4-10. The trimeric structure of APC was maintained while local variations of protein peptides were also shown in response to the environmental disturbance. Beyond this pH range, secondary structure as well as overall conformation of APC dramatically changed, and the energy absorption and transfer ability were also disrupted. By analysis of APC crystal structure, we found some key amino acid residues on the interaction surfaces betweenαandβsubunits. The fundamental tertiary of APC structure was probably stabilized by these contacts contributed by specific protein residues, whereas there might be some local conformational variations in response to environmental changes. Thus the physiological stability of APC was maintained.
     3. Research on the active conformation of the C-phycocyanin from Spirulina platensis
     We purified the C-phycocyanin (C-PC) from Spirulina platensis. Variations of solution pH were used to disturb C-PC structure, and dynamics of structural and functional changes of C-PC were monitored in response to different pH values. We studied the light-harvesting ability (revealed by absorption spectra) and energy transfer ability (revealed by fluorescence spectra). At the mean time we studied changes of secondary structure (revealed by CD spectra) and aggregation state (revealed by vis-CD spectra). By analysis of these results, we found that C-PC could maintain its aggregation state even when there were some disturbances in solution, but the secondary structure might be flexible in a certain distance. Subsequently we analyzed crystal structures of C-PC, especially the interaction surfaces which maintain the aggregation state of the protein. We found some key sites on the interaction surfaces. By the interaction of these key amino acid residues, the aggregation state of C-PC was stabilized. Thus it is suggested that when certain environmental disturbance happens, these key sites can stabilize the aggregation state of C-PC, but in other regions the conformation of polypeptide could be flexible in response to environmental changes. Thus, C-PC maintained its functional stability with respect to certain conformational variations.
     4. Investigations of active conformational variation and the pH sensitivity of R-phycoerythrin from Polysiphonia urceolata
     PE is the characteristic PBP in red algae. We purified R-phycoerythrin (R-PE) from Polysiphonia urceolata and studied its active conformational variations and pH sensitivity. We found that, between the range of pH 3.5-10, the conformation of chromophores in R-PE was relatively stable, which was revealed by the stable absorption and fluorescence spectra properties of R-PE. While in this pH range, there were some variations in the amounts of secondary structures, the major structure is always a-helix. No P-sheet structure was detected. Amounts ofβ-turn and random coil structure varied in small scale. In acidic environment lower than pH 3.25, conformations of aromatic amino acid residues were exposed to the solution. In basic solution with pH higher than 10, there were conformational changes as well as deprotonation process of the chromophore. Fluorescence properties of R-PE disappeared in extreme pH. When pH was lower than 3.5 or higher than 10, amounts of a-helix decreased dramatically, while amounts ofβ-sheet and random coil structures increased. We analyzed the dynamics of spectra properties in response to solution pH, and found that the energy transfer ability in the protein was not influenced. We also found that extreme pH could not only induce denaturation of R-PE but also modulate spectra properties of the chromophores although the way of modulating was different between acidic and basic environment. Therefore, R-PE could maintain its light-harvesting and energy transfer ability in spite of some conformational variations. Then we analyzed the crystal structure of R-PE. Similar to other PBPs, there were some amino acid residues with strong interactions on the interaction surfaces of R-PE subunits. With these interactions, R-PE maintained its aggregation state. When environment conditions changed, the key regions, which are responsible for functional performances, maintained the structures and stabilized the energy absorption and transfer abilities of R-PE, while other regions showed some flexibility in response to disturbance.
     5. Interaction of aromatic amino acids with chromophores in PBPs
     Aromatic amino acids are rich in PBPs. Fluorescence from aromatic amino acids changes following the folding/unfolding process of proteins. We monitored pH induced unfolding process of APC by fluorescence from aromatic amino acids. At the meantime, we found that when aromatic amino acids were excited, fluorescence from phycobilins arose in visible region of the spectra, suggesting there is energy transfer pathway from aromatic amino acid residues to the chromophores. We also found that when phycobilins were excited indirectly, fluorescence from APC was different from that when phycobilins were excited directly. By comparison of indirectly excited fluorescence from different PBPs and analysis of phycobilin conformations, we suggest that there are two types of phycocyanobilins in APC, which can emit fluorescence at 660 nm and 639 nm respectively. The existence of 639 nm fluorescence and other questions are also discussed.
引文
Abe S-i, Murakami A, Ohki K, Aruga Y, and Fujita Y (1994) Changes in stoichiometry among PSI, PSII and Cyt b6-f complexes in response to chromatic light for cell growth observed with the red alga Porphyra yezoensis Plant Cell Physiol 35:901-906.
    Adir N, Dines M, Klartag M, McGregor A, and Melamed-Frank M (2006) Assembly and disassembly of phycobilisomes. In:Shively, JM (eds) Microbiology Monographs:inclusions in Prokaryotes. Springer, Berlin, pp 47-77.
    Apt KE, Hoffman NE, and Grossman AR (1993) The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. J Biol Chem 268:16208-16215.
    Apt KE, Collier JL, and Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248:79-96.
    Apt KE, Metzner S, and Grossman AR (2001) The γ subunits of phycoerythrin from a red alga:Position in phycobilisomes and sequence characterization. J Phycol 37:64-70.
    Arteni AA, Liu L-N, Aartsma TJ, Zhang Y-Z, Zhou B-C, and Boekema EJ (2008) Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth Res 95:169-174.
    Benavides J, and Rito-Palomares M (2004) Bioprocess intensification:a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. J Chromatogr B 807:33-38.
    Benavides J, and Rito-Palomares M (2006) Simplified two-stage method to B-phycoerythrin recovery from Porphyridium cruentum. J Chromatogr B 844: 39-44.
    Benedetti S, Rinalducci S, Benvenuti F, Francogli S, Pagliarani S, Giorgi L, Micheloni M, D'Amici GM, Zolla L, and Canestrari F (2006) Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. J Chromatogr B 833:12-18.
    Bernard C, Etienne A-L, and Thomas J-C (1996) Synthesis and binding of phycoerythrin and its associated linkers to the phycobilisome in Rhodella violacea (Rhodophyta):Compared effects of high light and translation inhibitors. J Phycol 32:265-271.
    Bernardi G (1973) Chromatography of proteins on hydroxyapatite. Methods Enzymol 27:471-479.
    Brejc K, Ficner R, Huber R, and Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 (?) resolution. J Mol Biol 249: 424-440.
    Bryant DA (1982) Phycoerythrocyanin and phycoerythrin:Properties and occurrence in cyanobacteria. J Gen Microbiol 128:835-844.
    Busch A, Nield J, and Hippler M (2010) The composition and structure of photosystem I associated antenna from Cyanidioschyzon merolae. Plant J Accepted Article:doi:10.1111/j.1365-1313X.2010.04202.x.
    Chang W-R, Jiang T, Wan Z-L, Zhang J-P, Yang Z-X, and Liang D-C (1996) Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 (?) resolution. J Mol Biol 262:721-731.
    Chen F, Zhang Y, and Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18:603-608.
    Chen T, Wong YS, and Zheng W (2006) Purification and characterization of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. Phytochemistry 67:2424-2430.
    Chereskin BM, Clement-Metral JD, and Gantt E (1985) Characterization of a purified photosystem Ⅱ-phycobilisome particle preparation from Porphyridium cruentum. Plant Physiol 77:626-629.
    Clement-Metral JD, and Gantt E (1983) Isolation of oxygen-evolving phycobilisome-photosystem Ⅱ particles from Porphyridium cruentum. FEBS Lett 156:185-188.
    Clement-Metral JD, Gantt E, and Redlinger T (1985) A photosystem Ⅱ-phycobilisome preparation from the red alga, Porphyridium cruentum:Oxygen evolution, ultrastructure, and polypeptide resolution. Arch Biochem Biophys 238:10-17.
    Contreras-Martel C, Matamala A, Bruna C, Poo-Caamano G, Almonacid D, Figueroa M, Martinez-Oyanedel J, and Bunster M (2007) The structure at 2 A resolution of phycocyanin from Gracilaria chilensis and the energy transfer network in a PC-PC complex. Biophys Chem 125:388-396.
    Cunningham Jr. FX, Dennenberg RJ, Jursinic PA, and Gantt E (1990) Growth under red light enhances photosystem Ⅱ relative to photosystem Ⅰ and phycobilisomes in the red alga Porphyridium cruentum. Plant Physiol 93: 888-895.
    D'Agnolo E, Rizzo R, Paoletti S, and Murano E (1994) R-phycoerythrin from the red alga Gracilaria longa. Phytochem 35:693-696.
    de Marsac NT (2003) Phycobiliproteins and phycobilisomes:the early observations. Photosynth Res 76:197-205.
    DeLano WL (2002) The PyMOL Molecular Graphics System. http://www.pymol.org.
    Duerring M, Schmidt GB, and Huber R (1991) Isolation crystallization, crystal-structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66(?) resolution. J Mol Biol 217:577-592.
    Ficner R, and Huber R (1993) Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the y subunit. EurJ Biochem 218:103-106.
    Fisher RG, Woods NE, Fuchs HE, and Sweet RM (1980) Three-dimensional structures of C-phycocyanin and B-phycoerythrin at 5-A resolution. J Biol Chem 255: 5082-5089.
    Fuchs HJ, McDowell J, and Shellito JE (1988) Use of allophycocyanin allows quantitative description by flow cytometry of alveolar macrophage surface antigens present in low numbers of cells. Am Rev Respiratory Dis 138: 1124-1128.
    Fuglistaller P, Widmer H, Sidler W, Frank G, and Zuber H (1981) Isolation and characterization of phycoerythrocyanin and chromatic adaptation of the thermophilic cyanobacterium Mastigocladus laminosus. Arch Microbiol 129: 268-274.
    Galland-Irmouli AV, Pons L, Lucon M, Villaume C, Mrabet NT, Gueant JL, and Fleurence J (2000) One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. J Chromatogr B 739:117-123.
    Gantt E, and Conti SF (1966) Phycobiliprotein localization in algae. Brookhaven Syrup Biol 19:393-405.
    Gantt E, and Lipschultz CA (1974) Phycobilisomes of Porphyridium cruentum: Pigment analysis. Biochemistry 13:2960-2966.
    Gantt E, and Lipschultz CA (1980) Structure and phycobiliprotein composition of phycobilisomes from Griffithsia pacifica (Rhodophyceae). J Phycol 16: 394-398.
    Gantt E (1981) Phycobilisomes. Ann. Rev. Plant Physiol.32:327-347.
    Gantt E (1994) Supramolecular Membrane Organization. in:Bryant, DA (ed) The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Netherlands, pp 119-138.
    Gantt E, Grabowski B, and Cunningham Jr. FX (2003) Antenna systems of red algae: Phycobilisomes with photosystem Ⅱ and chlorophyll complexes with photosystem I. In:Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis, Kluwer Academic Publishers, Netherlands, pp 307-322
    Ge B, Tang Z, Lin L, Ren Y, Yang Y, and Qin S (2005) Pilot-scale fermentation and purification of the recombinant allophycocyanin over-expressed in Escherichia coli. Biotechnol Lett 27:783-787.
    Ge B, Qin S, Han L, Lin F, and Ren Y (2006) Antioxidant properties of recombinant allophycocyanin expressed in Escherichia coli. J Photochem Photobiol B 84: 175-180.
    Glazer AN, and Hixson CS (1977) Subunit structure and chromophore composition of rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem.252:32-42.
    Glazer AN, West JA, and Chan CF (1982) Phycoerythrins as chemotaxonomic markers in red algae:A survey. Biochem Syst Ecol 10:203-215.
    Glazer AN, and Stryer L (1983) Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Biophys J 43:383-386.
    Glazer AN (1984) Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768:29-51.
    Glazer AN, and Stryer L (1984) Phycofluor probes. Trends Biochem Sci 9:423-427.
    Glazer AN (1985) Light harvesting by phycobilisomes. Ann Rev Biophys Biophys Chem 14:47-77.
    Glazer AN (1989) Light guides:Directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1-4.
    Glazer AN, and Stryer L (1990) Phycobiliprotein-avidin and phycobiliprotein-biotin conjugates. In Wilchek M, Bayer EA (eds), Avidin-Biotin Technology. Methods in Enzymology, Vol.184. Academic Press, San Diego:188-194.
    Glazer AN (1994) Phycobiliproteins-a family of valuable, widely used fluorophores. JAppl Phycol 6:105-112.
    Glazer AN, and Wedemayer GJ (1995) Cryptomonad biliproteins-an evolutionary perspective. Photosynth Res 46:93-105.
    Goto Y, Calciano LJ, and Fink AL (1990) Acid induced folding of proteins. Proc Natl Acad Sci USA 87:573-577.
    Grabowski B, Cunningham Jr. FX, and Gantt E (2001) Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines. Proc Natl Acad Sci USA 98:2911-2916.
    Grabowski J, and Gantt E (1978) Photophysical properties of phycobiliproteins from phycobilisomes:fluorescence lifetimes, quantum yields, and polarization spectra. Photochem Photobiol 28:39-45.
    Green BR, and Parson WW (2003) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Netherlands.
    Greenfield NJ (2004) Circular dichroism analysis for protein-protein interactions. Methods Mol Biol 261:55-78.
    Grossman AR, Schaefer MR, Chiang GG, and Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725-749.
    Guglielmi G, Cohen-Bazire G, and Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129:181-189.
    Gysi JR, and Zuber H (1979) Properties of allophycocyanin Ⅱ and its α-and P-subunits from the thermophilic blue-green alga Mastigocladus laminosus. Biochem J 181:577-583.
    Hemmila I (1985) Fluoroimmunoassays and immunofluorometric assays. Clin Chem 31:359-370.
    Hewes CD, Mitchell BG, Moisan TA, Vernet M, and Reid FMH (1998) The phycobilin signatures of chloroplasts from three dinoflagellate species:a microanalytical study of Dinophysis caudata, D. fortii, and D. acuminata (Dinophysiales, Dinophyceae). J Phycol 34:945-951.
    Jahn W, Steinbiss J, and Zetsche K (1984) Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium. Planta 161:536-539.
    Jiang T, Zhang JP, and Liang DC (1999) Structure and function of chromophores in R-phycoerythrin at 1.9 (?) resolution. Proteins 34:224-231.
    Jiang T, Zhang J-P, Chang W-R, and Liang D-C (2001) Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome. Biophys J 81:1171-1179.
    Kikuchi H, Wako H, Yura K, Go M, and Mimuro M (2000) Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis. Biophys J 79:1587-1600.
    Klotz AV, and Glazer AN (1985) Characterization of the bilin attachment sites in R-phycoerythrin. J Biol Chem 260:4856-4863.
    Koller KP, Wehrmeyer W, and Schneider H (1977) Isolation and characterization of disc-shaped phycobilisomes from the red alga Rhodella violacea. Arch Microbiol 112:61-67.
    Kondo K, Geng XX, Katayama M, and Ikeuchi M (2005) Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 84:269-273.
    Kondo K, Ochiai Y, Katayama M, and Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis:A new photosystem I antenna. Plant Physiol 144:1200-1210.
    Kondo K, Mullineaux CW, and Ikeuchi M (2009) Distinct roles of CpcGl-phycobilisome and CpcG2-phycobilisome in state transitions in a cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 99:217-225.
    Korbee N, Figueroa FL, and Aguilera J (2005) Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B 80:71-78.
    Kupka M, and Scheer H (2008) Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions 1. Equilibrium experiments. Biochim Biophys Acta 1777:94-103.
    Kursar TA, van der Meer J, and Alberte RS (1983) Light-harvesting system of the red alga Gracilaria tikvahiae:I. Biochemical analyses of pigment mutations. Plant Physiol 73:353-360.
    Larkum AWD, and Vesk M (2003) Algal plastids:Their fine structure and properties. In:Larkum AWD, Douglas S and Raven JA (eds) Photosynthesis in Algae. Kluwer Academic Publishers, Netherlands, pp 11-28.
    Liu J-Y, Jiang T, Zhang J-P, and Liang D-C (1999) Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-(?) resolution. J Biol Chem 274:16945-16952.
    Liu L-N, Chen X-L, Zhang Y-Z, and Zhou B-C (2005a) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae:an overview. Biochim Biophys Acta 1708:133-142.
    Liu LN, Su HN, Yan SG, Shao SM, Xie BB, Chen XL, Zhang XY, Zhou BC, and Zhang YZ (2009) Probing the pH sensitivity of R-phycoerythrin: Investigations of active conformational and functional variation. Biochim Biophys Acta 1787:939-946.
    Liu LN, Chen XL, Zhang YZ, and Zhou BC (2005b) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae:an overview. Biochim Biophys Acta 1708:133-142.
    Loken MR, Keij JF, and Kelley KA (1987) Comparison of helium-neon and dye lasers for the excitation of allophycocyanin. Cytometry 8:96-100.
    Luder UH, Knoetzel J, and Wiencke C (2001) Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae). Physiol Plantarum 112:572-581.
    MacColl R, Csatorday K, Berns DS, and Traeger E (1980) Chromophore interactions in allophycocyanin. Biochemistry 19:2817-2820.
    MacColl R, Eisele LE, Williams EC, and Bowser SS (1996) The discovery of a novel R-phycoerythrin from an antarctic red alga. J Biol Chem 271:17157-17160.
    MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311-334.
    MacColl R, Eisele LE, and Menikh A (2003) Allophycocyanin:trimers, monomers, subunits, and homodimers. Biopolymers 72:352-365.
    MacColl R (2004) Allophycocyanin and energy transfer. Biochim Biophys Acta 1657: 73-81.
    Manchester KL (1996) Use of UV methods for measurement of protein and nucleic acid concentrations. Biotechniques 20:968-970.
    Marquardt J, Wans S, Rhiel E, Randolf A, and Krumbein WE (2000) Intron-exon structure and gene copy number of a gene encoding for a membrane-intrinsic light-harvesting polypeptide of the red alga Galdieria sulphuraria. Gene 255: 257-265.
    Marquardt J, Lutz B, Wans S, Rhiel E, and Krumbein WE (2001) The gene family coding for the light-harvesting polypeptides of Photosystem I of the red alga
    Galdieria sulphuraria. Photosynth Res 68:121-130.
    Martinez-Oyanedel J, Contreras-Martel C, Bruna C, and Bunster M (2004) Structural-functional analysis of the oligomeric protein R-phycoerythrin. Biol Res 37:733-745.
    McConnell MD, Koop R, Vasilev S, and Bruce D (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130:1201-1212.
    Mimuro M, and Kikuchi H (2003) Antenna systems and energy transfer in Cyanophyta and Rhodophyta. In:Green BR and Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Netherlands, pp 281-306.
    Minkova K, Tchorbadjieva M, Tchernov A, Stojanova M, Gigova L, and Busheva M (2007) Improved procedure for separation and purification of Arthronema africanum phycobiliproteins. Biotechnol Lett 29:647-651.
    Minkova KM, Tchernov AA, Tchorbadjieva MI, Fournadjieva ST, Antova RE, and Busheva MC (2003) Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. J Biotechnol 102:55-59.
    Morschel E, Koller KP, Wehrmeyer W, and Schneider H (1977) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea, I. Electron microscopy of phycobilisomes in situ and analysis of their architecture after isolation and negtive staining. Cytobiologie 16:118-129.
    Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, and Waggoner AS (1993) Cyanine dye labeling reagents:sulfoindocyanine succinimidyl esters. Bioconjugate Chem 4:105-111.
    Mullineaux CW, Tobin MJ, and Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390:421-424.
    Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175-182.
    Murakami A, Mimuro M, Ohki K, and Fujita Y (1981) Absorption spectrum of allophycocyanin isolated from Anabaena cylindrica:Variation in absorption spectrum induced by changes in physico-chemical environment. J Biochem 89: 79-86.
    Niu J-F, Wang G-C, Zhou B-C, Lin X-Z, and Chen C-S (2007) Purification of R-phycoerythrin from Porphyra haitanensis (Bangiales, Rhodophyta) using expanded-bed absorption. J Phycol 43:1339-1347.
    Ohta H, Suzuki T, Ueno M, Okumura A, Yoshihara S, Shen J-R, and Enami Ⅰ (2003) Extrinsic proteins of photosystem Ⅱ; an intermediate member of PsbQ protein family in red algal PS Ⅱ. Eur J Biochem 270:4156-4163.
    Oi VT, Glazer AN, and Stryer L (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 93:981-986.
    Padgett MP, and Krogmann DW (1987) Large scale preparation of pure phycobiliproteins. Photosynth Res 11:225-235.
    Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, and Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282:893-898.
    Patil G, Chethana S, Sridevi AS, and Raghavarao KS (2006) Method to obtain C-phycocyanin of high purity. J Chromatogr A 1127:76-81.
    Redlinger T, and Gantt E (1981) Phycobilisome structure of Porphyridium cruentum: Polypeptide composition. Plant Physiol 68:1375-1379.
    Rennis DS, and Ford TW (1992) A survey of antigenic differences between phycoerythrins of various red algal (Rhodophyta) species. Phycologia 31: 192-204.
    Reuter W, Wiegand G, Huber R, and Than ME (1999) Structural analysis at 2.2 A of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci USA 96:1363-1368.
    Rito-Palomares M, Nunez L, and Amador D (2001) Practicle application of aqueous two phase system for the development of a prototype process for C-phycocyanin recovery from Spirulina maxima. J Chem Tech Biotech 76:
    1273-1280.
    Ritter S, Hiller RG, Wrench PM, Welte W, and Diederichs K (1999) Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-(?) resolution. J Struct Biol 126:86-97.
    Ritz M, Lichtle C, Spilar A, Joder A, Thomas J-C, and Etienne A-L (1998) Characterization of phycocyanin-deficient phycobilisomes from a pigment mutant of Porphyridium sp. (Rhodophyta). J Phycol 34:835-843.
    Roman RB, Alvarez-Pez JM, Fernandez FGA, and Grima EM (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73-85.
    Rossano R, Ungaro N, D'Ambrosio A, Liuzzi GM, and Riccio P (2003) Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. J Biotechnol 101:289-293.
    Rowan KS (1989) Photosynthetic pigments of algae, Cambridge University Press, Cambridge. pp 166-211.
    Sagert S, and Schubert H (1995) Acclimation of the photosynthetic apparatus of Palmaria palmata (Rhodophyta) to light qualities that preferentially excite photosystem I or photosystem Ⅱ. J Phycol 31:547-554.
    Samsonoff WA, and MacColl R (2001) Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Arch Microbiol 176: 400-405.
    Scheer H, and Zhao K-H (2008) Biliprotein maturation:the chromophore attachment. Mol Microbiol 68:263-276.
    Schirmer T, Bode W, Huber R, Sidler W, and Zuber H (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184:257-277.
    Schirmer T, Huber R, Schneider M, Bode W, Miller M, and Hackert ML (1986) Crystal structure analysis and refinement at 2.5 (?) of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplaticum. J Mol Biol 188:651-676.
    Schopf JW (2002) The fossil record:Tracing the roots of the cyanobacterial lieage. In: Whitton, B. and Potis, M. (ed) The Ecology of Cyanobacteria. Kluwer Academic Publishers, Netherlands, pp 13-35.
    Shapiro HM, Glazer AN, Christenson L, Williams JM, and Strom TB (1983) Immunofluorescence measurement in a flow cytometer using low-power helium-neon laser excitation. Cytometry 4:276-279.
    Sidler W (1994) Phycobilisomes and phycobiliprotein structures. In:Bryant, DA (ed) The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Netherlands, pp 139-216.
    Silveira ST, Burkert JF, Costa JA, Burkert CA, and Kalil SJ (2007) Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresour Technol 98:1629-1634.
    Stadnichuk IN, Idintsova TI, and Strongin AY (1984) Molecular organization and pigment composition of R-phycoerythrin from the red alga Callithamnion rubosum. Mol Biol (Moscow) 18:343-349.
    Stadnichuk IN, Khokhlachev AV, and Tikhonova YV (1993) Polypeptide γ-subunits of R-phycoerythrin. J Photochem Photobiol B 18:169-175.
    Stadnichuk IN, Karapetyan NV, Kislov LD, Semenenko VE, and Veryasov MB (1997) Two y-polypeptides of B-phycoerythrin from Porphyridium cruentum. J Photochem Photobiol B 39:19-23.
    Stec B, Troxler RF, and Teeter MM (1999) Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys J 76:2912-2921.
    Su HN, Xie BB, Chen XL, Wang JX, Zhang XY, Zhou BC, and Zhang YZ (2010) Efficient separation and purification of allophycocyanin from Spirulina (Arthrospira) platensis. J Appl Phycol 22:65-70.
    Sun L, Wang S, Gong X, Zhao M, Fu X, and Wang L (2009) Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expres Purif 64:146-154.
    Talarico L (1990) R-Phycoerythrin from Audoniella saviana (Nemaliales, Rhodophyta)- ultrastructural and biochemical analysis of aggregates and subunits. Phycologia 29:292-302.
    Talarico L (1996) Phycobiliproteins and phycobilisomes in red algae:adaptive responses to light. Sci Mar 60(Supl.1):205-222.
    Tan S, Cunningham Jr. FX, and Gantt E (1997a) LhcaRl of the red alga Porphyridium cruentum encodes a polypeptide of the LHCI complex with seven potential chlorophyll a-binding residues that are conserved in most LHCs. Plant Mol Biol 33:157-167.
    Tan S, Ducret A, Aebersold R, and Gantt E (1997b) Red algal LHC I genes have similarities with both Chl a/b-and a/c-binding proteins:A 21 kDa polypeptide encoded by LhcaR2 is one of the six LHC I polypeptides. Photosynth Res 53: 129-140.
    Toole CM, and Allnutt FCT (2003) Red, cryptomonad and glaucocystophyte algal phycobiliproteins. In:Larkum AWD, Douglas S and Raven JA (eds) Photosynthesis in Algae. Kluwer Academic Publishers, Netherlands, pp 305-334.
    Waggoner AS, Ernst LA, Chen C-H, and Rechtenwald DJ (1993) A new fluorescent antibody label for three-color flow cytometry with a single laser. Ann N Y Acad Sci 677:185-193.
    Wang GC, Zhou BC, and Zeng C (1998) Isolation, properties and spatial site analysis of y subunits of B-phycoerythrin and R-phycoerythrin. Sci China Ser C 1: 36-41.
    Wolfe GR, Cunningham Jr. FX, Durnfordt D, Green BR, and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367:566-568.
    Yang JT, Wu CS, and Martinez HM (1986) Calculation of protein conformation from circular dichroism. Methods Enzymol 130:208-269.
    Yeh SW, Ong LJ, Clark JH, and Glazer AN (1987) Fluorescence properties of allophycocyanin and a crosslinked allophycocyanin trimer. Cytometry 8: 91-95.
    Yu M-H, Glazer AN, Spencer KG, and West JA (1981) Phycoerythrins of the red alga Caiithamnion:Variation in phycoerythrobilin and phycourobilin content. Plant Physiol 68:482-488.
    Zehr JP, and Kudela RM (2009) Photosynthesis in the open ocean. Science 329: 945-946.
    Zhang YM, and Chen F (1999) A simple method for efficient separation and purification of C-phycocyanin and allophycocyanin from Spirulina platensis. Biotechnol Techniques 13:601-603.
    Zhao F, and Qin S (2006) Evolutionary analysis of phycobiliproteins:Implications for their structural and functional relationships. J Mol Evol 63:330-340.
    Zhou ZP, Liu LN, Chen XL, Zhang XY, Zhang YZ, and Zhou BC (2005) Effects of light, denaturants and pH on antioxidant activity of APC in blue green alga Spirulina platensis. Oceanologia et Limnologia Sinica 36:179-187.
    Zilinskas BA, and Greenwald LS (1986) Phycobilisome structure and function. Photosynth Res 10:7-35.
    胡鸿钧,俞敏娟,张宪孔(1980)蓝裸甲藻(新种)(Gymnodinium cyaneum Hu sp.nov)藻胆素(Phycobilin)的发现及其意义.科学通报14:651-653.
    曾呈奎,周百成(1983)光合生物的进化。进化论选集(纪念达尔文逝世一百周年学术讨论会论文选编)。科学出版社,34-43.
    曾呈奎,周百成(1984)海藻光合作用和进化。光合作用研究进展第3集。科学出版社,北京,202-207.
    曾昭琪(1988)真蓝甲藻(Gymnodinium eucyanochroum Tseng sp. nov.)的亚微结构、色素性质及其在藻类进化中的意义.南京大学学报21:309-329.
    张宪孔,刘梅,刘其芳,王后乐,黎尚豪(1982)蓝色裸甲藻藻蓝素的初步分离和光谱特性.科学通报2:115-117.
    赵南明,周海梦(2000)生物物理学.高等教育出版社,斯普林格出版社.
    颜世敢(2008)藻胆蛋白高效分离纯化、荧光探针研制及其在动物疫病检测中的应用.博士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700