IC10合金的力学性能试验及本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IC10合金是一种新型的多相Li_2型材料,由于具有优异的高温力学性能使其成为新一代航空发动机高温部件用结构材料之一。IC10的工作环境恶劣,受载情况复杂,而且具有异于传统无序材料的力学性能。但迄今为止,国内外对其力学特性及本构模型方面开展的研究工作还比较少。本文对IC10开展了相对系统的宏细观力学试验研究,研究了力学特性随温度和应变率的变化规律及力学特性的微细观机理;并基于试验结果,从细观和宏观两方面推导建立了适用于IC10这类材料的本构模型,用以描述IC10在各条件下的力学特性。研究工作和得到的主要结论如下:
     对IC10开展了系统的宏观力学性能试验研究和微细观机理观察研究,并分析力学特性参量的变化规律。本文在温度25~1100℃、应变率10-4~10-2/s范围内对IC10进行了率控制拉伸试验,获得其应力-应变、弹性模量、屈服应力和应变硬化率等材料数据,并研究了这些参数随应变率和温度变化的规律;同时,运用扫描电子显微镜(SEM)及透射电子显微镜(TEM)对IC10开展了断裂机理及细观机理观察试验研究。结果表明:应力-应变曲线在25~700℃范围内表现为应变硬化,800℃附近表现为动态回复,900~1100℃范围内表现为动态再结晶;屈服应力和应变硬化率均具有反常的温度相关性,在反常温度范围内它们随温度的升高小幅增大,且呈应变率弱敏感性,而超过该范围后它们随温度的升高大幅下降,且应变率敏感性很强;运用SEM对试件断口进行观察表明在25~800℃范围内,断裂机理主要为穿晶断裂;在900℃~1100℃范围内,断裂机理主要为韧窝聚集型断裂;在屈服反常温度范围内,IC10的强度升高等力学特性与其细观机制密切相关,该细观机制主要表现为八面体滑移系中螺位错被交滑移形成的KW锁锁住,从而使得产生原子之间位错需要更多的外部能量输入;在900℃~1100℃范围内IC10的应力-应变特性及应变率敏感性等力学特性与大量位错相互纠结形成胞状亚晶结构等现象相关。
     针对含γ′和γ多相Li_2型材料的力学性能及细观结构特征,提出并建立了一种细观本构模型及其数值解技术。该模型将含γ′和γ等相的混合单元体作为材料的细观特征单元体,并认为:材料的屈服和硬化由阻碍可动位错运动的点障碍所引起;螺位错的运动能力与其上超弯折的高度相关。根据总体位错密度的演化及超弯折的高度分布函数,推导建立了可动位错密度的演化方程和障碍密度的演化方程。基于所建立的模型、数值模拟技术和ABAQUS商用有限元分析软件,编制了本构模型的用户子程序(UMAT)。对25~700℃下的IC10应力-应变曲线预测结果与试验结果吻合良好,表明本文所提出的细观模型及其数值解技术是有效的。
     提出并建立了一种适用于描述含动态回复/再结晶行为的宏观本构模型。该模型将动态回复/再结晶行为的应力-塑性应变曲线分成峰值应力前的应变硬化和峰值应力后的应变软化这两部分,分别建立了硬化强度因子K_h、软化强度因子K_s、硬化指数n_h和软化指数n_s与材料屈服应力σ_(0.2)、临界应力σ_c ,临界塑性应变ε_c ,断裂应力σ_b和延伸率ε_b等宏观力学特性参数之间的函数关系。将本文模型分别应用于预测IC10在800℃的动态回复力学行为和900~1100℃的动态再结晶力学行为,并将预测结果与Cho模型的预测结果和试验值进行比较,结果表明本文模型能很好地预测IC10含动态回复/再结晶流变行为的力学特性,而且在使用上比Cho模型更方便。
     对L-H、J-C和ZA等三种常用于描述一般合金材料应变硬化的宏观本构模型进行了改进,发展了四种改进的宏观本构模型,即改进的L-H模型、改进的J-C模型、改进的ZA模型1和2。分别运用这四种改进模型对IC10在25~700℃范围的应力-塑性应变曲线进行了预测分析,与试验结果相比表明:改进L-H模型、改进J-C模型的形式简单,精度高、参数较少,更适用于工程应用。
     定义了应变率敏感度,对IC10进行应变率跳跃试验和应力松弛试验,定量分析了应变率敏感度和热激活体积的变化规律。分别对IC10在600~1100℃范围内进行了应变率跳跃试验和在600~1000℃范围内进行了应力松弛试验。试验结果表明:低于800℃时,IC10的力学特性对应变率的敏感性较弱,在800℃附近IC10的力学特性具有一定的应变率敏感性,而高于800℃时,IC10的力学特性对应变率非常敏感;热激活体积的量级较小,且随材料变形量的增加而降低;在600~900℃范围内热激活体积随温度的升高而下降,而在900~1100℃范围内随温度的升高而升高。
Alloy IC10, one of the newly developed multiphase Li_2 alloys, is considered to be near-future candidate for advanced high temperature structure materials in aeroengine hot sections due to its excellent mechanical properties over a wide range of temperatures. IC10 is subjected to adverse and complex operating conditions and exhibits unusual thermo-mechanical flow behaviors. However, the studies on the mechanical properties and constitutive equations for IC10 are still very rare. In this thesis, the mechanical properties of IC10 were studied through both macro and micro tests. And the constitutive equations used to describe the flow behaviors of IC10 were developed through both phenomenological and physically scales. The main work done in this thesis includes:
     The tests on mechanical properties of IC10 were conducted. And the variation rules of mechanical properties were studied. In order to investigate the features of stress-strain curves and the mechanical properties (such as elastic moduli, elongation, yield stress and strain hardening rate), the tensile tests were conducted over a wide range of temperatures (25~1100℃) and strain rates (10-4~10-2/s). The fracture morphology and the micro-mechanisms of IC10 were studied based on the results of SEM and TEM tests. Experiments show: There are only work hardening behaviors in stress-strain curves over the range of 25~700℃. And the dynamic recovery behaviors are obvious in the stress-strain curves at 800℃. There are only dynamic recrystallization behaviors during the whole deformation above 800℃. IC10 exhibits the anomalous features of yield stress and strain hardening rate. During the special range of temperatures, yield stress and strain hardening rate are insensitive to strain rate and they increase slightly with temperature. Above the peak temperature of them, they drop off significantly and exhibit strong strain rate sensitivity. When the temperature is below 800℃, the fracture is transgranular cracking mixed with a few dimpled and intergranular fractures. The fracture is ductile cracking above 900℃. The TEM observations reveal that the macro mechanical properties are the reflections of the dominating long screws which are connected by superkinks and locked by KW locks.
     The mechanistic model and its numerical method were developed in this thesis. The mixed unit of the phase ofγ′andγis considered to be the micro-features unit of IC10. And two assumptions were proposed: the yield and hardening of IC10 are the net effect of point obstacles which resist the motion of mobile dislocations. The mobility of dislocations is connected with its superkink heights. The evolution of the mobile dislocation density was developed based on the evolution of whole dislocation density and the distribution of their superkink heights. And the evolution of obstacles density was derived from the evolution of the mobile dislocation density. The UMAT program of the model was written. And the flow behaviors over the range of 25~700℃were simulated by the model. The results show that the model is valid.
     A new constitutive equation, which can be used to describe the dynamic recovery/ recrystallization behaviors, was developed in this thesis. In the new model, the whole stress-strain curve is divided into the strain hardening part before the peak stress and the strain softening part after the peak point. The relationships between the model parameters (such as hardening factor K_h, softening factor K s, hardening exponent n_h and softening exponent n_s ) and the mechanical properties (such as yield stressσ_(0.2),critical stressσ_c , critical plastic strainε_c ,broken stressσ_b and elongationε_b) were developed. The new model was used to predict the flow behaviors of IC10 above 800℃. Compared with the prediction of Cho’s model and the experiments, the new model is proved to be valid.
     The L-H model, J-C model and ZA model, which were widely used to describe the hardening flow behaviors, were modified, that is the modified L-H model, the modified J-C model, the modified ZA model 1 and 2. All these four modified models were used to predict the flow behaviors of IC10 during the range of 25~700℃. And the results show that: the modified L-H model and the modified J-C model are easy to use due to their simple formulation, few parameters and high accuracy.
     The strain rate sensitivity was defined in this thesis. The strain rate sensitivities and the thermal activation volume were analyzed quantificationally based on the strain rate jump tests and the stress-relax tests. The strain rate jump tests were conducted over the range of 600℃~1100℃. And the relax tests were conducted over the range of 600℃~1000℃. Experiments show that: the strain rate sensitivity is very low below 800℃. And it increases lightly at 800℃. It is apparent above 800℃. The thermal activation volume is very small. And the volume decreases with the increase of the deformation. At the range of 600~900℃, the volume decreases with the increase of the temperature. The volume increases with temperature at the range of 900~1100℃.
引文
1.徐颂波,新一代高温结构材料——金属间化合物Ni3Al[J],上海有色金属,1997,18(2):88~92;
    2.郭建亭,有序金属间化合物镍铝合金[M],北京:科学出版社,2003;
    3.孙康宁,尹衍升,李爱民,金属间化合物/陶瓷基复合材料[M],北京:机械工业出版社,2002;
    4.陈国良、林均品,有序金属间化合物结构材料物理金属学基础[M],北京:冶金工业出版社,1999;
    5.黄伯云,钛铝基金属间化合物[M],长沙:中南工业大学,1998;
    6. Intermetallic alloy development:A Program Evaluation,Panel on Intermetallic Alloy Development Committee on Industrial Technology Assessments National Materials Advisory Board Commission on Engineering and Technical Systems National Research Council,1997;
    7.仲增墉,叶恒强,金属间化合物——全国首届高温结构金属间化合物学术讨论会议论文集[M],北京:机械工业出版社,1992;
    8.刘大响,高性能航空发动机的发展对材料技术的要求[J],燃气涡轮试验与研究,1998,11(3):1~5;
    9.徐强,张幸红,韩杰才,赫晓东,先进高温材料的研究现状和展望[J],固体火箭技术,2002,3(25):51~55;
    10.张永刚,韩雅芳,陈国良,郭建亭等,金属间化合物结构材料[M],北京:国防工业出版社,2001;
    11.吴建鹏,朱振峰,曹玉泉,金属间化合物的研究现状与进展[J],热加工工艺,2004,5:41~43;
    12.姜肃猛,齐义辉,NiAl金属间化合物的制备技术[J],辽宁工学院院报,2004,5(24):43~48;
    13.孔凡涛,陈玉勇等,TiAl基金属间化合物研究进展[J],材料科学与工艺,2003,4(11):441~444;
    14.刘晓,曹晶晶,云志,汪斌,金属间化合物及其制备方法——1.燃烧合成技术[J],江苏工业学院学报,2003,2(15):33~36;
    15.刘晓,曹晶晶,云志,汪斌,金属间化合物及其制备方法——2.机械合金化、熔炼和熔铸、气相沉积技术[J],江苏工业学院学报,2003,3(15):5~8;
    16.范润华,边秀房,尹衍升,Fe3Al金属间化合物研究[J],山东科学,1997,1(10):6~11;
    17.徐颖,孙宝德,吴建生等,环境条件下Ni_3Al类型金属间化合物的疲劳行为[J],上海金属,1998,3(18):20~23;
    18.彭超群,黄伯云,贺跃辉,Ni-Al系、Fe-Al系和Ti3Al金属间化合物研究进展[J],特种铸造及有色合金,2001,6:27~29;
    19. F. Q. Lang, T. Narita. Improvement in oxidation resistance of a Ni_3Al-based superalloy IC6 by rhenium-based diffusion barrier coatings [J]. Intermetallics, 2007,15:599-606.
    20. Hiroyuki Senba, Masaaki Igarashi, Creep deformation behavior and microstructure evolution of NiAl/Ni_3Al multiphase alloys [C], Structural Intermetallics In: Nathal MV, Darolia R, Liu CT, Martin PL, Miracle DB, Wagner R, Yamaguchi M, editors. The second international symposium on structural intermetallics, 1997: 595~604;
    21. C.D. Allan. Plasticity of nickel base single crystal superalloys [D]. PhD Thesis, Massachusetts Institute of Technology, 1997.
    22.赵希宏,黄朝晖,谭永宁等.新型Ni_3Al基定向高温合金IC10[J],航空材料学报,2006,26(3):20-24;
    23.赵希宏,黄朝晖,谭永宁等. IC10高温合金的微观组织[J],航空材料学报,2008,28(3):28-33;
    24.毛唯,李晓红,程耀永,陈云峰. IC10与GH3039高温合金的真空钎焊[J].焊接,2004, 7:17-20.
    25.叶雷,李晓红,毛唯等.不同中间层合金对IC10合金的连接.航空材料学报[J], 2006, 26 (3) :319-320.
    26.叶雷,毛唯,谢永慧,李晓红.定向凝固高温合金IC10瞬态液相(TLP)扩散焊接头组织研究[J].材料工程, 2004,3:42-44.
    27.张东博,宫声凯,徐惠彬。IC10合金热障涂层的界面结合强度研究[J].腐蚀科学与防护技术. 2006, 18(5):329-333.
    28. J.H. Westbrook. Temperature dependence of the hardness of secondary phases common in turbine bucket alloys [J]. Trans. AIME, 1957, 209: 898–904.
    29. P.A. Flinn. Theory of deformation in superlattices [J]. Trans. AIME, 1960, 218:145-154.
    30. D.P. Pope, S.S. Ezz. Mechanical properties of Ni_3Al and nickel-base alloys with high volume fraction of gamma prime [J]. International Metals Reviews, 1984,29(3):136-167.
    31. T. Suzuki, Y. Mishima, S. Miura. The CRSS and cube slip in Ni3(Al,X) single crystals at elevated temperatures [J]. Zeitschrift fur Metallkunde, 1989,80(3):157-63.
    32. T. Suzuki, Y. Mishima, S. Miura. Plastic behaviour in Ni3(Al,X) single crystal - temperature, strain-rate, orientation and composition [J]. ISIJ International, 1989,29(1):1-23.
    33. P. Veyssiere, M.H. Yoo, J.A. Horton,C.T. Liu. Temperature effect on superdislocation dissociation on a cube plane in Ni3Al [J]. Philosophical Magazine Letters, 1989,59(2):61-68.
    34. P. Veyssiere. Transmission electron microscope observation of dislocations in ordered intermetallic alloys and the flow stress anomaly [C]. High-Temperature Ordered Intermetallic Alloys III. Symposium, 1989:175-188.
    35. P. Veyssiere. The mechanical anomaly of L12 alloys: a review of recent experiments and models [J]. Intermetallics. 1998, 6:587-592.
    36. M. Yamaguchi, Y. Umakoshi. The deformation behaviour of intermetallic superlattice compounds [J]. Progress in Materials Science, 1990, 34(1):1-148.
    37. D. Dimiduk. Dislocation structures and anomalous low in L12 compounds [J]. Journal de Physique III (Applied Physics, Materials Science, Fluids, Plasma and Instrumentation), 1991, 1(6):1025-1053.
    38. P.M. Hazzledine, Y.Q. Sun. Deformation mechanisms in L12 alloys [J]. Model Deform Cryst Solids presented Annu Meet Miner Met Mater Soc, 1991:395-410.
    39. P.M. Hazzledine, M.H. Yoo, Y.Q. Sun. The geometry of glide in Ni3Al at temperatures above the flow stress peak [J]. Acta Metallurgica, 1989, 37(12):3235-3244.
    40. Y.Q. Sun, P.M. Hazzledine, M.A. Crimp. Dislocations with non-planar locked structures in the L12 ordered alloys [C]. High-Temperature Ordered Intermetallic Alloys IV. Symposium, 1991: 311-316.
    41. P.B. Hirsch, Y.Q. Sun. Observations of dislocations relevant to the anomalous yield stress in L12 alloys [J]. Materials Science & Engineering A, 1993, 164: 395-400.
    42. P.B. Hirsch. A new theory of the anomalous yield stress in L12 alloys [J]. Scripta Metallurgica et Materialia, 1991, 25(7):1725-1730.
    43. P.B. Hirsch. The yield stress anomaly in L12 alloys [C]. High-Temperature Order Intermetallic Alloys V Symposium, 1993:33-43.
    44. D.Caillard, V. Paidar. A model for the anomalous mechanical properties of nickel-base L12 ordered alloys-I. Dislocations dynamics [J]. Acta Materialia. 1996, 44(7):2759-2771.
    45. C. Rentenberger, H.P. Karnthaler. On the origin of work softening of Ni3Al deformed along [001] above the peak temperature [J]. Material Science and Engineering A319-321.2001:347 -351.
    46. F.E. Heredia, Solid solution strengthing and fracture of Ni3Al single crystals [D]. Phd Thesis. University of Pennsylvania. 1990.
    47. P.H. Thornton, R.G. Davies, T.L. Johnston. The temperature dependence of the flow stress of theγ′phase based upon Ni3Al [J]. Metall. Trans., 1970,1: 207-218.
    48. S.S.Ezz, P.B. Hirsch. The strain rate sensitivity of the flow stress and the mechanism of deformation of single crystals of Ni3(Al, Hf)B [J]. Philosophical Magazine A,1994, 60(1): 105-127.
    49. M.Demura, T.Hirano. Stoichiometric effect on the strain-rate dependence of flow stress in binary Ni3Al [J]. Intermetallics. 2000,8:1005-1011.
    50. D.C. Chrzan, M.J.Mills. Dislocations in solids [M], Vol.10, Eds. F.R. N. Nabarro and M.S. Duesbery, Elsevier Science B.V., Amsterdam,p190.
    51. T.Kruml, J.L. Martin, B. Viguier, J.Bonneville, P. Spatig. Deformation microstructures in Ni3(Al, Hf) [J]. Material Science and Engineering A239-240,1997:174-179.
    52. C. Rentenberger, H.P. Karnthaler. TEM study of the friction stress acting on edge dislocations in Ni3Al [J]. Intermetallics, 2003, 11:601-609.
    53. T.Kruml, B. Viguier, J.Bonneville, J.L. Martin. Temperature dependence of dislocation microstructure in Ni3(Al, Hf) [J]. Material Science and Engineering A234-236,1997:755-757.
    54. H.P. Karnthaler, E.Th. Muhlbacher, C. Rentenberger. The influence of the fault energies on the anomalous mechanical behavior of Ni3Al alloys [J]. Acta Materialia. 1996, 44(2):547-560.
    55. C. Rentenberger, H.P. Karnthaler. On the evolution of a deformation induced nanostructure in a Ni3Al alloy [J]. Acta Materialia.2005, 53:3031-3040.
    56. Y. F. Han, Z.P. Xing, M.C. Chaturvedi. Development and engineering application of a DS cast Ni3Al alloy IC6 [C]. Structural Intermetallics In: Nathal MV, Darolia R, Liu CT, Martin PL, Miracle DB, Wagner R, Yamaguchi M, editors. The second international symposium on structural intermetallics, 1997: 713~719
    57. S. Takeuchi and E. Kuramoto, Temperature and orientation dependence of the yield stress in Ni3Ga single crystals [J]. Acta Metallurgica, 1973, 21(4):415-425.
    58. V. Paidar, D.P.Pope and V.Vitek, A theory of the anomalous yield behaviour in L12 ordered alloys [J]. Acta Metallurgica, 1984, 32(3):435-448.
    59. J.Friedel. Dislocations and Mechanical Properties of Crystals [M], Wiley, New York, 1957.
    60. J. Bonneville, B. Escaig. Cross-slipping process and the stress-orientation dependence in pure copper [J]. Acta Metallurgica, 1979, 27(9):1477-1486.
    61. T. A. Parthasarathy, D. M. Dimiduk. Atomistic simulations of the structure and stability of“PPV”locks in an Ll2 compound [J]. Acta Materialia, 1996,44(6):2237-2247.
    62. A.Korner. Incomplete Kear-Wilsdorf barriers in Ni3(Al, Ti) [J]. Philosophical Magazine Letters, 1992, 66(3):141-145.
    63. M.H. Yoo. On the theory of anomalous yield behavior of Ni3Al-effect of elastic anisotropy [J]. Scripta Metallurgica,. 1986,20(6):915-920.
    64. Q.Qin, J.L. Bassani. Non-Schmid yield behavior in single crystals [J]. Journal of the Mechanics and Physics of Solids, 1992, 40(4): 813-833.
    65. Y.Q. Sun, P.M. Hazzledine. The weak-beam study of dislocations in gamma prime in a deformed Ni-based superalloy [J]. Philosophical Magazine A. 1988.58:603-628.
    66. A.Couret, Y.Q. Sun, P.B.Hirsch. Glide sequences of deformation in the {111} plane of Ni3Ga single crystals in the yield stress anomaly [J]. Philosophical Magazine A. 1993, 67(1):29-50
    67. X.Shi, PhD Thesis, l’Universite Paris-Nord, France. 1995.
    68. Y.Q. Sun. Explanation of the small strain-rate sensitivity of Ni3Al [J]. Acta Materialia, 1997.45(9):3527-3532.
    69. P.B. Hirsch. A new theory of the anomalous yield stress in L12 alloys [J]. Philosophical Magazine A, 1992,65(3):569-612.
    70. P.B. Hirsch. A model of the anomalous yield stress for (111) slip in L12 alloys [J]. Progress in Materials Science. 1992,36:63-88.
    71. S.S. Ezz, P.B. Hrisch. The strain rate sensitivity of the flow stress and the mechanism of deformation of single crystals of Ni3(AlHf)B [J]. Philosophical Magazine A, 1994, 69(1): 105-127.
    72. S.S. Ezz, P.B. Hrisch. The operation of Frank-Read sources, yield stress reversibility and the strain-rate dependence of the flow stress in the anomalous yielding regime of Li2 alloys [J]. Philosophical Magazine A,1995,72(2):383-402.
    73. S.S. Ezz, Y.Q. Sun, P.B. Hrisch. Strain rate dependence of the flow stress and work hardening ofγ′[J]. Materials Science and Engineering A 192/193. 1995:45-52.
    74. S.S. Ezz, P.B. Hirsch. The effect of room temperature deformation on the yield stress anomaly in Ni3(AlHf)B [J]. Philosophical Magazine A,1996,73(4):1069-1082.
    75. S.S. Ezz, The strain rate and prestrain dependences of the flow stress of Ni3Ga single crystals [J]. Acat Metallurgica. 1996. 44(11):4395-4401.
    76. F.Louchet, Stress anomaly in L12 alloys: the `extended-locking/unzipping' model [J]. Materials Science & Engineering A234-236,1997:275-278.
    77. D.Caillard. A model for the anomalous mechanical properties of nickel-base L12 ordered alloys-II. Cross-slip processes and mechanical properties [J]. Acta Materialia. 1996, 44(7): 2773-2785.
    78. D.Caillard, A. Couret. Dislocation movements controlled by friction forces and local pinning in metals and alloys [J]. Materials Science and Engineering A322. 2002:108-117.
    79. D. Caillard, G. Molenat, V. Paidar. On the role of incomplete Kear-Wilsdorf locks in the yield stress anomaly of Ni3Al [J]. Materials Science and Engineering A 234-236, 1997:695-698.
    80. M.J. Mills, D.C. Chrzan. Dynamical simulation of dislocation motion in L12 alloys [J]. Acta Metallurgica et Materialia, 1992,40(11):3051-3064.
    81. B.Devincre, P. Veyssiere, L.P. Kubin, etc.. A simulation of dislocation dynamics and of the flow stress anomaly in L12 alloys [J]. Philosophical Magazine A, 1997, 75(5):1263-1286.
    82. B.Devincre, P. Veyssiere, G. Saada. Simulation of the plastic flow in Ni3Al: work hardening and strain-rate sensitivity [J]. Philosophical Magazine A, 1999,79(7):1609-1627.
    83. A.M.Cuitino, M.Ortiz. Constitutive modeling of Li2 intermetallic crystals [J]. Material Science and Engineering A170,1993:111-123.
    84. T. Kameda and M.A. Zikry, Three Dimensional Dislocation-based Crystalline Constitutive Formulation for Ordered Intermetallics [J], Scripta Materialia, 1998,38(4):631~636;
    85. M.A. Zikry, T. Kameda,Inelastic three dimensional high strain-rate dislocation density based analysis of grain-boundary effects and failure modes in ordered intermetallics [J], Mechanics of Materials,1998, 28:93~102;
    86. M.A. Zikry, M.Kao, Inelastic Microstructural Failure Mechanisms In Crystalline Materials With High Angle Grain Boundaries [J],J.Mech.Phys.Solids, 1996, 44 (11):1765~1798;
    87. M.A. Zikry, M.Kao, Inelastic Microstructural Failure Modes in Crystalline Materials: The∑33Aand∑11 High Angle Grain Boundaries [J], International Journal of Plasticity, 1997, 13(4):403~434;
    88. B. Lo Piccolo, P. Spatig, T. Kruml, J, -L. Martin, etc.. Characterising thermally activated dislocation mechanisms [J]. Materials Science and Engineering A309–310,2001:251–255.
    89. J.Bonneville, T. Kruml, J, -L. Martin, etc.. Characteristics of plastic flow in Ni3(Al,Hf) single crystals [J]. Materials Science and Engineering A234&236 (1997) 770-773.
    90. T. Kruml, E. Conforto, B. Lo Piccolo, D.Caillard, J.L.Martin. From dislocation cores to strength and work-hardening: a study of binary Ni3Al [J]. Acta Materialia, 2002, 50: 5091- 5101.
    91. B.Matterstock, J.L. Martin, J.Bonneville, T. Kruml, P. Spatig. Mechanical strength of the binary compound Ni3Al [J]. Material Science and Engineering A239-240,1997:169-173.
    92. T. Kruml, E. Conforto, B. Lo Piccolo, D. Caillard, J.L. Martin. From dislocation cores to strength and work-hardening: a study of binary Ni3Al [J]. Acta Materialia. 2002,50: 5091– 5101.
    93. Y. Yin, Towards mechanism-based constitutive modeling of L12 crystal plasticity [D]. M. Sc. thesis, Dept. of Mechanical Eng.,MIT.(2003).
    94. Y. Yin, Mechanism-based constitutive modeling of L12 single-crystal plasticity [D]. Phd. Sc. thesis, Dept. of Mechanical Eng.,MIT.(2005).
    95. Y.S. Choi, D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy. A crystallographic constitutive model for Ni3Al (L12) intermetallics [J]. Materials Science and Engineering A 400-401, 2005:256-259.
    96. Y.S. Choi, D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy. Modeling plasticity of Ni3Al -based L12 intermetallic single crystals- I. anomalous temperature dependence of the flow behavior [R]. AFRL-ML-WP-TP-2006-479.
    97. P. Ludwik. Elemente der techanologishen Mechanik [M]. Berlin: Springer-Verlag OHG, 1909
    98. J.H. Hollomon. Tensile deformation [J]. Trans AIME, 1945, 162:268~290
    99.周维贤.描述钢板硬化曲线的一个新数模[J].材料科学进展,1989,3(4):325~330
    100. D.C. Ludwikson. Modified stress-strain relation for fcc metals and alloys [J]. Metall. Trans. , 1971,2(10): 2825~2828
    101. X. Tian, Y.S. Zhang. Mathematical description for flow curves of some stable austenitic steels [J]. Mater. Sci. Eng, 1994,A174:L1
    102. G.R. Johson, W.H. Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistics [C]. The Hague, The Netherlands: [s.n.], 1983:541~547
    103. F. J. Zerilli, R.W. Armstrong. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations [J]. J. Appl. Phys.1990,68(4):1580-1591.
    104. F.J.Z erilli, R.W. Armstrong. Dislocation mechanics based constitutive relations for material dynamics calculations [J]. J.Appl. Phys. 1987,61(5):1816-1825.
    105. Sia Nemat-Nasser, Wei-Guo Guo. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatues [J]. Mechanics of Materials. 2003, 35:1023-1047.
    106. Wei-Guo Guo, Sia Nemat-Nasser. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures [J]. Mechanics of Materials. 2006,38:1090-1103.
    107. Sia Nemat-Nasser, Wei-Guo Guo. Thermomechanical response of HSLA-65 steel plates: experimentas and modeling [J]. Mechanics of Materials. 2005, 37:379-405.
    108. P.S. Follansbee, U.F.Kocks. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metall. 1988, 36(1) :81-93.
    109. G. Regazzoni, U. F. Kocks, P. S. Follansbee. Dislocationkinetics at high strain rates [J]. Acta Metall, 1987,35(12):2865-2875.
    110. M.A..Meyers, Y.J.Chen, F.D.S. Marquis, et al.. High-strain, high-strain-rate behavior of tantalum [J]. Metallurgical and Materials Transactions A 26, 1995: 2493-2501.
    111. Y.Wang, Y.X.Zhou, Y.M.Xia. A constitutive description of tensile behavior for brass over a wide range of strain rates [J]. Materials Science and Engineering A 372,2004: 186-190.
    112. F.J.Zerilli, R.W. Armstrong. Constitutive equation for HCP metals and high strength alloy steels [J]. AD-Vol.48, High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials. ASME 1995:121-126.
    113. G.Z.Voyiadjis, F.H.Abed. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency [J]. Mechanics of Materials. 2005, 37:355-378.
    114. F.H.Abed, G.Z.Voyiadjis. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures [J]. Acta Mechanica, 2005, 175:1-18.
    115. B.D.Goldthorpe. Constitutive equations for annealed and explosively shocked iron for application to high strain rates and large strains [J]. Journal De Physique IV, Colloque CS, Suppl Au Journal De Physique III, 1991,1:829-835.
    116. Y.Z.Zhu, Z. M.Yin, F.Jiang, etc. Constitutive equation of annealed copper with high conductivity for deformation at high strain rates [J]. Transactions of Nonferrous Metals Society of China, 2004, 14(4):775-778.
    117. C.M.Sellars, et al. Hot workability [J]. Int. Metallurg. Rev. 1972,17:1-24
    118. G.Kreuss. Deformation, Processing, and Structure [M]. ASM, Metals Park, Ohio,1984
    119. M. Zhou, M.P. Clode. A. constitutive model and its identification for the deformation characterized by dynamic recovery [J]. Journal of Engineering Materials and Technology, Transaction of the ASME, 1997,119:138-142
    120. M. Zhou, M.P.Clode. Constitutive equations for modeling flow softening due to dynamic recovery and heat generation during plastic deformation [J]. Mechanics of Materials, 1998,27:63-76
    121. A.Mukhopadhyay, I.C.Howard, C.M.Sellars. Development and validation of a finite element model for hot rolling using ABAQUS/STANDARD [J]. Materials Science and Technology, 2004,20:1123-1133
    122. J.H.Beynon, C.M.Sellars. Modelling microstructure and its effects during multipass hot rolling [J]. ISIJ International, 1992,32(3):359-367
    123. J.R. Cho, H.S. Jeong, D.J. Cha, etal. Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by FEM [J]. Journal of Materials Processing Technology, 2005, 160:1-8
    124. J.R. Cho, W.B. Bae, W.J. Hwang, P. Hartley. A study on the hot deformation behaviour and dynamic recrystallization of Al–5% Mg alloys [C]. in: Proceedings of the InternationalConference on Advances in Materials and Processing Technologies and 16th Annual Conference of the Irish Manufacturing Committee, 1999:123–131
    125. H.J. Kwak, K.J. Lee, O.J. Kwon, S.M. Hwang. Prediction of recrystallization behaviors in hot forging by the finite element method [J]. J.Korean Soc. Technol. Plast. 1996, 5 (4) : 305– 319
    126. A. Laasraoui, J. J. Jonas. Recrystallization of austenite after deformation at high temperature and strain rates analysis and modeling [J]. Metallurgical Transactiongs,1991,22A(1):151~160
    127. J. Nedoma. On a coupled Stefan-like problem in thermo-visco-plastic rheology [J]. Journal of Computational and applied Mathematics,1997,84:45~80
    128. A.K. Miller. Unified constitutive equations for creep and plasticity [M]. America: Elsevier applied science publication Ltd., 1987;
    129. K. P. Walker. Research and development program for nonlinear structural modeling with advanced time-temperature dependent constitutive relationships [R]. NASA-CR-165533,1981
    130. S.R. Bodner, L. Partom, Y. Partom. Uniaxial cyclic loading of elastic-viscoplastic materials [J]. ASME J Appl Mech, 1979, 46:805-810.
    131. S.R. Bodner. Unified plasticity-An engineering approach [R]. AFRL-ML-WP-TR-2001-4019, 2001
    132. A.D. Freed, J.L. Chaboche, K.P. Walker. On the thermodynamics of stress rate in the evolution of back stress in viscoplasticity [R]. NASA-TM-103794,1991
    133. J.L.Chaboche. Constitutive equations for cyclic plasticity and cyclic viscoplasticty [J]. International Journal of Plasticity, 1989,5:247-302
    134. K.P. Walker. Research and development program for nonlinear structural modeling with advanced time-temperature dependent constitutive relationships [R]. NASA-CR-165533,1981
    135.陈罕.现代统一塑性理论[J].力学进展,1987,17(3):353~363
    136.陈罕.采用Krempl粘塑性理论编写有限元程序[J].北京华工学院学报,1985,4:71~84
    137.冯明珲.粘弹塑性统一本构理论[D].大连理工大学博士学位论文,2000
    138.冯明珲,吕和祥,郭宇峰.粘弹塑性统一本构模型理论[J].计算力学学报,2001,18(4):424~434;
    139.钟群鹏,赵子华.断口学[M],北京:高等教育出版社,2006.6;
    140. G. Schoeck. The activation energy of dislocation movement [J]. Phys Status Solidi, 1965,8: 499-507.
    141. T. Surek, M. J.Luton, J.J. Jonas. Dislocation glide controlled by linear elastic obstacles: A thermodynamic analysis [J]. Philosophical Magazine A, 1973, 27(2):425-440.
    142. F. Guiu, P.L. Pratt. Stress relaxation and the plastic deformation of solids [J]. Phys Status Solidi, 1965, 6:111.
    143. J.L.Martin, T. Kruml. Characterizing thermally activated dislocation mobility [J]. Journal of Alloys and Compounds, 2004,378:2-12.
    144. J.L.Martin, B.Lo Piccolo, J.Bonneville. The role of thermal activation in the strength anomaly of Ni3Al [J]. Intermetallics, 2000,8:1013-1018.
    145. R.J.Asaro, J.R.Rice. Strain localization in ductile single crystals [J]. J.Mech.Phys. Solids, 1977,25:309.
    146.岳珠峰,于庆民,温志勋等.镍基单晶涡轮叶片结构强度设计[M].北京:科学出版社,2008.1;
    147.王自强,段祝平.塑性细观力学[M].北京:科学出版社. 1995.8;
    148. P. Franciosi, A.Zaoui, Multislip in FCC crystals theoretical approach compared with experimental data [J]. Acta Metall.. 1982,30:1627-1637.
    149. D.Peirce, C.F.Shih, A..Needleman. A tangent modulus method for rate dependent solids [J]. Computers & Structures. 1984, V18:875

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700