初始取向及变形条件对AZ31镁合金压缩塑性行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用具有典型挤压织构的AZ31挤压棒材和具有很强基面织构的商用AZ31热轧板材,设计了七类不同初始取向的样品,取其压缩轴分别与挤压方向(ED)平行和垂直,与板材的法向(ND)成0°、30°、45°、60°和90°。在不同的变形条件下(温度、应变速率)进行准静态单轴、平面应变压缩及动态塑性压缩(DPD),利用电子背散射衍射(EBSD)技术,定量表征变形前后样品微观组织及织构演变的规律,结合晶体塑性模拟,详细分析了初始取向及变形条件对AZ31镁合金屈服行为、加工硬化行为和动态再结晶行为的影响,系统研究镁合金宏观力学性能与微观组织结构之间的关系。
     主要得到以下结论:
     ①利用改进的Taylor模型(ACM)模拟计算AZ31镁合金不同温度下各滑移和孪生系统的CRSS值;利用改进的EBSD取向重构图研究由位错滑移引起的晶粒内部旋转分裂行为。
     ②初始取向对流变应力行为的影响与温度密切相关。低温下,初始取向影响孪生和滑移的竞争和协调,从而引起力学性能的各向异性,随着温度升高(250℃以上),孪生不易激活,初始取向影响减弱,流变应力各向异性逐渐消失。通过计算得到0°、30°、45°、60°和90°样品的热变形激活能分别为:146.71KJ/mol、141.88KJ/mol、127.56KJ/mol、137.62KJ/mol和151.37KJ/mol,45°样品的形变激活能最低,这是由于45°样品的初始取向最有利于基面滑移。
     ③初始取向影响变形后样品的宏观形貌。不同初始取向的圆柱样品在不同温度下变形,样品宏观形貌表现出明显的差异,即压缩面呈椭圆状,有明显的长径和短径方向,长径比的排序为:0°<30°<90°<45°<60°。
     ④初始取向对屈服行为及加工硬化行为具有显著影响。初始取向不同,室温下力学性能表现出强烈各向异性,加工硬化行为也呈现出不同特征。研究发现少量初始取向发生{10(?)2}拉伸孪生,即可造成明显的屈服行为发生。加工硬化率曲线第二阶段主要是由{10(?)2}孪生引起的织构强化贡献,这个阶段的应变量长度取决于发生的拉伸孪晶数量。
     ⑤Schmid定律可以解释大部分{10(?)2}拉伸孪生变体选择规律,即孪生Schmid因子最大的孪生变体优先发生,从孪生应变张量分析上看,能较好协调沿受力方向应变的变体优先发生。但Schmid定律无法解释所有晶粒中的孪生行为,需要结合晶粒内部的应力状态综合判断。
     ⑥对0°和90°样品,进行室温动态塑性变形(DPD),研究发现DPD促进孪生发生,对于0°样品,DPD变形时,观察到{10(?)1},{10(?)2}以及{10(?)1}-{10(?)2}等孪晶发生,且{10(?)1}-{10(?)2}二次压缩孪生比{10ˉ12}拉伸孪生更严格符合Schmid因子规律;而在慢速下则无明显的孪生行为。对于90°样品,不管是慢速变形还是DPD变形,{10ˉ12}拉伸孪生都是主要的孪生类型,而且拉伸孪生变体选择机制对应变速率不敏感,大都符合Schmid因子规律。但应变速率对拉伸孪生形核和长大之间的竞争有明显影响。DPD下促进孪晶形核,慢速下则有利于孪晶片层生长。此外,在DPD条件下,个别晶粒内部可同时观察到多种孪晶类型共存,包括{10(?)1},{10(?)2}以及{10(?)1}-{10(?)2}二次压缩孪晶。
     ⑦初始取向通过影响变形机制,从而影响动态再结晶进程。350℃下90°样品在变形初始阶段由于柱面滑移大量启动,减弱了应力集中程度,推迟了流变应力峰值的出现,从而延缓了动态再结晶发生的进程。
     ⑧应变速率通过影响滑移和孪生的启动来影响动态再结晶机制。0°样品250℃下变形,在应变速率0.001-0.01s~(-1)内,表现出连续动态再结晶、非连续动态再结晶和旋转动态再结晶的特征,在应变速率为1s~(-1)时,表现出旋转动态再结晶和孪生诱发动态再结晶机制的特征;当应变速率达到5s~(-1)时,则表现出孪生诱发动态再结晶机制的特征。
     ⑨在变形过程中,由于滑移所引起的晶粒内局部区域的旋转分裂,导致晶内变形带的形成,这些变形带具有严格的方向性,即与晶粒的{0001}面垂直,但与外力轴方向无关。在高温下,可分割细化晶粒,促进连续动态再结晶发生。
In this thesis commercial AZ31magnesium alloy in the forms of extruded bar witha strong fiber texture and hot rolled plate with a strong basal texture was chosen as thestarting material. In total, seven kinds of specimens for compression were prepared.Two types of specimens were cut from extruded bar with their compression axis alignedperpendicular or parallel to the extruded direction. The other five types of specimenswere cut form hot rolled plate with their compression axis aligned0o,30o,45o,60oor90oto the normal direction (ND) of the rolled sheet, respectively. Uniaxial compression,plane strain compression and dynamic plastic deformation (DPD) had been carried outat different temperatures and strain rates. The microstructure and texture evolutionduring deformation had been quantitatively characterized using electron backscatterdiffraction (EBSD). The EBSD data had also been applied to analyze in detail theinfluence of initial orientation and deformation conditions on yield behavior, workhardening behavior and dynamic recrystallization (DRX) of AZ31during compression,and thereby to understand the relationship between mechanical properties andmicrostructure better.
     Main conclusions found are as following:
     ①The CRSSs for slip and twinning systems in AZ31magnesium alloy areestimated via an advanced Taylor model. A reconstruction mapping methods forenhancing the EBSD map contrast has been developed in order to reveal strong grainsubdivision behavior.
     ②The effect of initial texture on stress-strain behavior is strongly dependent ontemperature. At low temperature, the mechanical behavior is highly anisotropicoriginated from the initial texture, which affects the activation of twinning and slip.With increasing temperature (above250℃), the twinning activity decreasessignificantly, thus the mechanical behaviors become more isotropic due to the operationof a larger number of slip modes. The activation energy for0o,30o,45o,60oand90ospecimen is146.71KJ/mol,141.88KJ/mol,127.56KJ/mol,137.62KJ/mol and151.37KJ/mol, respectively. The activation energy of45ospecimen is the lowest due to itsinitial texture is favorable for basal slip.
     ③Initial texture has a significant influence on the macroscopic morphology ofdeformed specimens. The macroscopic morphology of specimens compressed at different temperatures and strain rates are highly anisotropic. The shape of thecompression face of deformed specimens varies with initial texture in the form ofellipse. The order of the ratio of long axis to short axis is0°<30°<90°<45°<60°.
     ④Initial texture has an important effect on yield stress and strain hardeningbehavior. Compressive stress-strain behavior is highly anisotropic with respect to theinitial texture at room temperature. The significant yield behavior can be observed ifonly a small volume of twins are activated. The increasing strain hardening rate(corresponding to the stage II) is mainly caused by texture strengthening, which rotatesgrain orientations into hard orientations due to {10(?)2} twinning. The length of the stageII is determined by the volume fraction of grains which are favorable for {10(?)2}twinning.
     ⑤{10(?)2} twinning variant selection mechanism can be explained by the Schmidfactor (SF) statistically. In general twinning variants with the highest SF are mostfrequently observed, however the SF alone cannot explain all the twinning activated.
     ⑥Twinning activities of0oand90ospecimens are largely enhanced by DPD.Several twinning modes including {10(?)1},{10(?)2} and {10(?)1}-{10(?)2} are observed in0ospecimen. The {10(?)1}-{10(?)2} double twinning behavior exhibits strong orientationdependence because of its high CRSS, while {10(?)2} twinning occurs over a wide rangeof Schmid factor from0.05to0.5. For the90ospecimen,{10(?)2} twinning is dominantunder both DPD and quasi-static conditions, and the {10(?)2} twinning variant selectionmechanism is governed by the Schmid factor criterion, which is insensitive to strain rate.However, strain rate could significantly affect the competition between twin nucleationand twin growth. Twin nucleation will be largely enhanced by DPD while twin growthwill be favored under quasi-static loading.
     ⑦The DRX process is closely related to initial texture. The DRX process in90ospecimen is significantly retarded compared with that in0ospecimen compressed at350℃. The difference of DRX process between0oand90ospecimens is attributed todifferent deformation mechanisms at the starting deformation stage. With respect to0ospecimen, pyramidal slip is considered as the main deformation mechanism. For90ospecimen, prismatic slip is the dominant deformation mechanism.
     ⑧The effect of strain rate on DRX behavior is caused by its influence on the slipand twinning deformation mechanisms. For the0ospecimen compressed at250℃,continuous DRX, discontinuous DRX and rotation DRX are mainly observed at thestrain rate ranging from0.001to0.01s~(-1), while rotation DRX and twinning induced DRX are mainly observed at the strain rate of1s-1, and {10(?)1}-{10(?)2} double twinninginduced DRX is mainly observed at the strain rate of5s~(-1).
     ⑨Grain subdivision behavior which corresponds of course to different slipsystem activity/combinations in different parts of each grain is observed. The deformedbands are nearly perpendicular to the (0001) basal plane. However, there is no directrelationship between the bands and the loading direction. The DRX would be enhanceddue to the grain splitting by the deformation bands.
引文
[1] H M K.非铁合金的结构与性能[M].丁道云,译.北京:科学出版社1999:
    [2]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社2002:
    [3]陈振华,夏伟军,严红革等.镁合金材料的塑性变形理论及其技术[M].化学进展2004;23:127-135
    [4] Barnett M R. Influence of deformation conditions and texture on the high temperature flowstress of magnesium AZ31[J]. J. Light Met.2001;1:167-177
    [5] Choi S H, Kim J K, Kim B J, Park Y B. The effect of grain size distribution on the shape offlow stress curves of Mg-3Al-1Zn under uniaxial compression [J]. Mater. Sci. Eng., A2008;488:458-467
    [6] Wan G, Wu B L, Zhang Y D, Sha G Y, Esling C. Anisotropy of dynamic behavior of extrudedAZ31magnesium alloy [J]. Mater. Sci. Eng., A2010;527:2915-2924
    [7] Máthis K, Trojanová Z, Lukác P. Hardening and softening in deformed magnesium alloys [J].Mater. Sci. Eng., A2002;324:141-144
    [8] Trojanova Z, Lukac P. Compressive deformation behaviour of magnesium alloys [J]. J. Mater.Process. Technol.2005;162-163:416-421
    [9] Mathis K. Modeling of hardening and softening processes in Mg alloys [J]. J. Alloys Compd.2004;378:176-179
    [10]李章刚.镁合金板材的室温塑性变形机制研究[博士学位论文][D].沈阳:中国科学院金属研究所2007:
    [11] Yoo M. Slip, twinning, and fracture in hexagonal close-packed metals [J]. Metallurgical andMaterials Transactions A1981;12:409-418
    [12] Obara T, Yoshinga H, Morozumi S.{11-22}<-1-123> Slip system in magnesium [J]. ActaMetall.1973;21:845-853
    [13] Stohr J F, Poirier J P. Etude en microscopie electronique du glissement pyramidal dans lemagnesium [J]. Philos. Mag.1972;25:1313-1329
    [14] Yoo M H, Agnew S R, Morris J R, Ho K M. Non-basal slip systems in HCP metals and alloys:source mechanisms [J]. Mater. Sci. Eng., A2001;319-321:87-92
    [15] Agnew S R, Tom C N, Brown D W, Holden T M, Vogel S C. Study of slip mechanisms in amagnesium alloy by neutron diffraction and modeling [J]. Scr. Mater.2003;48:1003-1008
    [16] Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understandingmechanical behavior of Mg and solid solution alloys containing Li or Y [J]. Acta Mater.2001;49:4277-4289
    [17] Styczynski A, Hartig C, Bohlen J, Letzig D. Cold rolling textures in AZ31wroughtmagnesium alloy [J]. Scr. Mater.2004;50:943-947
    [18] Yi S B, Davies C H J, Brokmeier H G, Bolmaro R E, Kainer K U, Homeyer J. Deformationand texture evolution in AZ31magnesium alloy during uniaxial loading [J]. Acta Mater.2006;54:549-562
    [19] Caceres C H, Blake A H. On the strain hardening behaviour of magnesium at roomtemperature [J]. Mater. Sci. Eng., A2007;462:193-196
    [20] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Influence of {10-12} extension twinningon the flow behavior of AZ31Mg alloy [J]. Mater. Sci. Eng., A2007;445-446:302-309
    [21] Figueiredo R B, Száraz Z, Trojanová Z, Lukác P, Langdon T G. Significance of twinning in theanisotropic behavior of a magnesium alloy processed by equal-channel angular pressing [J].Scr. Mater.2010;63:504-507
    [22] Jiang L, Jonas J J. Effect of twinning on the flow behavior during strain path reversals in twoMg (+Al, Zn, Mn) alloys [J]. Scr. Mater.2008;58:803-806
    [23] Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater Sci.1995;39:1-157
    [24] Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed inplane-strain compression [J]. Scr. Mater.2004;51:881-885
    [25] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Twinning-induced softening inpolycrystalline AM30Mg alloy at moderate temperatures [J]. Scr. Mater.2006;54:771-775
    [26] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Twinning and texturedevelopment in two Mg alloys subjected to loading along three different strain paths [J]. ActaMater.2007;55:3899-3910
    [27] Rohatgi A, Vecchio K S, Gray G T. The influence of stacking fault energy on the mechanicalbehavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamicrecovery [J]. Metall. Mater. Trans. A2001;32:135-145
    [28] Jiang J, Godfrey A, Liu W, Liu Q. Identification and analysis of twinning variants duringcompression of a Mg-Al-Zn alloy [J]. Scr. Mater.2008;58:122-125
    [29] Jiang J, Godfrey A, Liu Q. EBSD analysis and theoretical prediction of twin orientationsduring compression in Mg-3Al-1Zn [J]. Key Eng. Mater.2007;353-358:627-630
    [30] Yang P, Yu Y, Chen L, Mao W. Experimental determination and theoretical prediction of twinorientations in magnesium alloy AZ31[J]. Scr. Mater.2004;50:1163-1168
    [31] Tucker M T, Horstemeyer M F, Gullett P M, El Kadiri H, Whittington W R. Anisotropiceffects on the strain rate dependence of a wrought magnesium alloy [J]. Scr. Mater.2009;60:182-185
    [32] Wu L, Jain A, Brown D W, Stoica G M, Agnew S R, Clausen B, Fielden D E, Law P K.Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of awrought magnesium alloy, ZK60A [J]. Acta Mater.2008;56:688-695
    [33] Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloyAZ31B [J]. Int. J. Plast.2005;21:1161-1193
    [34] Zeng R, Han E, Ke W, Dietzel W, Kainer K U, Atrens A. Influence of microstructure ontensile properties and fatigue crack growth in extruded magnesium alloy AM60[J].International Journal of Fatigue2010;32:411-419
    [35] Barnett M R. Twinning and the ductility of magnesium alloys: Part I:"Tension" twins [J].Mater. Sci. Eng., A2007;464:1-7
    [36] Barnett M R, Jacob S, Gerard B F, Mullins J G. Necking and failure at low strains in acoarse-grained wrought Mg alloy [J]. Scr. Mater.2008;59:1035-1038
    [37] Park S H, Hong S-G, Lee C S. Role of initial {10-12} twin in the fatigue behavior of rolledMg-3Al-1Zn alloy [J]. Scr. Mater.2010;62:666-669
    [38] Koike J, Fujiyama N, Ando D, Sutou Y. Roles of deformation twinning and dislocation slip inthe fatigue failure mechanism of AZ31Mg alloys [J]. Scr. Mater.2010;63:747-750
    [39] Yu Z, Choo H. Influence of twinning on the grain refinement during high-temperaturedeformation in a magnesium alloy [J]. Scr. Mater.2011;64:434-437
    [40] Dobron P, Chmelík F, Yi S, Parfenenko K, Letzig D, Bohlen J. Grain size effects ondeformation twinning in an extruded magnesium alloy tested in compression [J]. Scr. Mater.2011;65:424-427
    [41] Foley D C, Al-Maharbi M, Hartwig K T, Karaman I, Kecskes L J, Mathaudhu S N. Grainrefinement vs. crystallographic texture: Mechanical anisotropy in a magnesium alloy [J]. Scr.Mater.2011;64:193-196
    [42] Choi H J, Kim Y, Shin J H, Bae D H. Deformation behavior of magnesium in the grain sizespectrum from nano-to micrometer [J]. Mater. Sci. Eng., A2010;527:1565-1570
    [43] Wu X L, Youssef K M, Koch C C, Mathaudhu S N, Kecskes L J, Zhu Y T. Deformationtwinning in a nanocrystalline hcp Mg alloy [J]. Scr. Mater.2011;64:213-216
    [44] Ma Q, El Kadiri H, Oppedal A L, Baird J C, Horstemeyer M F, Cherkaoui M. Twinning anddouble twinning upon compression of prismatic textures in an AM30magnesium alloy [J]. Scr.Mater.2011;64:813-816
    [45] Hong S-G, Park S H, Lee C S. Strain path dependence of {10-12} twinning activity in apolycrystalline magnesium alloy [J]. Scr. Mater.2011;64:145-148
    [46] Jonas J J, Mu S, Al-Samman T, Gottstein G, Jiang L, Martin t. The role of strainaccommodation during the variant selection of primary twins in magnesium [J]. Acta Mater.2011;59:2046-2056
    [47] Martin é, Capolungo L, Jiang L, Jonas J J. Variant selection during secondary twinning inMg-3%Al [J]. Acta Mater.2010;58:3970-3983
    [48] Ulacia I, Dudamell N V, Galvez F, Yi S, Perez-Prado M T, Hurtado I. Mechanical behaviorand microstructural evolution of a Mg AZ31sheet at dynamic strain rates [J]. Acta Mater.2010;58:2988-2998
    [49] Wang B S, Xin R L, Huang G J, Liu Q. Strain rate and texture effects on microstructuralcharacteristics of Mg-3Al-1Zn alloy during compression [J]. Scr. Mater.2012;66:239-242
    [50] Dudamell N V, Ulacia I, Gálvez F, Yi S, Bohlen J, Letzig D, Hurtado I, Pérez-Prado M T.Twinning and grain subdivision during dynamic deformation of a Mg AZ31sheet alloy atroom temperature [J]. Acta Mater.2011;59:6949-6962
    [51] Li B, Joshi S, Azevedo K, Ma E, Ramesh K T, Figueiredo R B, Langdon T G. Dynamic testingat high strain rates of an ultrafine-grained magnesium alloy processed by ECAP [J]. Mater. Sci.Eng., A2009;517:24-29
    [52] Wu X L, Tan C W. Deformation localization of AZ31magnesium alloy under high strain rateloading [J]. Rare Metal Mat Eng2008;37:1111-1113
    [53] Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development ofmicrostructure during the high temperature deformation of magnesium [J]. Acta Metall.1982;30:1909-1919
    [54] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamicrecrystallization in magnesium alloy ZK60[J]. Acta Mater.2001;49:1199-1207
    [55] Sitdikov O, Kaibyshev R. Dynamic Recrystallization in Pure Magnesium [J]. MATERIALSTRANSACTIONS2001;42:1928-1937
    [56] del Valle J A, Ruano O A. Influence of texture on dynamic recrystallization and deformationmechanisms in rolled or ECAPed AZ31magnesium alloy [J]. Mater. Sci. Eng., A2008;487:473-480
    [57] Barnett M R. Quenched and annealed microstructures of hot worked magnesium AZ31[J].Materials Transactions2003;44:571-577
    [58] Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation ofmagnesium [J]. Mater. Sci. Eng., A2008;490:411-420
    [59] Kaibyshev R, Sokolov B, Galiyev A. The Influence of Crystallographic Texture on DynamicRecrystallization [J]. textures and microstructures1999;32:47-63
    [60] Dudamell N V, Ulacia I, Gálvez F, Yi S, Bohlen J, Letzig D, Hurtado I, Pérez-Prado M T.Influence of texture on the recrystallization mechanisms in an AZ31Mg sheet alloy atdynamic rates [J]. Mater. Sci. Eng., A2011:
    [61] Prasad Y V R K, Rao K P. Processing maps for hot deformation of rolled AZ31magnesiumalloy plate: Anisotropy of hot workability [J]. Mater. Sci. Eng., A2008;487:316-327
    [62] del Valle J A, Ruano O A. Influence of texture on dynamic recrystallization and deformationmechanisms in rolled or ECAPed AZ31magnesium alloy [J]. Mater. Sci. Eng. A2008;487:473-480
    [63] Zhang Y, Zeng X, Lu C, Ding W. Deformation behavior and dynamic recrystallization of aMg-Zn-Y-Zr alloy [J]. Mater. Sci. Eng., A2006;428:91-97
    [64] Yang X Y, Ji Z S, Miura H, Sakai T. Dynamic recrystallization and texture developmentduring hot deformation of magnesium alloy AZ31[J]. T Nonferr Metal Soc2009;19:55-60
    [65] Xin R L, Wang B S, Chen X P, Huang G J, Liu Q. Examination of dynamic recrystallizationduring compression of AZ31magnesium [J]. Cah. Inf. Tech./Rev Metall2009;52:176-179
    [66] Wang Q, Li D, Blandin J J, Suéry M, Donnadieu P, Ding W. Microstructure and creepbehavior of the extruded Mg-4Y-4Sm-0.5Zr alloy [J]. Mater. Sci. Eng., A2009;516:189-192
    [67] Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E. Twinning, dynamic recoveryand recrystallization in hot worked Mg-Al-Zn alloy [J]. Mater. Sci. Eng., A2002;337:121-133
    [68] Jin Q, Shim S-Y, Lim S-G. Correlation of microstructural evolution and formation of basaltexture in a coarse grained Mg-Al alloy during hot rolling [J]. Scr. Mater.2006;55:843-846
    [69] Wang M, Xin R, Wang B, Liu Q. Effect of initial texture on dynamic recrystallization of AZ31Mg alloy during hot rolling [J]. Mater. Sci. Eng., A2011;528:2941-2951
    [70] Yi S B, Zaefferer S, Brokmeier H G. Mechanical behaviour and microstructural evolution ofmagnesium alloy AZ31in tension at different temperatures [J]. Mater. Sci. Eng., A2006;424:275-281
    [71] Perez-Prado M T, del Valle J A, Contreras J M, Ruano O A. Microstructural evolution duringlarge strain hot rolling of an AM60Mg alloy [J]. Scr. Mater.2004;50:661-665
    [72] Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stagedeformation of Mg-3Al-1Zn alloy sheet [J]. Mater. Sci. Eng., A2003;339:124-132
    [73] Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31magnesium alloy [J]. Mater. Sci. Eng., A2007;456:52-57
    [74]杨平,任学平,赵祖德. AZ31镁合金热变形及退火过程中的组织与织构[J].材料热处理学报2003;24:12-16
    [75] del Valle J A, Perez-Prado M T, Ruano O A. Texture evolution during large-strain hot rollingof the Mg AZ61alloy [J]. Materials Science and Engineering a-Structural Materials PropertiesMicrostructure and Processing2003;355:68-78
    [76] Derby B. The dependence of grain size on stress during dynamic recrystallisation [J]. ActaMetall. Mater.1991;39:955-962
    [77] Jin Q L, Shim S Y, Lim S G. Correlation of microstructural evolution and formation of basaltexture in a coarse grained Mg-Al alloy during hot rolling [J]. Scripta Mater.2006;55:843-846
    [78] Xu S W, Kamado S, Honma T. Recrystallization mechanism and the relationship betweengrain size and Zener-Hollomon parameter of Mg-Al-Zn-Ca alloys during hot compression [J].Scr. Mater.2010;63:293-296
    [79] Mukai T, Yamanoi M, Watanabe H, Higashi K. Ductility enhancement in AZ31magnesiumalloy by controlling its grain structure [J]. Scr. Mater.2001;45:89-94
    [80] Klimanek P, Potzsch A. Microstructure evolution under compressive plastic deformation ofmagnesium at different temperatures and strain rates [J]. Mater. Sci. Eng., A2002;324:145-150
    [81] Wang B S, Xin R L, Huang G J, Chen X P, Liu Q. Comparison of Hot-deformation Behaviorsof AZ31with Different Initial States [J]. Transactions of Nonferrous Metals Society of China2008;18:145-149
    [82] Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys.2003;81:11-26
    [83] Kim W J, Hong S I, Kim Y S, Min S H, Jeong H T, Lee J D. Texture development and itseffect on mechanical properties of an AZ61Mg alloy fabricated by equal channel angularpressing [J]. Acta Mater.2003;51:3293-3307
    [84] Jiang J, Godfrey A, Liu Q. Influence of grain orientation on twinning during warmcompression of wrought Mg-3Al-1Zn [J]. Mater. Sci. Technol.2005;21:1417-1422
    [85] Choi S H, Shin E J, Seong B S. Simulation of deformation twins and deformation texture in anAZ31Mg alloy under uniaxial compression [J]. Acta Mater.2007;55:4181-4192
    [86] Al-Samman T, Gottstein G. Room temperature formability of a magnesium AZ31alloy:Examining the role of texture on the deformation mechanisms [J]. Mater. Sci. Eng., A2008;488:406-414
    [87] Kelley E W, Hosford W F. Plane-strain compression of magnesium and magnesium alloycrystals [J]. Trans. Metall. Soc. Alme1968;242:5-13
    [88] Jiang J, Godfrey A, Liu W, Liu Q. Microtexture evolution via deformation twinning and slipduring compression of magnesium alloy AZ31[J]. Mater. Sci. Eng., A2008;483-484:576-579
    [89] Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K. Theactivity of non-basal slip systems and dynamic recovery at room temperature in fine-grainedAZ31B magnesium alloys [J]. Acta Mater.2003;51:2055-2065
    [90] Koike J. New deformation mechanisms in fine-grain Mg alloy [J]. Materials Science Forum2003;419-422:189
    [91] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Influence of grain size on the compressivedeformation of wrought Mg-3Al-1Zn [J]. Acta Mater.2004;52:5093-5103
    [92] Barnett M R, Beer A G, Atwell D, Oudin A. Influence of grain size on hot working stressesand microstructures in Mg-3Al-lZn [J]. Scr. Mater.2004;51:19-24
    [93] Stanford N, Sotoudeh K, Bate P S. Deformation mechanisms and plastic anisotropy inmagnesium alloy AZ31[J]. Acta Mater.2011;59:4866-4874
    [94] Choi S H, Kim D H, Lee H W, Seong B S, Piao K, Wagoner R. Evolution of the deformationtexture and yield locus shape in an AZ31Mg alloy sheet under uniaxial loading [J]. Mater. Sci.Eng., A2009;526:38-49
    [95] Jain J, Poole W J, Sinclair C W, Gharghouri M A. Reducing the tension-compression yieldasymmetry in a Mg-8Al-0.5Zn alloy via precipitation [J]. Scr. Mater.2010;62:301-304
    [96] Kleiner S, Uggowitzer P J. Mechanical anisotropy of extruded Mg-6%Al-1%Zn alloy [J].Materials Science and Engineering: A2004;379:258-263
    [97] Jiang J, Godfrey A, Liu Q. Influence of grain orientation on twinning during warmcompression of wrought Mg-3Al-1Zn [J]. Mater. Sci. Technol.2005;21:1417-1422
    [98] Yin D L, Wang J T, Liu J Q, Zhao X. On tension-compression yield asymmetry in an extrudedMg-3Al-1Zn alloy [J]. J. Alloys Compd.2009;478:789-795
    [99] jiang J, Godfrey A, Liu Q. Effect of temperature on microstructure and texture duringcompression of AZ31[J]. Materials Science Forum2007;546-549:245-248
    [100] Kumar N V R, Blandin J J, Desrayaud C, Montheillet F, Suery M. Grain refinement in AZ91magnesium alloy during thermomechanical processing [J]. Mater. Sci. Eng., A2003;359:150-157
    [101] Ishikawa K, Watanabe H, Mukai T. High strain rate deformation behavior of an AZ91magnesium alloy at elevated temperatures [J]. Mater. Lett.2005;59:1511-1515
    [102] Tan J C, Tan M J. Superplasticity and grain boundary sliding characteristics in two stagedeformation of Mg-3Al-1Zn alloy sheet [J]. Mater. Sci. Eng., A2003;339:81-89
    [103] Zhao W S, Tao N R, Guo J Y, Lu Q H, Lu K. High density nano-scale twins in Cu induced bydynamic plastic deformation [J]. Scr. Mater.2005;53:745-749
    [104] Watanabe H, Ishikawa K. Effect of texture on high temperature deformation behavior at highstrain rates in a Mg-3Al-1Zn alloy [J]. Mater. Sci. Eng., A2009;523:304-311
    [105] Song W Q, Beggs P, Easton M. Compressive strain-rate sensitivity of magnesium-aluminumdie casting alloys [J]. Mater. Des.2009;30:642-648
    [106] Kohzu M, Hironaka T, Nakatsuka S, Saito N, Yoshida F, Naka T, Okahara H, Higashi K.Effect of texture of AZ31magnesium alloy sheet on mechanical properties and formability athigh strain rate [J]. Materials Transactions2007;48:764-768
    [107] Watanabe H, Mukai T, Ishikawa K, Mabuchi M, Higashi K. Realization of high-strain-ratesuperplasticity at low temperatures in a Mg-Zn-Zr alloy [J]. Mater. Sci. Eng., A2001;307:119-128
    [108] Xin R L, Wang B S, zhou Z, Huang G J, Liu Q. Effects of strain rate and temperature onmicrostructure and texture for AZ31during uniaxial compression [J]. Transactions ofNonferrous Metals Society of China2009:
    [109] Perez-Prado M T, Ulacia I, Dudamell N V, Galvez F, Yi S, Hurtado I. Mechanical behaviorand microstructural evolution of a Mg AZ31sheet at dynamic strain rates [J]. Acta Mater.2010;58:2988-2998
    [110] Frost H J, Ashby M F. Deformation mechanism maps: The plasticity and creep of metals andceramics [M]. London: Pergamon1982:
    [111] Mwembela A, Konopleva E B, McQueen H J. Microstructural development in Mg alloy AZ31during hot working [J]. Scr. Mater.1997;37:1789-1795
    [112] J. M H, M. M, al. S M e.[J]. MagnesiumTechnology2000, Warrendale2000:355-362
    [113] McQueen H J, Ryan N D. Constitutive analysis in hot working [J]. Mater. Sci. Eng., A2002;322:43-63
    [114] Sivapragash M, Lakshminarayanan P R, Karthikeyan R, Hanumantha M, Bhatt R R. Hotdeformation behavior of ZE41A magnesium alloy [J]. Mater. Des.2008;29:860-866
    [115] Fatemi-Varzaneh S M, Zarei-Hanzaki A, Haghshenas M. A study on the effect ofthermo-mechanical parameters on the deformation behavior of Mg-3Al-1Zn [J]. Mater. Sci.Eng., A2008;497:438-444
    [116] A. G, O. S, R. K. Deformation behavior and controlling mechanisms for plastic flow ofmagnesium and magnesium alloy [J]. Materials Transactions2003;44:426-435
    [117] Qin Y-J, Pan Q-L, He Y-B, Li W-B, Liu X-Y, Fan X. Modeling of flow stress for magnesiumalloy during hot deformation [J]. Mater. Sci. Eng., A2010;527:2790-2797
    [118] Zhou H T, Li Q B, Zhao Z K, Liu Z C, Wen S F, Wang Q D. Hot workability characteristics ofmagnesium alloy AZ80--A study using processing map [J]. Mater. Sci. Eng., A2010;527:2022-2026
    [119] Slooff F A, Dzwonczyk J S, Zhou J, Duszczyk J, Katgerman L. Hot workability analysis ofextruded AZ magnesium alloys with processing maps [J]. Mater. Sci. Eng., A2010;527:735-744
    [120] Wu Y-Z, Yan H-G, Chen J-H, Zhu S-Q, Su B, Zeng P-L. Hot deformation behavior andmicrostructure evolution of ZK21magnesium alloy [J]. Mater. Sci. Eng., A2010;527:3670-3675
    [121] Ebrahimi G R, Maldar A R, Ebrahimi R, Davoodi A. Effect of thermomechanical parameterson dynamically recrystallized grain size of AZ91magnesium alloy [J]. J. Alloys Compd.2011;509:2703-2708
    [122] Spigarelli S, El Mehtedi M, Cabibbo M, Evangelista E, Kaneko J, Jager A, Gartnerova V.Analysis of high-temperature deformation and microstructure of an AZ31magnesium alloy [J].Mater. Sci. Eng., A2007;462:197-201
    [123] Li L, Zhang X. Hot compression deformation behavior and processing parameters of a castMg-Gd-Y-Zr alloy [J]. Mater. Sci. Eng., A2011;528:1396-1401
    [124] Taylor G. I.. Plastic strain in metals [J]. J. Inst. Metals1938;62:307-324
    [125] Barnett M R. A Taylor model based description of the proof stress of magnesium AZ31duringhot working [J]. Metall. Mater. Trans. A2003;34A:1799-1806
    [126] Tomé C N, Lebensohn R A, Kocks U F. A model for texture development dominated bydeformation twinning: Application to zirconium alloys [J]. Acta Metallurgica et Materialia1991;39:2667-2680
    [127] Li X, Al-Samman T, Mu S, Gottstein G. Texture and microstructure development during hotdeformation of ME20magnesium alloy: Experiments and simulations [J]. Mater. Sci. Eng., A2011;528:7915-7925
    [128] Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane straincompressed magnesium single crystals [J]. Acta Mater.2011;59:1986-1994
    [129] F H W. The mechanics of crystals and textured polycrystals [J]. Oxford: Oxford UniversityPress1993:
    [130] Barnett M, Keshavarz Z, Ma X. A semianalytical sachs model for the flow stress of amagnesium alloy [J]. Metallurgical and Materials Transactions A2006;37:2283-2293
    [131] W B J F, R H. A theory of the plastic distortion of a polycrystalline aggregate under combinedstress [J]. Phil. Mag1951;42:414-427
    [132] F K U, H C. Slip geometry in partially constrained deformation [J]. Acta Metall. Mater.1982;30:695-709
    [133] Gehrmann R, Frommert M M, Gottstein G. Texture effects on plastic deformation ofmagnesium [J]. Mater. Sci. Eng., A2005;395:338-349
    [134] Eshelby J D. The Deformation of the Elastic Field of an Ellipsoidal Inclusion and RelatedProblems [J]. Proceedings of the Royal Society of London. Series A, Mathematical andPhysical Sciences1957;241:376-396
    [135] Lebensohn R A, Tom C N. A self-consistent viscoplastic model: prediction of rolling texturesof anisotropic polycrystals [J]. Materials Science and Engineering: A1994;175:71-82
    [136] Lebensohn R A, Tom C N. A self-consistent anisotropic approach for the simulation of plasticdeformation and texture development of polycrystals: Application to zirconium alloys [J].Acta Metallurgica et Materialia1993;41:2611-2624
    [137] Beausir B, Suwas S, Toth L S, Neale K W, Fundenberger J-J. Analysis of texture evolution inmagnesium during equal channel angular extrusion [J]. Acta Mater.2008;56:200-214
    [138] Ebeling T, Hartig C, Laser T, Bormann R. Material law parameter determination ofmagnesium alloys [J]. Mater. Sci. Eng., A2009;527:272-280
    [139] Wang H, Wu P D, Gharghouri M A. Effects of basal texture on mechanical behaviour ofmagnesium alloy AZ31B sheet [J]. Mater. Sci. Eng., A2010;527:3588-3594
    [140] Biswas S, Suwas S, Sikand R, Gupta A K. Analysis of texture evolution in pure magnesiumand the magnesium alloy AM30during rod and tube extrusion [J]. Mater. Sci. Eng., A2011;528:3722-3729
    [141] Suwas S, Beausir B, Toth L S, Fundenberger J J, Gottstein G. Texture evolution incommercially pure titanium after warm equal channel angular extrusion [J]. Acta Mater.2011;59:1121-1133
    [142]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007.
    [143] C J D, E N D, L D D. Electron channeling patterns in the scanning electron microscope [J]. J.Appl. Phys1982;53:81-122
    [144] L A B, J D D, Kunze K e a. Orientation imaging microscopy: new possibilities formicrostructural investigations using automated BKD analysis.[J]. Mater. Sci Forum1994;157~162:31-42
    [145] Hong S G, Park S H, Lee C S. Role of {10-12} twinning characteristics in the deformationbehavior of a polycrystalline magnesium alloy [J]. Acta Mater.2010;58:5873-5885
    [146] Godet S, Jiang L, Luo A A, Jonas J J. Use of Schmid factors to select extension twin variantsin extruded magnesium alloy tubes [J]. Scr. Mater.2006;55:1055-1058
    [147]蒋佳.初始织构及温度对AZ31镁合金压缩塑性行为影响的研究.[博士学位论文][D].北京:清华大学2008:
    [148] Driver J H, Skalli A, Wintenberger M. A theoretical and experimental study of the plasticdeformation of f.c.c. crystals in plane strain compression [J]. Philos. Mag. A1984;49:505-524
    [149] Orlans-Joliet B, Bacroix B, Montheillet F, Driver J H, Jonas J J. Yield surfaces of BCCcrystals for slip on the {110}<111> and {112}<111> systems [J]. Rev. Phys. Appl.(Paris)1988;23:707
    [150] Agnew S R, Brown D W, Tome C N. Validating a polycrystal model for the elastoplasticresponse of magnesium alloy AZ31using in situ neutron diffraction [J]. Acta Mater.2006;54:4841-4852
    [151] Kocks U F, Mecking H. Physics and phenomenology of strain hardening: the FCC case [J].Prog. Mater Sci.2003;48:171-273
    [152] Ono N, Nakamura K, Miura S. Influence of Grain Boundaries on Plastic Deformation in PureMg and AZ31Mg Alloy Polycrystals [J]. Mater. Sci. Forum2003;419-422:195-200
    [153] Kim H-K. The grain size dependence of flow stress in an ECAPed AZ31Mg alloy with aconstant texture [J]. Mater. Sci. Eng., A2009;515:66-70
    [154] Knezevic M, Levinson A, Harris R, Mishra R K, Doherty R D, Kalidindi S R. Deformationtwinning in AZ31: Influence on strain hardening and texture evolution [J]. Acta Mater.2010;58:6230-6242
    [155] Kalidindi S R, Bhattacharyya A, Doherty R D. How do polycrystalline materials deformplastically?[J]. Adv. Mater.2003;15:1345-1348
    [156] Afrin N, Chen D L, Cao X, Jahazi M. Strain hardening behavior of a friction stir weldedmagnesium alloy [J]. Scr. Mater.2007;57:1004-1007
    [157] Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mgalloys at room temperature [J]. Metall. Mater. Trans. A2005;36:1689-1696
    [158] Al-Samman T. Comparative study of the deformation behavior of hexagonalmagnesium-lithium alloys and a conventional magnesium AZ31alloy [J]. Acta Mater.2009;57:2229-2242
    [159] Chino Y, Kimura K, Mabuchi M. Deformation characteristics at room temperature underbiaxial tensile stress in textured AZ31Mg alloy sheets [J]. Acta Mater.2009;57:1476-1485
    [160] Chino Y, Kado M, Mabuchi M. Compressive deformation behavior at room temperature-773K in Mg-0.2mass%(0.035at.%)Ce alloy [J]. Acta Mater.2008;56:387-394
    [161] Barnett M R, Keshavarz Z, Beer A G, Ma X. Non-Schmid behaviour during secondarytwinning in a polycrystalline magnesium alloy [J]. Acta Mater.2008;56:5-15
    [162]裴颖. AZ31镁合金在中低温区压缩中的孪生行为研究[硕士学位论文][D].北京:清华大学2009:
    [163] Wan G, Wu B L, Zhao Y H, Zhang Y D, Esling C. Strain-rate sensitivity of texturedMg-3.0Al-1.0Zn alloy (AZ31) under impact deformation [J]. Scr. Mater.2011;65:461-464
    [164] Yoo M H, Wei C T. Slip Modes of Hexagonal-Close-Packed Metals [J]. J. Appl. Phys.1967;38:4317-4322
    [165] Song S G, Gray G T. Influence of Temperature and Strain-Rate on Slip and Twinning Behaviorof Zr [J]. Metall. Mater. Trans. A1995;26:2665-2675
    [166]杨续跃,姜育培.镁合金热变形下变形带的形貌和晶体学特征[J].金属学报,2010;46(4):451-457
    [167] Martin é, Jonas J J. Evolution of microstructure and microtexture during the hot deformationof Mg-3%Al [J]. Acta Mater.2010;58:4253-4266
    [168] Del Valle J A, Pérez-Prado M T, Ruano O A. Texture evolution during large-strain hot rollingof the Mg AZ61alloy [J]. Mater. Sci. Eng., A2003;355:68-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700