多晶纯钴在动态塑性变形后的退火组织及变形孪晶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以具有密排六方结构(HCP)的纯钴样品为研究对象,首先利用X射线衍射(XRD)、电子背散射衍射(EBSD)和透射电子显微镜(TEM)对纯钴样品在动态塑性变形(DPD)后的退火组织进行了详细地表征和分析;用EBSD和高分辨透射电子显微镜(HRTEM)表征了在变形过程中产生的变形孪晶,并与准静态压缩变形(ND)形成的变形孪晶进行对比研究;利用位错分解的理论对DPD过程中产生的变形孪晶的形成机制进行了模拟研究。
     对样品DPD后的退火组织进行研究发现:(1)钴从高温FCC相向低温HCP相转变时相变没有全部完成,室温下仍存在少量的FCC结构,约占8.5%。残留的FCC结构与HCP结构满足SN(Shoji-Nishiyama)的取向关系,即{111}FCC||{0001}HCP;<110>FCC||<1120>HCP。(2)残留的FCC结构的晶粒中发现存有∑3晶界,这种晶界是由于FCC结构的晶粒在退火过程中高角度随机自由晶界快速迁移导致。(3)873K温度下退火后,在HCP结构的晶粒中发现大量71.4°/<1120>特殊晶界,这种晶界的形成原因与FCC结构的晶粒中∑3晶界的形成原因不同,是由FCC→HCP马氏体相变导致,这种孪晶是相变孪晶。
     对样品DPD后的微观组织随着变形量的增加产生的变化进行了研究,发现:(1)随着变形量增加,晶粒内部的层错附近出现锥面<1123>型位错,这些位错的产生会使样品在TEM测试时发生透射束和二次衍射束的相互干涉,从而形成莫尔条纹。同时,这种位错的出现表明,纯钴在DPD过程中启动了{1011}<1123>滑移系统,这种滑移系统的启动,能够更好地调节钴的塑性变形。(2)随着变形量的增大,各种变形孪晶界长度的相对百分含量发生变化。{1012}和{1121}两种拉伸孪晶的孪晶界长度相对百分含量随着变形量的增大急剧减少。{1122}、{1011}和{1013}三种压缩孪晶,其孪晶界长度的相对百分含量随着变形量的加大都有不同程度的增加。两种二次孪晶界长度的相对百分含量没有明显的变化。
     对样品DPD后形成的孪晶形式及与ND后形成的孪晶形式对比研究发现:(1)钴在DPD和ND过程中都会产生七种变形孪晶,分别是两种拉伸孪晶{1012}、{1121},三种压缩孪晶{1122}、{1013}、{1011},和两种二次孪晶{1011}-{1012}、{1013}-{1012}。{1121}拉伸孪晶在DPD过程中更容易产生。(2)钴在DPD和ND过程中,同一个晶粒内部会产生多种变形孪晶,具体的孪晶形式与初始晶粒的取向有关。当初始晶粒的c轴与加载方向几乎垂直时,变形过程中此晶粒只产生拉伸孪晶。当初始晶粒的c轴与加载方向呈一定角度(如65。)时,晶粒在变形过程中会同时产生拉伸孪晶和压缩孪晶,甚至可能产生二次孪晶。(3)钴在DPD过程中产生的几种变形孪晶的孪晶界特征不同:其中{1012}变形孪晶的孪晶界呈现出曲折现象,这些曲折的地方是由于孪晶界出现的台阶导致,这些台阶的高度从一个原子层到十几个原子层不等,这些台阶造成了{1012}变形孪晶界的不连续性;钴在DPD过程中产生的{1121}孪晶界的形貌与{1012}孪晶界不同,没有出现台阶,而是一条连续笔直的晶界;{1011}变形孪晶在动态塑性变形过程中也会因为Zonal位错的原因产生台阶,而且,在{1011}孪晶界附近发现有<1123>位错,说明DPD可以使钴的{1011}<1123>滑移系统和{1011}<1012>孪生系统双重启动,从而更有利地在e轴方向发生塑性变形。
     对纯钴在变形过程中产生的变形孪晶的形成机制模拟时发现,位错分解在变形孪晶的形成过程中起了重要作用。在加载应力下,全位错AB在{211ι}晶面和{101ι}晶面分解形成不同的孪生位错、不可滑移不全位错和可滑移的不全位错。其中,不可滑移不全位错会钉扎在两个孪生面之间,可滑移不全位错在加载应力下在(0002)面上滑移导致孪晶界的增长,孪生位错则可在加载应力下造成孪生剪切或者原子重组。在这三种不全位错的共同作用下,形成了钴在变形过程中形成的多种变形孪晶模式。
This thesis reports detailed investigations of the microstructure of polycrystalline cobalt during annealed process and room temperature dynamic plastic deformation (DPD), respectively. Microstructure observation of annealed cobalt was performed in an X-ray diffraction (XRD), in a scanning electron microscopy (SEM) with an electron backscatter diffracrion (EBSD) detector, and in a transmission electron microscopy (TEM) to investigate the annealing twins generated in polycrystalline cobalt containing face center cubic (FCC) and hexagonal close packed (HCP) phases during the annealed process. TEM and high-resolution TEM (HRTEM) were applied to characterize the multi-types of deformation twins of polycrystalline HCP cobalt during DPD. The relation of the dislocation dissociation and the formation of the deformation twins were discussed.
     The investigation of annealed microstructure and annealing twins in FCC and HCP phases shows:(1) a small amount of high temperature (above690K) FCC phase is retained at room temperature, and there is a Shoji-Nishiyama orientation relationship between the low temperature HCP and the retained FCC phases of{111}FCC||{0001}HCP and<110>FCC||<1120> HCP-(2)∑3twin boundaries were observed in the retained FCC phase. These twins are produced during dissociation of fast moving random high-angle boundaries into a∑3boundary and another random high-angle boundary.(3) a high fraction of boundaries with twin misorientation of71.4°/<1120> is formed as a result of phase transformation from FCC to HCP following the Shoji-Nishiyama orientation relationship.
     The investigation of variation of the microstructure of polycrystalline cobalt during DPD shows the results as following:(1) with the increasation of the strain, the<1123>-type dislocations have been observed in the vicinity of the stacking-faults, resulting in the fornation of moire fringes and activation of {1011}<1123> slip system.(2) with the increasation of the strain, the relative fractions of twin boundary length of various twins have been changed. Thereinto, the relative fractions of twin boundary length of tension twins have decreased acutely with the strain increasing. On the contrary, the relative fractions of twin boundary length of compression twins have increased with the strain increasing. The relative fractions of twin boundary length of double twins change unobviously with the strain increasing.
     The detailed investigation of the characterization of deformation in polycrastalline cobalt during DPD shows the following results:(1) several deformation twinning modes including the tension twins of{1012} and{1121}, and compression twins of{1122},{1013} and{1011}, as well as double twins of{1011}-{1012} and{1013}-{1012} have been confirmed to take place during the deformations.(2) tension and compression twinning can take place in one grain. The c axes of most of the grains containing tension twins are nearly perpendicular to the compression direction, while the c axes of grains containing compounded twins are usually away from the compression direction. A similar twinning mode and microstructure of quasi-static compression have been found.(3) the twin boundaries of{1012} deformation twins can be regard as the step boundaries, which result in the unsuccessive characteristic. The height of the step contains the atomic player from one plater to more than ten players. The twin boundaries of{1121} deformation twins do not present step-like twin boundaries. The step-like twin boundaries are also observed in the {1011} deformation twin boundaries. In addition, a new slip system,{1011}<1123> is also activated, which can also provide strain in the c-axis direction. In other words, both the deformation twinning and the newly activated slip system can facilitate plastic strain in the c-axis direction in polycrystalline cobalt during DPD.
     The discussion of the relation of the dislocation dissociation and the formation of the deformation twins shows that the dislocation dissociation has played an important role the nucleation of deformation twins of cobalt during deformation. The full dislocation of AB can dissociate different types of sessile partial dislocation, glissile partial dislocation and twinning partial dislocation in {211l} and{101l} panes under the applied stress. The sessile partial dislocations can pin at the intersection of the twinning planes, and the glissile partial dislocations glide to nucleate a twin on the (0002) planes, and the twinning partial dislocations can lead to the shear or the shuffle under the applied stress. The multi-types of deformation twins in polycrystalline cobalt can be generated by the reaction among the sessile partials, the glissile partialsand the twinning partials during deformation.
引文
[1] Y.N.Wang, J.C.Huang. Texture analysis in hexagonal materials. Mater. Chem. Phys.2003,81:11.
    [2] J.P. Hirth, J. Lothe. Theory of dislocations.2nd ed. New York: John Wiley&Sons;1982.
    [3] Y.L. Wei, A. Godfrey, W. Liu, Q. Liu, X. Huang, N. Hansen, G. Winther. Dislocations,boundaries and slip systems in cube grains of rolled aluminium. Scripta Mater.2011,65:355.
    [4] L. Wang, H. Bei, T.L. Li, Y.F. Gao, E.P. George, T.G. Nieh. Determining the activationenergies and slip systems for dislocation nucleation in body-centered cubic Mo andface-centered cubic Ni single crystals. Scripta Mater.2011,65:179
    [5]赵敬世.位错理论基础.北京:国防工业出版社,1989.
    [6]刘国勋.金属学原理.北京:冶金工业出版社,1980.
    [7]刘毅,郦定强,林栋梁.金属间化合物FeAI超塑性变形中的位错特征.金属学报,1996,32:225.
    [8]肖林,白菊丽. Zr一4合金双轴疲劳行为及其微观变形机理.金属学报,2000,36:919.
    [9] P.G.Partridge. The crystallography and deformation modes of hexagonal close-packed metals.Metall. Rev.1967,12:169.
    [10] G.I.Taylor. Plastic strain in metals. J. Inst. Met.1938,32:307.
    [11] S.R.Agnew, C.N.Tome, D.W.Brown, S.C.Vogel. Study of slip mechanisms in a magnesiumalloy by neutron diffraction and modeling. Scripta Mater.2003,48:1003.
    [12] G.W.Groves, A.Kelley. Independent slip systems in crystals. The philosophical Magazine,1963,8:877.
    [13] H. Van Swygenhoven, P.M.Derlet, A.G.Froseth. Nat. Mater.2004,3:399.
    [14] X.L.Wu, X.Z.Liao, S.G.Srinivasan, F.Zhou, E.J. Lavernia, R.Z, Valiev. Y.T.Zhu. Deformationtwinning generates zero macro-strain in nanocrystalline metals. Phys. Rev. Lett.2008,100:095701.
    [15] M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng. Deformationtwinning in nanocrystalline aluminum. Science2003,300:1275.
    [16] X.Z.Liao, Y.H.Zhao, Y.T.Zhu, R.Z.Valiev, D.V.Gunderov. Grain-size effect on thedeformation mechanisms of nanostructured copper processed by high-pressure torsion. J.Appl. Phys.2004,96:636.
    [17] M.A.Meyers, O.Vohringer, V.A.Lubarda. The Onset of Twinning: A Constitutive Description.Acta Mater.2001,49:4025.
    [18] M.H.Yoo. Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals. Metall. Trans. A1981,12A:409.
    [19] G.C.Kaschner, C.N.Tomé, R.J.McCabe, A.Misra, S.C.Vogel, D.W.Brown. Exploring thedislocation/twin interactions in zirconium. Mater Sci. Eng. A2007,463:122.
    [20] J.P.Hirth, R.C.Pond. Steps, dislocations and disconnections as interface defects relating tostructure and phase transformations. Acta Mater.1996,44:4749.
    [21] J.Wang, H.Huang. Novel deformation mechanism of twinned nanowires. Appl. Phys. Lett.2006,88:203112.
    [22] J.Wang, J.P.Hirth, C.N.Tome.(101_2)Twinning nucleation mechanisms inhexagonal-close-packed crystals. Acta Mater.2009,57:5521
    [23] M.M. Avedesian, H.Baker. Magnesium and magnesium alloys. Materials Park, OH: ASMInternational;1999.
    [24] A.Jain, S.R.Agnew. Modeling the temperature dependent effect of twinning on the behaviorof magnesium alloy AZ31B sheet. Mater. Sci. Eng. A.2007,462:29.
    [25] S.R.Agnew, P.Mehrotra, T.M.Lillo, G.M.Stoica, P.K. Liaw. Crystallographic texture evolutionof three wrought magnesium alloys during equal channel angular extrusion. Mater. Sci. Eng.A2005,408:72.
    [26] J.W.Christian, S.Mahajan. Deformation twinning. Prog. Mater. Sci.1995,39:1
    [27] P.Yang, Y.Yu, L.Chen, et al. Experimental determination and theoretical prediction of twinorientations in magnesium alloy AZ31. Scripta Mater.2004,50:1163.
    [28] L.Jiang, J.J.Jonas, A.A.Luo. Influence of {101_2}extension twinning on the flow behavior ofAZ31Mg alloy. Mater. Sci. Eng. A2007,445-446:302.
    [29] M.R.Barnett, Z.Keshavarz, A.G.Beer, et al. Influence of grain size on the compressivedeformation of wrought Mg-3Al-1Zn. Acta Mater.2004,52:5093.
    [30] M.D.Nave, M.R.Barnett. Microstructures and textures of pure magnesium deformed inplane-strain compression. Scripta Mater.2004,51:881.
    [31] A.Jain, S.R.Agnew. Modeling the temperature dependent effect of twinning on the behaviorof magnesium alloy AZ31B sheet. Mater. Sci. Eng. A2007,462:29.
    [32] S.H.Choi, E.J.Shin, B.S.Seong. Simulation of deformation twins and deformation texture inan AZ31Mg alloy under uniaxial compression. Acta Mater.2007,55:4181.
    [33] L.Jiang, J.J.Jonas, R.K.Mishra. Twinning and texture development in two Mg alloyssubjected to loading along three different strain paths. Acta Mater.2007,55:3899.
    [34] M.R.Barnett. Twinning and the ductility of magnesium alloys Part I:“Tension” twins. Mater.Sci. Eng. A2007,464:1.
    [35] M.R.Barnett. Twinning and the ductility of magnesium alloys Part II.“Contraction” twins.Mater. Sci. Eng. A2007,464:8.
    [36] C.H.Caceres, A.H.Blake. On the strain hardening behaviour of magnesium at roomtemperature. Mater. Sci. Eng. A2007,464:193.
    [37] S.Vaidya, S.Mahajan. Glide anead of terminating {101_2}twins in Co. Scripta Met.1980,14:623.
    [38] S.Vaidya, S.Mahajan. Accommodation and formation of {112_1}twins in Co single crystals.Acta Met.1980,28:1123.
    [39] M.Qian, J.C.Lippold. The effect of annealing twin-generated special grain boundaries onHAZ liquation cracking of nickel-base superalloys. Acta Mater.2003,51:3351.
    [40] C.S.Roberts. Magnesium and its alloys. New York: John Wiley and Sons,1960,81.
    [41] R.E.Reed-Hill. Trans. Metal. Soc. AIME.1960,218:554.
    [42] B.C.Wonsiewicz, W.A.Backofen. Plasticity of magnesium crystals. Trans. Metal.Soc. AIME.1967,239:1422.
    [43] E.W.Kelley, W.F.Hosford. Plane-strain compression of magnesium and maguesium alloycrystals. Trans. Metal.Soc. AIME.1968,242:5.
    [44] W.H.Hartt, R.E.Reed-Hill. Internal deformation and fracture of second-order {101_1}-{101_2}twins in magnesium. rans. Metal.Soc. AIME.1968,242:1127.
    [45] D.G.Westlake. Twinning in Zirconium. Acta Mater.1961,9:327.
    [46] S.R.Agnew, M.H.Yoo, C.N.Tome. Application of texture simulation to understandingmechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Materi.2001,49:4277.
    [47] S.Dash, N. Brown. An investigation of the oritin and growth of annealing twins. Acta Metall.1963,11:1067.
    [48] T.Baudin, A.L.Etter, R. Penelle. Annealing twin formation and recrystallization study ofcold-drawn copper wires from EBSD measurements. Mater. Character.2007,58:947.
    [49] A.P.Zhilyaev, S. Swaminathan, G.I.Raab, T.R.McNelley. Distortion of annealing twins duringthe initial equal channel angular pressing pass. Scripta Mater.2006,55:931.
    [50] C.S Pande, B.B.Rath, M.A.Imam. Effect of annealing twins on Hall–Petch relation inpolycrystalline materials. Mater. Sci. Eng. A.2004,367:171.
    [51] P.Huang, G.Q.Dai, F.Wang, K.W.Xu, Y.H.Li. Fivefold annealing twin in nanocrystalline Cu.Appl. Phys. Lett.2009,95:203101
    [52] C.V.Kopezky, V.Y.Novikov, L.K.Fionova, N.A.Bolshakova. Investigation of annealing twinsin FCC metals. Acta Metall.1985,33:873.
    [53] B.B.Rath, M.A.Imam, C.S.Pande. Nucleation and growth of twin interfaces in FCC metalsand alloys. Mater. Phys. Mech.2000,1:61
    [54] H.Gleitert. The formation of annealing twins. Acta Metall.1969,17:1421.
    [55] J.P.Nielsen. The origin of annealing twins. Acta Metall.1967,15:1083.
    [56] S.Mahajan, C.S.Pande, M.A.Imam, B.B.Rath. Formation of annealing twins in FCC metals.Acta Mater.1997,45:2633.
    [57] R.L.Fullman, J.C.Fisher. Formation of annealing twins during grain growth. J Appl Phys,1951,22:1350.
    [58] S.Dash, N.Brown. An investigation of the origin and growth of annealing twins. Acta Metall,1963,11:1067.
    [59] K.T.Aust, J.W.Rutter. Grain Boundary Migration in High-Purity Lead and Dilute Lead-TinAlloys. Trans TMS-AIME,1959,215:119.
    [60] D.P.Field, L.T.Bradford, M.M.Nowell, T.M.Lillo. The role of annealing twins duringrecrystallization of Cu. Scripta Mater.2077,55:4233.
    [61] K.H.Song, Y.B.Chun, S.K.Hwang. Direct observation of annealing twin formation in aPb-base alloy. Mater. Sci. Eng. A.2007,454-455:629.
    [62] C.B.Thomson, V.Randle.“Fine Tuning” at3boundaries in Nickel. Acta Mater.1997,45:4909.
    [63] V.Randle. The coincidence site lattice and the “sigma enigma”. Mater. Character.2001,47:411.
    [64] U.Erb, H.Gleiter, G.Schwitzgebel. The Effect of Boundary Structure (Energy) on InterfacialCorrosion. Acta Metall,1982,30:1377
    [65] H.Gleiter, B.Chalmers. High-Angle Grain-Boundaries. Prog. in Mater. Sci.1972,16:1
    [66] T.Watanabe. An Approach to Grain-Boundary Design for Strong and Ductile Polycrystals.Res Mech,1984,11:47.
    [67] G.Palumbo, K.T.Aust, U.Erb. On Annealing Twins and Csl Distributions in FccPolycrystals. Phys. Status. Solidi. A,1992,131:425.
    [68] G.Palumbo, P.J.King, K.T.Aust. Grain-Boundary Design and Control for IntergranularStress-Corrosion Resistance. Scripta Metall. Materi.1991,25:1775.
    [69] P.Lin, G.Palumbo, K.T.Aust. Experimental assessment of the contribution of annealing twinsto CSL distributions in FCC materials. Scripta Mater.1997,36:1145.
    [70] P.Lin, G.Palumbo, U.Erb. Influence of grain boundary character distribution on sensitizationand intergranular corrosion of alloy600. Scripta Metall. Mater.1995,33:1387.
    [71] V.Thaveeprungsriporn, G.S.Was. The role of coincidence-site-lattice boundaries in creep ofNi-16Cr-9Fe at360degrees C. Metall. Mater. Trans. A,1997,28:2101.
    [72] E.M.Lehockey, G.Palumbo. On the creep behaviour of grain boundary engineered nickel.Mater. Sci. Eng. A,1997,237:168.
    [73] C.A.Schuh, M.Kumar, W.E.King. Analysis of grain boundary networks and their evolutionduring grain boundary engineering. Acta Mater.2003,51:687.
    [74] M.Kumar, W.E.King, A.J.Schwartz. Modifications to the microstructural topology in f.c.c.materials through thermomechanical processing. Acta Mater.2000,48:2081.
    [75] E.M.Lehockey, G.Palumbo, K.T.Aust, et al. On the role of intercrystalline defects inpolycrystal plasticity. Scripta Mater.1998,39:341
    [76] U.Krupp, W.M.Kane, X.Liu, et al. The effect of grain-boundary-engineering-type processingon oxygeninduced cracking of IN718. Mater. Sci. Eng. A,2003,349:213.
    [77] V.Thaveeprungsriporn, G.S.Was. Grain boundary properties of Ni-16Cr-9Fe at360degrees C.Scripta Mater.1996,35:1.
    [78] B.Alexandreanu, B.Capell, G.S.Was. Combined effect of special grain boundaries and grainboundary carbides on IGSCC of Ni-16Cr-9Fe-xC alloys. Mater. Sci. Eng. A,2001,300:94.
    [79] V.Thaveeprungsriporn, P.Sinsrok, D.Thong-Aram. Effect of iterative strain annealing ongrain boundary network of304stainless steel. Scripta Mater.2001,44:67.
    [80] W.E.King, A.J.Schwartz. Toward Optimization of the Grain Boundary Character Distributionin OFE Copper. Scripta Mater.1998,38:449.
    [81] M.Shimada, H.Kokawa, Z.J.Wang, et al. Optimization of grain boundary characterdistribution for intergranular corrosion resistant304stainless steel by twininduced grainboundary engineering. Acta Mater.2002,50:2331.
    [82] M.Qian, J.C.Lippold. The effect of annealing twin-generated special grain boundaries onHAZ liquation cracking of nickel-base superalloys. Acta Mater.2003,51:3351.
    [83] V.Randle. Mechanism of twinning-induced grain boundary engineering in low stacking-faultenergy materials. Acta Mater.1999,47:4187.
    [84] V.Randle. Twinning-related grain boundary engineering. Acta Mater.2004,52:4067.
    [85] N.Loizou, R.B.Sims. The yield stress of pure lead in compression. J. mech. Phys. Solids.1953,1:234
    [86] J.E.Hockett. Influence on the Stress-Strain Behavior at Very High Strain Rates Proc. ASTM.1959,59:1309.
    [87] S.K.Samanta. Simple upsetting: Strain-rate and model tests. Int. J. Mech. Sci.1967,9:485.
    [88] G.L.Baraya, W.Johnson, R.A.C.Slater. The dynamic compression of circular cylinders ofsuper-pure aluminium at elevated temperatures. Int. J. Mech. Sci.1965,7:621.
    [89] H.Kolsky. An investigation of the mechanical properties of materials at very high rates ofloading.Proc. Phys. Soc., London, B1949,62:676.
    [90] A.S.Abou-Sayed, R.J.Clifton,L.Hermann. The oblique-plate impact experiment. Exper.Mech.1976,16:127
    [91] R.J.Clifton. Mechanical properties at high rates of strain. Inst. Phys. Conf. Ser.1979,47:174.
    [92] R.J.Clifton. Trans. ASME (E).1983,50:941.
    [93] D.Kececicglu. Trans. ASME (B).1958,80:158.
    [94] I.Finnie, J.Wolak. Trans. ASME (B).1963,85:351.
    [95] M.G.Stevenson, P.L.B.Oxley. Proc. Institution of Mech. Eng.1970-1971,185:741.
    [96] P.K.Wright, J.L.Robinson. Met. Tech.1977,34:240.
    [97] A.M.Meyers. Dynamic behavior of materials. New York: John Wiley&Sons, Inc,1994.
    [98] W.S.Zhao, N.R.Tao, J.Y.Guo, Q.H.Lu, K.Lu. High density nano-scale twins in Cu induced bydynamic plastic deformation. Scripta Mater.2005,53:745
    [99] G.H.Xiao, N.R.Tao, K.Lu. Microstructures and mechanical properties of a Cu–Zn alloysubjected to cryogenic dynamic plastic deformation. Mater. Sci. Eng. A.2009,513-514:13.
    [100] B.K.Kad, J.-M.Gebert, M.T.Pérez-Prado, M.E.Kassner, M.A.Meyers. Ultrafine-grain-sizedzirconium by dynamic plastic deformation. Acta Mater.2006,54:111.
    [101] R.Gehrmann, M.M.Frommert, G.Gottstein. Texture effects on plastic deformation ofmagnesium. Mater. Sci. Eng. A2005,395:338.
    [102] Z.L.Liu, X.C.You, Z.Zhuang. A mesoscale investigation of strain rate effect on dynamicdeformation of single-crystal copper. Inter. J. Solids Stru.2008,45:3674.
    [103] S.T.Chiou, W.C.Cheng, W.S.Lee. The analysis of the microstructure changes of a Fe–Mn–Alalloy under dynamic impact tests. Mater. Sci. Eng. A2004,386:460.
    [104] A.Uenishi, C.Teodosiu, E.V.Nesterova. Microstructural evolution at high strain rates insolution-hardened interstitial free steels. Mater. Sci. Eng. A2005,400-401:499.
    [105] Y.S.Li, N.R.Tao, K.Lu. Microstructural evolution and nanostructure formation in copperduring dynamic plastic deformation at cryogenic temperatures. Acta Mater.2008,56:230.
    [106] I.Gutierrez-Urrutia, S.Zaefferer, D.Raabe. The effect of grain size and grain orientation ondeformation twinning in a Fe–22wt.%Mn–0.6wt.%C TWIP steel. Mater. Sci. Eng. A2010,527:3552
    [107] L.Meng, P.Yang, Q.Xie, H.Ding, Z.Tang.Dependence of deformation twinning on grainorientation in compressed high manganese steels. Scripta Mater.2007,56:931.
    [108] P.Yang, Q.Xie, L.Meng, H.Ding, Z.Tang. Dependence of deformation twinning on grainorientation in a high manganese steel. Scripta Mater.2006,55:629.
    [109] R.Ueji, N.Tsuchida, D.Terada, N.Tsuji, Y.Tanaka, A.Takemura, K.Kunishige. Tensileproperties and twinning behavior of high manganese austenitic steel with fine-grainedstructure. Scripta Mater.2008,59:963.
    [110] C.S.Hong, N.R.Tao, K.Lu, X.Huang. Grain orientation dependence of deformation twinningin pure Cu subjected to dynamic plastic deformation. Scripta Mater.2009,61:289.
    [111] Y.Zhang, N.R.Tao, K.Lu. Effect of stacking-fault energy on deformation twin thickness inCu–Al alloys. Scripta Mater.2009,60:211.
    [112] I.Karaman, H.Sehitoglu, K.Gall, Y.I.Chumlyakov, H.J.Maier. Deformation of single crystalHadfield steel by twinning and slip. Acta Mater.2000,48:1345.
    [113]卢秋红,赵伟松,隋曼龄,李斗星.液氮温度下动态塑性形变法制备的纳米孪晶铜结构的研究.金属学报,2006,42:909.
    [114] J.A.Hines, K.S.Vecchio, S.Ahzi. A Model for microstructure evolution in adiabatic shearbands. Met. Mater. Trans. A1998,29:191.
    [115] N.S.Medyanik, W.K.Liu, S.F.Li. On criteria for dynamic adiabatic shear band propagation. J.Mech. Phys. Solids.2007,55:1439.
    [116] J.A.Hines, K.S.Vecchio, Recrystallization kinetics within adiabatic shear bands. Acta Mater.1997,45:635.
    [117] G.M.Owolabi, A.G.Odeshi, M.N.K.Singh, M.N.Bassim. Dynamic shear band formation inAluminum6061-T6and Aluminum6061-T6/Al2O3composites. Mater. Sci. Eng. A2007,457:114.
    [118] S.V.Harren, H.E.Deve, R.J.Asaro. Shear band formation in plane strain compression. ActaMet.1988,36;2435.
    [119]杨顺华.晶体位错理论基础(第一卷).北京:科学出版社.1988.
    [120] X.Y.Zhang, X. L.Wu,A.W.Zhu. Growth of deformation twins in room-temperature rollednanocrystalline nickel. Appl. Phys. Lett.2009,94:121907.
    [121] X.Z.Liao, F. Zhou, E.J. Lavernia, D.W.He, Y.T.Zhu, Deformation twins in nanocrystalline Al.Appl. Phys. Lett.2003,83:5062.
    [122] Y.M.Wang, A.M.Hodge, J.Biener, A.V.Hamza, D.E.Barnes, K Liu, T.H.Nieh, Deformationtwinning during nanoindentation of nanocrystalline Ta. Appl. Phys. Lett.2005,86:101915.
    [123] X. L.Wu, Y.T.Zhu, M.W. Chen, E.Ma. Twinning and stacking fault formation during tensiledeformation of nanocrystalline NiScrpta Mater.2006,54:1685.
    [124] X.L.Wu, E.Ma, Deformation twinning mechanisms in nanocrystalline Ni. Appl. Phys. Lett.2006,88:061905.
    [125] X.L.Wu, E.Ma, Dislocations in nanocrystalline grains. Appl. Phys. Lett.2006,88:231911.
    [126] X.L.Wu, E.Ma, Accommodation of large plastic strains and defect accumulation innanocrystalline Ni grainsJ. Mater. Res.2007,22:2241.
    [127] Y.T.Zhu, J.Narayan, J.P.Hirth, S.Mahajan, X.L.Wu, X.Z.Liao. Formation of single andmultiple deformation twins in nanocrystalline fcc metals. Acta meter.2009,57:3763.
    [128] H.L.Wang, Z.B.Wang, K.Lu. Interfacial diffusion in a nanostructured Cu produced by meansof dynamic plastic deformation. Acta Mater.2010,26:258
    [129] G.H.Xiao, N.R.Tao, K.Lu. Microstructures and mechanical properties of a Cu–Zn alloysubjected to cryogenic dynamic plastic deformation. Mater. Sci. Eng. A.2009,513-514:13.
    [130] Y.S.Li, N.R.Tao, K.Lu. Microstructural evolution and nanostructure formation in copperduring dynamic plastic deformation at cryogenic temperatures. Acta Mater.2008,56:230.
    [131] Y.S.Li, Y.Zhang, N.R.Tao, K.Lu. Effect of thermal annealing on mechanical properties of ananostructured copper prepared by means of dynamic plastic deformation. Scripta Mater.2008,59:475
    [132] W.Bettering, Prog. Mater. Sci.1980,24:51.
    [133] C.Hitzenberger, H.P.Karnthaler, A.Korner, Phys. Stat. Sol.1985,89:133.
    [134] N.C.K.Lassen, D.J.Jensen, K.Conradsen. Image-Processing Procedures for Analysis ofElectron Back Scattering Patterns. Scanning Microsc,1992,6:115.
    [135] S.I.Wright, B.L.Adams. Automatic-Analysis of Electron Backscatter Diffraction Patterns.Met. Trans. A1992,23:759.
    [136] F.J.Humphreys. Quantitative metallography by electron backscattered diffraction. JMicroscopy.1998,195:170.
    [137] F.J.Humphreys. Review-Grain and subgrain characterisation by electron backscatterdiffraction. J Mater. Sci.2001,36:3833.
    [138] D.J.Dingley, V.Randle. Microtexture determination by electron back-scatter diffraction. JMater. Sci.1992,27:4545.
    [139] S.I.Wright, B.L.Adams. Automatic analysis of electron backscatter diffraction patterns. Met.Mater. Trans. A1992,23:759.
    [140] F.Springer. Recent development in automated crystal mapping (ACOM)-quantitativeevaluation and graphical representation in individual grain orientation data. Mater. Sci.Forum1998,273-275:191.
    [141] A.Day, T.E.Quested. A comparison of grain imaging and measurement using horizontalorientation and colour orientation contrast imaging, electron backscatter pattern and opticalmethods. J. Micro.1999,195:186.
    [142] F.J.Humphreys. Quantitative metallpgraphys by electron backscattered diffraction. J. Micro.1999,195:170.
    [143] T.A.Gladstone, J.C.Moore, A.J.Wilkinson, et al. Grain Boundary Misorientation and ThermalGrooving in Cube-textured Ni and Ni-Cr tape. IEEE Trans. Appl. Super.2001,11:2923.
    [144] R.D.Doherty, R.Samajdar, K.Kunze. Orientation imaging microscopy: application to thestudy of cube recrystalization texture in aluminium. Scripta Mater.1992,27:1459.
    [145] J.H.Driver, M.C.Theyssier, C.Maurice. Electron backscattered diffraction microtexturestudies on hot deformed aluminium crystals. Mater. Sci. Tech.1996,12:851.
    [146] F.A.St er, E.Nes. Characterization of deformation microstructure in commercial purityaluminium. Mater. Sci. Forum1996,217-222:447.
    [147] C.Blochwita, J.Brechbühl, W.Tirschler. Analysis of activated slip systems in fatigued nickelpolycrystals using EBSD-technique in the scanning electron microscope. Mater. Sci. Eng. A1996,210:42.
    [148] V.Randle. Crystallographic analysis of facets using electron backscatter diffraction. J. Micro.1999,195:226.
    [149] P.J.Hurley, F.J.Humphreys. Characterizing the deformed state in Al-0.1My alloy usinghigh-resolution electron backscattered diffraction. J. Micro.2002,205:218.
    [150] M.A.Wall, A.J.Schwartz, L.Nguyen. A high-resolution serial sectioning specimen preparationtechnique for application to electron backscatter diffraction. Ultramicroscopy,2001,88:73.
    [151] J.A.Small, J.R.Michael, D.Bright. Improving the quality of electron backscatter diffraction(EBSD) patterns from nanoparticles. J. Micro.2002,206:170.
    [152] P.J.Hurley, F.J.Humphreys. The application of EBSD to the study of substructuraldevelopment in a cold rolled single-phase aluminium alloy. Acta Mater.2003,51:1087.
    [153] Y.H.Zhu, W.B.Lee, S.To. Use of EBSD to study stress induced microstructural changes inZn-Al based alloy. Mater. Sci. Eng. A2003,348:6.
    [154] E.Bouyne, H.M.Flower, T.C.Lindley, et al. Use of EBSD technique to examinemicrostructure and cracking in a bainitic steel. Scripta Mater.1998,39:295.
    [155] G.E.Seward, S.Celotto, D.J.Prior, et al. In situ SEM-EBSD observations of the hcp to bccphase transformation in commercially pure titanium. Acta Mater.2004,52:821.
    [156] J.C.Huang, I.C.Hsiao, T.D.Wang, et al. EBSD study on grain boundary characteristics infine-grained Al alloys. Scripta Mater.2000,43:213.
    [157] W.MarkA, J.S.Adam, N.Lan. A high-resolution serial sectioning specimen preparationtechnique for application to electron backscatter diffraction. Ultramicroscopy,2001,88:73.
    [158] S.H.Choi, Y.S.Jin. Evaluation of stored energy in cold-rolled steels from EBSD data. Mater.Sci. Eng. A2004,371:149.
    [159] J.Tarasiuk, P.H.Gerber, B.Bacroix. Estimaton of recrystallizated volume fraction from EBSDdata. Acta Mater.2002,50:1467.
    [160] J.Li, I.Baker. An EBSD study of directionally recrystallized cold-rolled nickel. Mater. Sci.Eng. A2005,392:8
    [161] F.J.Humphreys. Review-Grain and subgrain characterisation by electron backscatterdiffraction. J. Mater. Sci.2001,36:3833.
    [162]毛卫民,张新明.晶体材料织构定量分析.北京:冶金工业出版社,1995.
    [163] P.Gaunt, J.W.Christian. The cubic-hexagonal transformation in single crystals of cobalt andcobalt-nickel alloys. Acta Met.1959,7:529.
    [164] J.E.Bidaux, R.Schaller, W.Benoit. Study of the HCP-FCC phase transition in cobalt byacoustic measurements. Acta Met.1989,37:803.
    [165] R.L.Fullman, J.C.Fisher. Formation of annealing twins during grain growth. J. Appl. Phys.1951;22:1350.
    [166] G.Gindraux, W.Form. J. Inst. Met.1972;101:85.
    [167] V.Randle. Twinning-related grain boundary engineering. Acta Mater.2004,52:4067.
    [168] Z.Z.Chen, B.Shen, Z.X.Qin, J.M.Zhu, R.Zhang, Y.D.Zheng, G.Y.Zhang. Study of moirefringes at the interface of GaN/α-Al2O3(0001). Physica B2002,324:59.
    [169] P.Ari-Gur, S.L.Semiatin. Evolution of microstructure, macrotexture and microtexture duringhot rolling of Ti-6Al-4V. Mater. Sci. Eng. A1998,257:118.
    [170] Z.P.Zeng, S.Jonsson, H.J.Roven. The effects of deformation conditions on microstructure andtexture of commercially pure Ti. Acta Mater.2009,57:5822..
    [171] R.E.Ree, E.P.Dahlberg. Elecochem. Technol.1966,4:303.
    [172] P.G.Partridge Met. Rev.1967,12:169.
    [173] I.Karaman, H.Sehitoglu, H.J.Maier, Y.I.Chumlyakov. Competing mechanisms and modelingof deformation in austenitic stainless steel single crystals with and without nitrogen. ActaMater.2001,49:3919.
    [174] M.H. Yoo, C.T. Wei. Slip modes of hexagonal‐close‐packed Metals. J. Appl. Phys.38(1967)4317.
    [175] K.Lu, N.Hansen, Structural refinement and deformation mechanisms in nanostructured metals.Scripta Mater.2009,60:1033.
    [176] A.Seeger, H.Kronmuller, O. Boser, M.Rapp Plastic deformation of Cobalt single crystals.Phys. Status Solidi1963,3:1107.
    [177] M.R.Barnett, Z.Keshavarz, A.G.Beer, X.Ma, Non-Schmid behaviour during secondarytwinning in a polycrystalline magnesium alloy. Acta Mater.2008,56:5.
    [178]X.Wu, N.Tao, Y.Hong, GLiu, B.Xu, J.Lu, K.Lu. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Mater.2005,53:681.
    [179]S.GHong, S.H.Park, C.S.Lee. Strain path dependence of{1012} twinning activity in a polycrystalline magnesium alloy. Scripta Mater.2011,64:145
    [180]S.H.Park, S.GHong, C.S.Lee. Activation mode dependent {1012} twinning characteristics in a polycrystalline magnesium alloy. Scripta Mater.2010,62:202.
    [181]T.Braisaz, P.Ruterana, GNouet. Investigation of{1012} twins in Zn using high-resolution electron microscopy:interfacial defects and interactions. Philosophical Magazine A1997,75:1075.
    [182]J.Wang, R.GHoagland, J.P.Hirth, L.Capolungo, I.J.Beyerleinb, C.N.Tome. Nucleation of a {1012} twin in hexagonal close-packed crystals. Scripta Mater.2009,61:903.
    [183]J.Wang, J.P.Hirth, C.N.Tome.(1012) Twinning nucleation mechanisms in hexagonal close packed crystals. Acta Mater.2009,57:5521.
    [184]I.N.Sokurskii, L.N.Protsenko. Sov. J. Atom. Energy.1958,4:579
    [185]R.E.Reed-Hill, WA.Slippy Jr, L.J.Beteau. Trans. Met. Soc. Amer. Inst. Min.(Metall.) Eng.1963,227:976
    [186]D.GWestlake. Twinning in zirconium. Acta Met.1961,9:327.
    [187]L.P.Odinokva. Russ. Met.(Metally)1967,1,66.
    [188]P.GPartridge. Met. Rev.1967,12:169.
    [189]S. Mendelson. Dislocation dissociations in hcp metals. J. Appl. Phys.1970,41:1893.
    [190]M.R.Barnett. Twinning and the ductility of magnesium alloys Part Ⅱ."Contraction" twins. Mater. Sci. Eng.A2007,464:8.
    [191]X.L.Wu, K.M.Youssef, C.C.Koch, S.N.Mathaudhu, L.J.Kecskes, Y.T.Zhu. Deformation twinning in a nanacrystalline hcp Mg alloy. Scripta Mater.2011,64:213.
    [192]N.E.Paton, WA.Backofen. Plastic deformation of titanium at elevated temperatures.Met. Trans.1970,1:2839.
    [193]B.Li, E.Ma. Zonal dislocations mediating{1011}<1012> twinning in magnesium. Acta Mater.2009,57:1734.
    [194]B.Li, E.Ma. Pyramidal slip in magnesium:Dislocations and stacking fault on the{1011} plane. Philos. Mag. A2009,89:1223.
    [195]R.C.Pond, J.P.Hirth. Defects at surfaces and interfaces. Solid State Physics, Academic, New York,1994,47:287.
    [196]A Serra, D.J Bacon, R.C Pond. The crystallography and core structure of twinning dislocations in H.C.P metals. Acta Met.1988,36:3483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700