AZ31镁合金动态塑性变形后的形变孪晶及力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以密排六方结构(HCP)且具有很强基面织构的商用AZ31热轧镁合金板材为研究对象,变形方式选用具有高应变速率特点的动态塑性变形(DPD)。从我们的研究目的出发,设计出DPD方向与板材的轧制方向(RD)平行的变形方式,以引入较高密度的{10-12}孪晶组织。然后对具有孪晶片层组织的AZ31镁合金进行力学性能测试,目的是了解由于孪晶介入引起的组织结构变化对材料力学性能的影响。同时,设计了四类不同初始取向的样品,取其压缩方向分别与板材的法向(ND)成0o、30o、60o、90o,进行DPD。利用电子背散射衍射(EBSD)技术手段定量表征了变形前后样品的微观组织及织构演变规律,详细分析了初始取向及变形条件对AZ31镁合金孪生行为的影响,深入研究了不同的微观组织结构对材料的屈服行为、塑性以及加工硬化行为的影响,从而制定出理想的加工工艺,以改善镁合金的力学性能。
     对动态塑性变形后AZ31镁合金样品内部形成的{10-12}孪生片层组织结构进行定量分析。然后利用取向差法对晶粒中实际产生的{10-12}孪生变体进行类型判定,并计算其Schmid因子,研究结果表明:
     {10-12}孪生机制主导着镁合金塑性变形的初级阶段(ε<~8%)。在这一阶段,片层厚度从5.55μm减小到2.49μm,随着应变量的增加,发生了明显地减小。这种片层结构尺寸的演变与{10-12}孪晶在变形中的形核及生长机制密切相关;在高应变速率过程中的{10-12}孪生行为与准静态压缩过程中的相符,都遵循着Schmid因子法则,即具有最大Schmid因子的{10-12}孪生变体优先形核。同时发现晶粒能否形核不同的{10-12}孪生变体很大程度上受其应力加载方式的影响。当平行于晶格基面的压缩载荷与晶格a轴的夹角成0°或30°时,不同的{10-12}孪生变体有可能被激活在同一晶粒中。而具有大的Schmid因子的变体优先形核,导致它的形核数量多,孪生体积分数大,所以这种变体对塑性应变的贡献也很大,协调了几乎90%的孪生应变。
     对动态塑性变形下退火前后不同应变量的AZ31镁合金样品进行沿DPD方向和垂直于DPD方向(即平行于初始横向(TD))的拉伸试验(分别简化命名为0°和90°拉伸),分析孪生片层结构对镁合金力学性能的影响,研究不同的孪生强化机制在改善力学性能方面的作用。研究结果表明:
     对于未退火的形变镁合金来说,不管是0°拉伸还是90°拉伸,由于预变形导致的加工硬化原因,其屈服强度都随着预变形量的增加有所升高。在90°拉伸中,当孪晶片层密度较高、片层结构比较紧实时,材料的塑性得到极大的改善,这说明孪晶结构的强化能够同时改善材料的强度和塑性;在退火去应力后的预变形样品的0°拉伸过程中,退孪生行为明显地改善了AZ31镁合金的最大流变应力,而且随着{10-12}孪晶体积分数的增加,屈服强度以及最大流变应力均有明显地提高。退孪生引起织构的改变,使得软取向转变成硬取向,从而达到了织构强化的作用,而起这种强化的量级与孪生织构的强度有关。退火去应力后的预变形材料在90°拉伸过程中,{10-12}孪晶片层结构的强化作用导致屈服强度有略微地增加,而最大流变应力几乎没有变化。这说明{10-12}孪晶片层分割导致的晶粒“细化”对AZ31镁合金的力学性能的影响并不明显。
     对0o、30o、60o、90o四种镁合金样品动态塑性变形后的微观组织进行研究,并对{10-12}孪生行为进行分析,得出以下结论:
     0°样品主要依靠非基面滑移来协调塑性变形;而对于30°和60°样品来说,虽然宏观织构是不利于{10-12}孪晶形核,但变形后仍有少量的{10-12}孪晶被激活。在60°样品中,一部分晶粒的{10-12}孪生活动是遵循Schmid因子法则,它们的取向主要分布在偏离理想基面织构的10°~40°的范围内;而孪生活动不遵循Schmid因子法则的晶粒的取向主要分布在偏离理想基面织构的30°~50°的范围内,理论上这种取向已经不利于{10-12}孪晶的激活;在30°样品中,仍有少量偏离90°取向较大的晶粒形核{10-12}孪晶,这些激活的孪晶变体与60°样品中类似取向晶粒形核的孪晶一样,并没有遵循最大的Schmid因子的变体优先形核的原则,很多具有极小Schmid因子的孪晶变体优先被激活;90°样品在变形后激活了大量的{10-12}孪晶。
In this thesis the hot-rolled AZ31Mg alloy sheet (Mg–3%Al–1%Zn) withhexagonal close packed (HCP) structure and a strong fiber texture was chosen as thestarting material. And dynamic plastic deformation (DPD)(i.e. plastic deformation athigh strain rates) was employed to achieve deformation of samples. AZ31sample wassubjected to DPD parallel to the rolling direction (RD) with the aim of introducing{10-12} twins. Subsequent tensile tests were carried out to investigate effects of {10-12}twin lamellar structure on the mechanical properties of materials. And four samples withdifferent initial textures for DPD were also cut from this hot-rolled sheet with theircompression axis aligned0o、30o、60o and90o to the normal direction (ND) in the rolledsheet, respectively. The microstructure and texture evolution before and afterdeformation had been quantitatively characterized using electron backscatter diffraction(EBSD). The EBSD data had also been applied to analyze in detail the influence ofinitial orientation and deformation conditions on the twinning behavior of Mg alloy, andgive an insight into the effect of different microstructure on the yield behavior,plasticity and work-hardening behavior of materials. These results thus reveal a route toimprove workability of hcp magnesium alloy.
     The characteristic of {10-12} twin lamellar structure caused by DPD wasinvestigated, and activated twin variants are identified using misorientation methodbased on orientation data from EBSD. The main results are as follows:
     At the stage of twinning-dominated deformation (ε<~8%), lamellar thicknessdecreases significantly with strain, from5.55μm to2.49μm. This evolution of lamellarthickness during deformation is directly related to {10-12} twin activity. During DPD,the {10-12} variant pairs with the maximum Schmid factor are most frequentlyobserved. This result was also obtained by quasi-static compression (QSC), in which theloading direction was perpendicular to the c-axis of crystal lattice. And different {10-12}variants are generated relative to their Schmid factors, when initial grains have definedorientations with one a-axis of the crystal lattice at roughly0°or30°from thecompression direction. The volume fraction of twins strongly influences the strainaccommodated by twinning. The {10-12} variant pair with the maximum Schmid factoraccommodated about90%of the twinning strain. Its high volume fraction indicated thatboth nucleation and growth mechanisms played important roles in the strain accommodation.
     The unannealed/annealed AZ31samples after pre-deformation are tested along twodirections, with the tensile axis parallel to the pre-deformed direction and the initialtransverse direction (i.e. perpendicular to the pre-deformed direction), referred to as0°and90°respectively. The investigation of effect of twin lamellar structure and twinningstrengthening on the mechanical properties of materials shows:
     Work hardening caused by pre-deformation leads to the tensile yield stressincreased slightly with pre-strain for the pre-deformed and unannealed Mg alloy,irrespective of tensile path. During90°tension, higher strength and better ductility areobtained when the highest twin density values are obtained for pre-deformation alongthe RD, indicating that the plasticity improvement caused by twins depends on thespecial strain path. The pre-deformed materials are annealed to eliminate thedislocations. During0°tension, untwinning causes a significant increase in themaximum flow stress. And the tensile yield stress and the maximum flow stressincreases significantly with the volume fraction of twins. The texture hardening whichis caused by the texture change attributable to untwinning plays an important role inimproving mechanical properties of materials. And the strengthening magnitude ofuntwinning increases significantly with the volume fraction of twins. During90°tension, the tensile yield stress increases slightly with pre-strain and the maximum flowstress is not significantly affected, suggesting that the hardening contribution of initialgrain refinement by {10-12} twin lamellae is not very significant during deformation.
     The investigation of microstructure and twinning behavior for the0°、30°、60°and90°Mg alloy samples during DPD shows:
     For the0°sample, non-basal slip plays an important role during DPD; For the30°and60°sample, some twins are activated after deformation, though it is limited due tothe initial textures.{10-12} twin behavior follows Schmid factor rule in the60°sample,when initial grains have defined orientations in which the misorientation angledistribution for both one a-axis of the crystal lattice and the ideal orientation of basaltexture is in the range10-40°; When this misorientation angle distribution is in therange30-50°, twin behavior does not follow Schmid factor rule, though {10-12} twinsare still activated in these grains. For the30°sample, there are still {10-12} twinsactivated in grains having large deviations from ideal orientation of basal texture, buttwinning behaviors does not follow Schmid factor rule, similar to the case in the60°sample. And many twin variants with the small Schmid factor values are generated earlier during DPD. For the90°sample, a lot of {10-12} twins are generated afterdeformation.
引文
[1] Cahn R W.非铁合金的结构与性能[M].丁道云,译.北京:科学出版社,1999.
    [2]陈振华等.镁合金[M].北京:化学工业出版社,2004.
    [3] Cahn R W, Haasen P, Kramer E J. Materials science and technology [M]. New York: VCHPublishers inc,1996.
    [4]轻金属材料加工手册编写组.轻金属材料加工手册-上册[M].北京:冶金工业出版社,1979.
    [5] Flynn P W, Mote J, Dorn J E. On the thermally activated mechanism of prismatic slip inmagnesium single crystals [J]. Trans Metall Soc AIME1961;221:1148-1154.
    [6] Kelley E W, Hosford W F. Plane-strain compression of magnesium and magnesium alloycrystals [J]. Trans Metall Soc AIME1968;242:654-660.
    [7] Couret A, Caillard D. An in situ study of prismatic glide in magnesium–1. The rate controllingmechanism [J]. Acta Metall.Mater1985;33(8):1447-1454.
    [8] Barnett M R. Influence of deformation conditions and texture on the high temperature flowstress of magnesium AZ31[J]. J Light Met2001;1:167-177.
    [9] Wan G, Wu B L, Zhang Y D, Sha G Y, Esling C. Anisotropy of dynamic behavior of extrudedAZ31magnesium alloy [J]. Mater Sci Eng A2010;527:2915-2924.
    [10]李章刚.镁合金板材的室温塑性变形机制研究[博士学位论文][D].沈阳:中国科学院金属研究所,2007.
    [11] Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals [J]. Met Trans A1981;12:409-418.
    [12] Burke E C, Hibbard W R. Plastic deformation of magnesium single crystals [J]. Trans MetallSoc AIME1952;194:295-303.
    [13] Kleiner S, Uggowitzer P J. Mechanical anisotropy of extruded Mg-6%Al-1%Zn alloy [J].Mater Sci Eng A2004;379:258-263.
    [14] Agnew S R, Tome C N, Brown D W, Holden T M, Vogel S C. Study of slip mechanisms in amagnesium alloy by neutron diffraction and modeling [J]. Scripta Mater2003;48:1003-1008.
    [15] Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloyAZ31B [J]. Int J Plast2005;21:1161-1193.
    [16] Lou X Y, Li M, Boger R K, Agnew S R, Wagoner R H. Hardening evolution of AZ31B Mgsheet [J]. Int J Plast2007;23:44-86.
    [17] Schmid E. Articles on the physics and metallography of magnesiums [J]. Z Elektrochem1931;37:447-459.
    [18] Bakarian P W, Mathewson C H. Slip and twinning of magnesium single crystals at elevatedtemperatures [J]. Trans AIME1943;152:226-253.
    [19] Burke E C, Hibbard W R. Plastic deformation of magnesium single crystals [J]. Trans MetallSoc AIME1952;194:295-303.
    [20] Hsu S S, Cullity B D. On the torsional deformation and recovery of single crystals [J]. TransAIME1954;200:305-312.
    [21] Conrad H, Robertson W D. Effect of temperature on the flow stress and strain-hardeningcoefficient of magnesium single crystals [J]. Trans AIME1957;209:503-512.
    [22] Reed-Hill R E, Robertson W D. Additional modes of deformation twinning in magnesium [J].Acta Metall1957;5:717-727.
    [23] Reed-Hill R E, Robertson W D. Deformation of magnesium single crystals by nonbasal slip [J].Trans AIME1957;220:496-502.
    [24] Agnew S R. Plastic anisotropy of magnesium alloy AZ31B sheet [J]. Magnesium Technology2002. TMS, Seattle, Washington, USA, pp.169-174.
    [25] Styczynski A, Hartig C, Bohlen J, Letzig D. Cold rolling textures in AZ31wrought magnesiumalloy [J]. Scripta Mater2004;50:943-947.
    [26] Koike J, Kobayashi T, et al. The activity of non-basal slip systems and dynamic recovery atroom temperature in fine-grained AZ31B magnesium alloys [J]. Acta Mater2003;51:2055-2065.
    [27] Brown D W, Agnew S R, Bourke M A M, Holden T M, Vogel S C, Tome C N. Internal strainand texture evolution during deformation twinning in magnesium [J]. Mater Sci Eng A2005;399:1-12.
    [28] Koike J, Ohyama R. Geometrical criterion for the activation of prismatic slip in AZ61Mg alloysheets deformed at room temperature [J]. Acta Mater2005;53(7):1963-1972.
    [29] Gharghouri M A, Weatherly G C, Embury J D, Root J. Study of the mechanical properties ofMg-7.7at.%Al by in-situ neutron diffraction [J]. Philos Mag A1999;79(7):1671-1695.
    [30] Barnett M R. A Taylor model based description of the proof stress of magnesium AZ31duringhot working [J]. Metall Mater Trans2003;34:1799-1806.
    [31] Vagarali S S, Langdon T G. Deformation mechanisms in h.c.p. metals at elevatedtemperatures—I. Creep behavior of magnesium [J]. Acta Metall1981;29:1969-1982.
    [32] Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understandingmechanical behavior of Mg and solid solution alloys containing Li or Y [J]. Acta Mater2001;49:4277-4289.
    [33] Hutchinson B, Barnett M R, Ghaderi A, Cizek P, Sabirov I. Deformation modes and anisotropyin magnesium alloy AZ31[J]. Int J Mat Res2009;100:556-563.
    [34] Yoo M H, Agnew S R, Morris J R, Ho K W. Non-basal slip systems in hcp metals and alloys:source mechanisms [J]. Mater Sci Eng A2001;87:319-321.
    [35] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Influence of grain size on thecompressive deformation of wrought Mg-3Al-1Zn [J]. Acta Mater2004;52:5093-5103.
    [36] Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed inplane-strain compression [J]. Scripta Mater2004;51:881-885.
    [37] Choi S H, Shin E J, Seong B S. Simulation of deformation twins and deformationtexture in an AZ31Mg alloy under uniaxial compression [J]. Acta Mate2007;55:4181-4192.
    [38] Jiang L, Jonas J J, Mishra R K. Twinning and texture development in two Mg alloyssubjected to loading along three different strain paths [J]. Acta Mater2007;55:3899-3910.
    [39] Barnett M R. Twinning and the ductility of magnesium alloys Part I:“Tension” twins [J].Mater Sci Eng A2007;464:1-7.
    [40] Barnett M R. Twinning and the ductility of magnesium alloys Part II.“Contraction”twins [J]. Mater Sci Eng A2007;464:8-16.
    [41] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Influence of {10-12} extension twinning onthe flow behavior of AZ31Mg alloy [J]. Mater Sci Eng A2007;445:302-309.
    [42] Christian J W, Mahajan S. Deformation twinning [J]. Prog Mater Sci1995;39:1-157.
    [43] Hartt W H, Reed-Hill R E. Internal deformation and fracture of second-order {10-11}-{10-12}twins in magnesium [J].Trans Metall Soc AIME1968;242:1127.
    [44] Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed inplane-strain compression [J]. Scripta Mater2004;51:881-885.
    [45] Barnett M R, Keshavarz Z, Ma X. A semianalytical sachs model for the flow stress of amagnesium alloy [J]. Mater Trans A2006;37:2283-2293.
    [46] Kocks U F, Westlake D G. The important of twinning for the ductility of CPH polycrystals [J].Trans Metall Soc AIME1967;239:1107-1109.
    [47] Yang P, Yu Y, Chen L, Mao W. Experimental determination and theoretical prediction of twinorientations in magnesium alloy AZ31[J]. Scripta Mater2004;50:1163-1168.
    [48] Jiang J, Godrfey A, Liu Q. Identification and analysis of twinning variants during compressionof a Mg-Al-Zn alloy [J]. Scripta Mater2008;58:122-125.
    [49] Caceres C H, Sumitomo T, Veidt M. Pseudoelastic behavior of cast magnesium AZ91alloyunder cyclic loading-unloading [J]. Acta Mater2003;51:6211-6218.
    [50] Keshavarz Z, Barnett M R. In-situ investigation of twinning behavior in Mg–3Al–1Zn [J].Magnesium Technology2005. TMS, San Francisco,CA, USA, pp.171–175.
    [51] Proust G, Tome C N, Jain A, Agnew S R. Modeling the effect of twinning and detwinningduring strain-path changes of magnesium alloy AZ31[J]. Int J Plast2009;25:861-880.
    [52] Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior inhot-extruded Mg-Al-Zn alloy [J]. Acta Mater2007;55:897-905.
    [53] Partridge P G. Cyclic twinning in fatigued close-packed hexagonal metals [J]. Philos Mag A1965;12:1043-1054.
    [54] Yin S M, Yang H J, Li S X, Wu S D, Yang F. Cyclic deformation behavior of as-extrudedMg-3%Al-1%Zn [J]. Scripta Mater2008;58:751-754.
    [55] Koike S, Fujiyama N, Ando D, Sutou Y. Role of deformation twinning and dislocation slip inthe fatigue failure mechanism of AZ31Mg alloys [J]. Scripta Mater2010;63:747-750.
    [56] Li Q Z, Yu Q, Zhang J X, Yao Y Y. Effect of strain amplitude on tension–compression fatiguebehavior of extruded Mg6Al1ZnA magnesium alloy [J]. Scripta Mater2010;62:778-781.
    [57] Stanford N, Sotoudeh K, Bate P S. Deformation mechanisms and plastic anisotropy inmagnesium alloy AZ31[J]. Acta Mater2011;59:4866-4874.
    [58] Choi S H, Kim D H, Lee H W, Seong B S, Piao K, Wagoner R. Evolution of the deformationtexture and yield locus shape in an AZ31Mg alloy sheet under uniaxial loading [J]. Mater SciEng A2009;526:38-49.
    [59] Ulacia I, Dudamell N V, Galvez F, Yi S, Perez-Prado M T, Hurtado I. Mechanical behavior andmicrostructural evolution of a Mg AZ31sheet at dynamic strain rates [J]. Acta Mater2010;58:2988-2998.
    [60] Gehrmann R, Frommert M M, Gottstein G. Texture effects on plastic deformation ofmagnesium [J]. Mater Sci Eng A2005;395:338-349.
    [61] Al-Samman T, Gottstein G. Room temperature formability of a magnesium AZ31alloy:Examining the role of texture on the deformation mechanisms [J]. Mater Sci Eng A2008;488:406-414.
    [62] Yukutake E, Kaneko J, Sugamata M. Anisotropy and non-uniformity in plastic behavior ofAZ31Magnesium alloy plates [J]. Mater Trans2003;44(4):452–457.
    [63] Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater Chem Phy2003;81:11-26.
    [64] Prado M T, Valle J A, Ruano O A. Effect of sheet thickness on the microstructure evolution ofan Mg alloy during large strain hot rolling [J]. Scripta Mater2004;50:667-671.
    [65] Jain J, Poole W J, Sinclair C W, Gharghouri M A. Reducing the tension-compression yieldasymmetry in a Mg-8Al-0.5Zn alloy via precipitation [J]. Scripta Mater2010;62:301-304.
    [66] Yi S B, Davies C H J, Brokmeier H G, Bolmaro R E, Kainer K U, Homeyer J. Deformation andtexture evolution in AZ31magnesium alloy during uniaxial loading [J]. Acta Mater2006;54:549-562.
    [67] Al-Samman T, Gottstein G. Room temperature formability of a magnesium AZ31alloy:Examining the role of texture on the deformation mechanisms [J]. Mater Sci Eng A2008;488:406-414.
    [68] Yin D L, Wang J T, Liu J Q, Zhao X. On tension-compression yield asymmetry in an extrudedMg-3Al-1Zn alloy [J]. J Alloys Compd2009;478:789-795.
    [69] Ishikawa K, Watanabe H, Mukai T. High strain rate deformation behavior of an AZ91magnesium alloy at elevated temperatures [J]. Mater Lett2005;59:1511-1515.
    [70] Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K. Dislocation creep behavior inMg–Al–Zn alloys [J]. Mater Sci Eng A2005;407:53-61.
    [71] Ishikawa K, Watanabe H, Mukai T. High strain rate deformation behavior of an AZ91magnesium alloy at elevated temperatures [J]. Mater lett2005;59:1511-1515.
    [72] Watanabe H, Ishikawa K, Mukai T. High strain rate deformation behavior of Mg-Al-Zn alloysat elevated temperatures [M]. Key Eng Mater2007;340-341:107-112.
    [73] Watanabe H, Ishikawa K. Effect of texture on high temperature deformation behavior at highstrain rates in a Mg–3Al–1Zn alloy [J]. Mater Sci Eng A2009;523:304-311.
    [74] Mukai T, Mohri T, Mabuchi M, Nakamura M, Ishikawa K, Higashi K. Experimental study of astructural magnesium alloy with high absorption energy under dynamic loading [J]. ScriptaMater1998;39:1249-1253.
    [75] Mukai T, Yamanoi M, Higashi K. Ductility enhancement in magnesium alloys under dynamicloading [J]. Mater Sci Forum2000;350-351:97-102.
    [76] Song W Q, Beggs P, Easton M. Compressive strain-rate sensitivity of magnesium-aluminum diecasting alloys [J]. Mater. Des2009;30:642-648.
    [77] El-Magd E, Abouridouane M. Influence of strain rate and temperature on the compressiveductility of Al, Mg and Ti alloys [J]. J Phys IV, France2003;110:15-20.
    [78] Shu DW, Zhou W, Ma GW. Tensile mechanical properties of AM50A alloy by Hopkinson Bar[J]. Key Eng Mater2007;340–341:247-254.
    [79] Watanabe H, Mukai T, Ishikawa K, Mabuchi M, Higashi K. Realization of high-strain-ratesuperplasticity at low temperatures in a Mg-Zn-Zr alloy [J]. Mater Sci Eng A2001;307:119-128.
    [80] Barnett M R. Recrystallization during and following hot working of magnesium alloy AZ31[J].Mater Sci Forum2003;419-422:503-508.
    [81] Jiang J, Godfrey A, Liu W, Liu Q. Microtexture evolution via deformation twinning an slipduring compression of magnesium alloy AZ31[J]. Mater Sci Eng A2008;483-484:576-579.
    [82] Prasad Y A R K, Rao K P. Processing maps for hot deformation of rolled AZ31magnesiumalloy plate: Anisotropy of hot workability [J]. Mater Sci Eng A2008;487:316-327.
    [83] Koike J. New deformation mechanisms in fine-grain Mg alloy [J]. Mater Sci Eng A2003;419-422:189-194.
    [84] Couret A, Cailiard D. Prismatic glide in divalent hcp metals [J]. Philos Mag A1991;63:1045-1057.
    [85] Wilson D V, Chapman J A. Effects of preferred orientation on grain dependence of yieldstrength in metals [J]. Philos Mag1963;8:1543-1551.
    [86] Hauser F E, Langdon P R, Dorn J E. Fracture of magnesium alloys at low temperature [J].Trans AIME1956;5:589-593.
    [87] Ono N, Nakamura K, Miura S. Influence of grain boundaries on plastic deformation in pure Mgand AZ31Mg alloy polycrystals [J]. Mater Sci Forum2003;419-422:195-200.
    [88] Takahashi H, Oishi Y, Wakamatsu K, Kawabe N. Tensile properties and bending formability ofdrawn magnesium alloy pipes [J]. Mater Sci Forum2003;419-422:345-348.
    [89] Kim W J, An C W, Kim Y S, Hong S I. Mechanical properties and microstructures of an AZ61Mg Alloy produced by equal channel angular pressing [J]. Scripta Mater2002;47:39-44.
    [90] Mabuchi M, Chino Y, Iwasaki H, Aizawa T, Higashi K. The Grain size and texture dependenceof tensile properties in extruded Mg-9Al-1Zn [J]. Mater Trans2001;42:1182-1189.
    [91] Nussbaum G, Sainfort P, Regazzoni G, Gjestland H. Strengthening mechanisms in the rapidlysolidified AZ91magnesium alloy [J]. Scrrpta Metall1989;23:1079-1084.
    [92] Meyers M A, Vohringer O, Lubarda V A. The onset of twinning in metals: a constitutivedescription [J]. Acta Mater2001;49:4025-4039.
    [93] Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms forplastic flow of magnesium and magnesium alloy [J]. Mater Trans2003;44(4):426-435.
    [94] Ando S, Tanaka M, Tonda H. Pyramidal slip in magnesium alloy single crystals [J]. Mater SciForum2003;419-422:87-92.
    [95] Meyers M A. Dynamic behavior of materials [M]. New York:John Wiley&Sons, Inc,1994.
    [96] Tao N R, Lu K. Dynamic plastic deformation (DPD): A novel technique for synthesizing bulknanostructured metals [J]. J Mater Sci Technol2007;23:771-774.
    [97] Zhao W S, Tao N R, Guo J Y, Lu Q H, Lu K. High density nano-scale twins in Cu induced bydynamic plastic deformation [J]. Scripta Mater2005;53(6):745-749.
    [98] Xiao G H, Tao N R, Lu K. Microstructures and mechanical properties of a Cu-Zn alloysubjected to cryogenic dynamic plastic deformation [J]. Mater Sci Eng A2009;513-514:13-21.
    [99] Kad B K, Gebert J M, Pérez-Prado M T, Kassner M E, Meyers M A. Ultrafine-grain-sizedzirconium by dynamic plastic deformation [J]. Acta Mater2006;54:4111-4127.
    [100] Liu Z L, You X C, Zhuang Z. A mesoscale investigation of strain rate effect on dynamicdeformation of single-crystal copper [J]. Inter J Solids Stru2008;45:3674-3687.
    [101] Uenishi A, Teodosiu C, Nesterova E V. Microstructural evolution at high strain rates insolution-hardened interstitial free steels [J]. Mater Sci Eng A2005;400-401:499-503.
    [102] Li Y S, Tao N R, Lu K. Microstructural evolution and nanostructure formation in copperduring dynamic plastic deformation at cryogenic temperatures [J]. Acta Mater2008;56:230-241.
    [103] Chiou S T, Cheng W C, Lee W S. The analysis of the microstructure changes of a Fe–Mn–Alalloy under dynamic impact tests [J]. Mater Sci Eng A2004;386:460-467.
    [104] Gutierrez-Urrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation ondeformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel [J]. Mater Sci Eng A2010;527:3552-3560.
    [105] Meng L, Yang P, Xie Q, Ding H, Tang Z. Dependence of deformation twinning on grainorientation in compressed high manganese steels [J]. Scripta Mater2007;56:931-934.
    [106] Yang P, Xie Q, Meng L, Ding H, Tang Z. Dependence of deformation twinning on grainorientation in a high manganese steel [J]. Scripta Mater2006;55:629-631.
    [107] Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K. Tensile propertiesand twinning behavior of high manganese austenitic steel with fine-grained structure [J].Scripta Mater2008;59:963-966.
    [108] Hong C S, Tao N R, Lu K, Huang X. Grain orientation dependence of deformation twinning inpure Cu subjected to dynamic plastic deformation [J]. Scripta Mater2009;61:289-292.
    [109] Zhang Y, Tao N R, Lu K. Effect of stacking-fault energy on deformation twin thickness inCu–Al alloys [J]. Scripta Mater2009;60:211-213.
    [110] Shaw L L, Ortiz A L, Villegas J C. Hall-Petch relationship in a nanotwinned nickel alloy [J].Scripta Mater2008;58:951-954.
    [111]卢秋红,赵伟松,隋曼龄,李斗星.液氮温度下动态塑性形变法制备的纳米孪晶铜结构的研究.金属学报,2006;42:909-913.
    [112] Karaman I, Sehitoglu H, Gall K, Chumlyakov Y I, Maier H J. Deformation of single crystalHadfield steel by twinning and slip. Acta Mater2000;48:1345-1359.
    [113] Hines J A, Vecchio K S, Ahzi S. A model for microstructure evolution in adiabatic shear bands[J]. Mater Trans A1998;29:191-203.
    [114] Medyanik N S, Liu W K, Li S F. On criteria for dynamic adiabatic shear band propagation [J].J Mech Phys Solids2007;55:1439-1461.
    [115] Hines J A, Vecchio K S. Recrystallization kinetics within adiabatic shear bands [J]. Acta Mater1997;45:635-649.
    [116] Owolabi G M, Odeshi A G, Singh M N K, Bassim M N. Dynamic shear band formation inAluminum6061-T6and Aluminum6061-T6/Al2O3composites [J]. Mater Sci Eng A2007;457:114-119.
    [117] Harren S V, Deve H E, Asaro R J. Shear band formation in plane strain compression [J]. ActaMetall1988;36:2435-2480.
    [118] Baraya G L, Johnson W, Slater R A C. The dynamic compression of circular cylinders ofsuper-pure aluminium at elevated temperatures [J]. Int J Mech Sci1965;7:621.
    [119] Loizou N, Sims R B. The yield stress of pure lead in compression [J]. J Mech Phys Solids1953;1:234
    [120] Hockett J E. Influence on the stress-strain behavior at very high strain rates [j]. Proc ASTM959;9:1309.
    [121] Kolsky H. An investigation of the mechanical properties of materials at very high rates ofloading [J]. Proc Phys Soc, London, B1949;62:676.
    [122] Abou-Sayed A S, Clifton R J, Hermann L. The oblique-plate impact experiment [J]. ExperMech1976;16:127.
    [123] Clifton R J. Mechanical properties at high rates of strain [J]. Inst Phys Conf Ser1979;47:174.
    [124] Wang H L, Wang Z B, Lu K. Interfacial diffusion in a nanostructured Cu produced by meansof dynamic plastic deformation [J]. Acta Mater2011;59:1818-1828.
    [125] Li Y S, Zhang Y, Tao N R, Lu K. Effect of thermal annealing on mechanical properties of ananostructured copper prepared by means of dynamic plastic deformation [J]. Scripta Mater2008;59:475-478
    [126] Dudamell N V, Ulacia I, Gálvez F, Yi S, Bohlen J, Letzig D, Hurtado I, Pérez-Prado M T.Twinning and grain subdivision during dynamic deformation of a Mg AZ31sheet alloy atroom temperature [J]. Acta Mater2011;59:6949-6962.
    [127] C J D, E N D, L D D. Electron channeling patterns in the scanning electron microscope [J]. JAppl Phys1982;53:81-122.
    [128] L A B, J D D, Kunze K e a. Orientation imaging microscopy: new possibilities formicrostructural investigations using automated BKD analysis.[J]. Mater Sci Forum1994;157-162:31-42.
    [129] I W S, L A B. Automatic-Analysis of Electron Backscatter Diffraction Patterns [J]. MetallTrans A1992;23:759-767.
    [130]蒋佳.初始织构及温度对AZ31镁合金压缩塑性行为影响的研究[博士学位论文][J].北京:清华大学2008.
    [131] Wang B S, Xin R L, Huang G J, Liu Q. Strain rate and texture effects on microstructuralcharacteristics of Mg-3Al-1Zn Mg alloy during compression [J]. Scripta Mater2012;66(5):239-242.
    [132]汪炳叔.初始取向及变形条件对AZ31镁合金压缩塑性行为影响的研究[博士学位论文][J].重庆:重庆大学2012.
    [133] Hong S G, Park S H, Lee C S. Role of {10-12} twinning characteristics in the deformationbehavior of a polycrystalline magnesium alloy [J]. Acta Mater2010;58:5873-5885.
    [134] Godet S, Jiang L, Luo A A, Jonas J J. Use of Schmid factors to select extension twin variantsin extruded magnesium alloy tubes [J]. Scripta Mater2006;55:1055-1058.
    [135] Salem A A, Kalidindi S R, Doherty R D, Semiatin S L. Strain hardening due to deformationtwinning in alpha-titanium: Mechanisms [J]. Metall Mater Trans A2006;37A:259-268.
    [136] Capolungo L, Marshall P E, McCabe R J, Beyerlein I J, Tome C N. Nucleation and growth oftwins in Zr: A statistical study [J]. Acta Mater2009;57:6047-6056.
    [137] Capolungo L, Beyerlein I J, Tome C N. Slip-assisted twin growth in hexagonal close-packedmetals [J]. Scripta Mater2009;60:32-35.
    [138] Hong S G, Park S H, Lee C S. Strain path dependence of {10-12} twinning activity in apolycrystalline magnesium alloy [J]. Scripta Mater2011;64:145-148.
    [139] Knezevic M, Levinson A, Harries R, Mishra R K, Doherty R D, Kalidindi S R. Deformationtwinning in AZ31: Influence on strain hardening and texture evolution [J]. Acta Mater2010;58:6230-6242.
    [140] Caceres C H, A.H. Blake A H. On the strain hardening behaviour of magnesium at roomtemperature [J]. Mater Sci Eng A2007;462:193-196.
    [141] Ball E A, Prangnell P B. Tensile-compressive yield asymmetries in high strength wroughtmagnesium alloys [J]. Scripta Mater1994;31:111-116.
    [142] Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries atthe nanoscale [J]. Science2009;324:349-352.
    [143] Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper [J].Science2009;323:607-610.
    [144] Tenckhoff E. Review of deformation mechanisms, texture, and mechanical anisotropy inzirconium and zirconium base alloys [J]. Zirconium in the Nuclear Industry:14thInternational Symposium, ASTM STP2005;1467:25-50.
    [145] Tome C N, Maudlin C P J, Lebensohn R A, Kaschner G C. Mechanical response ofzirconium—I. Derivation of a polycrystal constitutive law and finite element analysis [J]. ActaMater2001;49:3085-3096.
    [146] Kalidindi S R, Salem A A, Doherty R D. Role of deformation twinning on strain hardening incubic and hexagonal polycrystalline metals [J]. Adv Eng Mater2003;5(4):229-232.
    [147] Sun H Q, Shi Y N, Zhang M X, Lu K. Plastic strain-induced grain refinement in the nanometerscale in a Mg alloy [J]. Acta Mater2007;55:975-982.
    [148] Zhu Y T, Narayan J, Hirth J P, Mahajan S, Wu X L, Liao X Z. Formation of single andmultiple deformation twins in nanocrystalline fcc metals [J]. Acta Mater2009;57:3763-3770.
    [149] Yang Q, Ghosh A K. Production of ultrafine-grain microstructure in Mg alloy by alternatebiaxial reverse corrugation [J]. Acta Mater2006;54:5147-5158.
    [150] Cáceres C H, Luká P, Blake A. Strain hardening due to {10-12} twinning in pure magnesium[J]. Philos Mag2008;88:991-1003.
    [151] El Kadiri H, Oppedal A L. A crystal plasticity theory for latent hardening by glide twinningthrough dislocation transmutation and twin accommodation effects [J]. J Mech Phys Solids2010;58:613-624.
    [152] Ma Q, El Kadiri H, Oppedal A L, Baird J C, Li B, Horstemeyer M F, Vogel S C. Twinningeffects in a rod-textured AM30magnesium alloy [J]. Int J Plast2012;29:60-76.
    [153] Xin Y C, Wang M Y, Zeng Z, Nie M G, Liu Q. Strengthening and toughening of magnesiumalloy by {10-12} extension twins [J]. Scripta Mater2012;66:25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700