基于自适应光学高分辨率微型成像系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学技术是一种以光学波前像差为研究对象、实时校正光学系统像差的新技术,它使光学成像系统能适应使用条件的变化而保持良好性能。该技术的发展正好在眼科医疗方面使人眼像差校正以及高分辨率活体人眼视网膜成像成为可能。论文以自适应光学原理、视光学理论为基础,研究微型成像系统中相关原理、关键技术、软硬件技术等。结合微机械薄膜变形镜的校正范围和校正能力,研究人眼像差的动态特性、组合特性,并以此指导、优化变形镜的像差校正控制模型,提高像差校正性能;在获得自适应光学视网膜图像基础上运用图像后处理复原技术静态消除残余像差对图像的影响,获得高清晰、高分辨率视网膜图像,最终建立达到临床应用要求的眼底视网膜高分辨率成像系统。论文主要研究内容如下:
     (1)研究了人眼像差特性和像差组合特性。采用基于Zernike模式人眼波前像差表示模型;系统分析了人眼像差波动特性、Zernike人眼像差与人眼光学质量的影响关系、瞳孔直径变化对人眼像差及光学质量的影响;分析了Zernike模式相关性,提出了Zernike模式像差线性共轭组合模型,重点研究分析组合模型对光学质量的影响。
     (2)研究了Hartmann-Shack(H-S)波前传感器的像差测量原理和波前重构算法。根据波前传感器结构特征和实际人眼H-S光斑图畸变以及各种噪声影响的特点,提出了一种动态定位光斑区域、动态分割区域内部阈值以及锁定最优探测窗口的自适应光斑质心探测方法。根据Zernike模式波前重构模型,为了满足自适应光学系统中的实时性要求和自适应光学图像复原时的高精度要求,分别提出基于SVD的波前重构算法和基于LGRE的的波前重构算法。
     (3)研究微机械薄膜变形镜的影响函数、波前拟合及像差校正。以奇异值分解为基础对变形镜影响函数进行主成分分析,采用对影响函数矩阵低秩近似的方法滤除校正性能较差的镜面模式像差,建立了变形镜补偿像差的电压控制信号求解通用模型,以此模型分析了OKO和BMC两种变形镜的性能,考察变形镜对Zernike模式像差和Thibos模型人眼像差的拟合、校正能力,为成像系统选择变形镜提供理论方法。
     (4)建立了自适应光学系统闭环控制模型。基于自动控制理论,提出了自适应光学连续系统模型和自适应光学采样系统模型,并分析了在连续系统模型的纯积分、PI、Smith预补偿等控制器以及采样系统模型的最少拍控制器下的闭环系统性能;基于现代控制理论,提出了基于状态空间分析的自适应光学离散系统模型、自适应光学状态空间模型和基于Kalman滤波的LQG优化控制模型。设计了基于纯积分、PI、Smith预补偿、最少拍控制器的像差校正算法,进行仿真和实验,实现了高带宽动态像差校正;进一步设计了基于LQG优化控制的像差校正控制算法,并通过仿真验证了算法的可行性。
     (5)为进一步提高图像质量,对自适应光学系统得到的图像进行图像复原处理。充分利用成像的残余波前信息,论文提出了自适应光学图像Semi-IBD复原算法,算法采用相对准确的图像和PSF初始估计,引入了内外循环迭代的频域收敛准则、PSF频域带宽约束和PSF空间可支持域自动调整方法。采用该算法对模拟退化视网膜图像和实际受试者视网膜图像进行处理,结果表明Semi-IBD复原算法能有效地提高图像质量。
     (6)搭建了基于自适应光学高分辨率微型成像系统样机并经国家有关机构检测。设计自适应光学微型成像系统的光学系统、系统结构、电气系统、软件系统等;完成了成像系统的性能测试和实验;实现了自适应光学技术和眼底成像技术结合的工程化工作。经国家有关机构检测,成像系统在人眼视网膜上分辨尺寸约为2.36μm,视场角约为±3.0°×±3.0°,实际放大倍率约为8.03。对人眼像差测量、校正的频率为11~15Hz,残余像差RMS值低于0.1λ,可以获得的高分辨率眼底视网膜图像。
The adaptive optics (AO) is a new technology which views the optical wavefront aberration asresearch object, corrects the aberration of optics system real-timely and allows the optical imagingsystem performs well in different working conditions. The development of the technology makes itpossible to correct human eye aberration and image vivo human eye retina with high resolution. Basedon the AO principle and visual optics theory, the related principles, key technologies, software andhardware technologies etc. in micro-imaging system were studied. Combined with the correction rangeand capability of micromachined membrane deformable mirror (MMDM), the dynamic andcombination characteristics of the human eye aberration were studied, based on which the aberrationcorrection control model were optimized to improve the performance. On the basis of the obtained AOretina images, the image restoration technique was employed to eliminate the influence of aberration onimage quality staticly to obtain retina images of high resolution. Finally, a set of high resolution retinaimaging system which can achieve the clinical application requirement effectively was established. Themain research contents are listed as follows:
     (1) The characteristics of human eye aberration and aberration combination were studied. Therepresentation model of human eye aberration was established with Zernike modes. The dynamiccharacteristics of human eye aberration, relationship between Zernike aberration and optical quality ofhuman eye, and influence of different pupil diameter on human eye aberration and optical quality wereanalyzed systematically. The linear conjugated combination models of Zernike modes were proposedthrough analysis of the correlation among Zernike modes, and influence of the novel model on opticalquality was studied emphatically.
     (2) The aberration measurement principle and wavefront reconstruction algorithm of Hartmann-Shack (H-S) wavefront sensor were studied. An adaptive spot centroid detection method withpositioning spot regions dynamically, segmenting threshold levels dynamically and locking optimaldetection window was proposed according to the structure features of H-S wavefront sensor anddistortion characteristics of the actual human eye spot pattern. In view of the wavefront reconstructionmodel with Zernike modes, the SVD and LGRE based wavefront reconstruction algorithms wereproposed in order to meet the real-time requirement in AO system and high precision in AO imagerestoration respectively.
     (3) The influence function, wavefront compensation and aberration correction of MMDM werestudied. According to the SVD based principal component analysis on influence function, the mirrormode aberration with poor correction performance was filtered by the method of low-rankapproximation of influence function matrix. The common solving model of voltage control signal for compensating aberration was established, based on which performances of OKO and BMC deformablemirror were analyzed. The compensation and correction ability of the deformable mirrors on Zernikemode aberration and Thibos model human eye aberration were further investigated, which provided thetheoretical method for choosing the deformable mirror for the imaging system.
     (4) The closed-loop control model of AO system was established. According to the automatic controltheory, AO continuous and sampling system models were proposed. Performances of the closed-loopsystem of different controllers, namely pure integral, proportion integral and Smith pre-compensationcontroller based on the continuous system and dead beat controller based on the sampling system, wereanalyzed. According to the modern control theory, the state space analysis based AO discrete systemmodel, AO state space model and Kalman filter based LQG optimization control model were proposed.The aberration correction algorithms based on the pure integral, proportion integral, Smithpre-compensation and dead beat controller were designed and the dynamic aberration correction withhigh bandwidth was realized both in simulations and experiments. The aberration correction algorithmbased on the LQG optimal control was further designed, the feasibility of which was also verified bysimulation.
     (5) The obtained images from AO system were restored for higher quality. The Semi-IBD restorationalgorithm, making full use of the residual aberration, for AO image was proposed. The new algorithm,utilizing the relative accurate initial estimate of image and PSF and employing frequency-domainconvergence criterion with internal and external circulation iterative, PSF frequency-domain bandwidthconstraint and PSF space support automatic adjustment, provided good performances in the tests forretina images with simulation degrading and ones from actual subjects.
     (6) The AO based high resolution micro imaging system prototype was developed and tested by therelevant state agencies. The optical, structure, electrical and software system of the imaging systemwere designed. Property tests and experiments were carried out and jobs for combining thetechnologies of AO and retina imaging were finished. Testing results form relevant state agenciessuggest that the distinguishing distance on the retina is about2.36μm, the field angle is about±3.0°×±3.0°, the fact enlargement ratio is about8.03, the frequency of measuring and correcting humaneye aberration is11~15Hz, the residual aberration is below0.1λ, the high resolution retinal images canbe obtained.
引文
[1] Tyson R K. Principles of Adaptive optics (Third Edition). Florida: CRC Press Inc.,2010:1~18.
    [2]周仁忠.自适应光学.北京:国防工业出版社,1996:1~18.
    [3] Babcock H W. The possibility of compensating astronomical seeing. Publication of theAstronomical Society of the Pacific,1953,65:229~236.
    [4] Sichelstiel B A, Waters W M, Wild T A. Self-focusing Array Research Model. IEEE Transactionson Antennas and Propagation,1964,12(2):150~154.
    [5] Hardy J W. Active optics: A New technology for the control of light. Proc. IEEE,1978,66(6):651~697.
    [6] Shack R V, Platt B C. Production and use of a lenticular Hartmann screen. J. Opt. Soc. Am. A,1971,61:656.
    [7] Hardy J W. Real-time wave-front correction system. U. S. Patent3923400, filed Jan.3,1974,issued Dec2,1975.
    [8]姜文汉.高分辨率自适应望远镜.国家高技术计划信息领域信息获取与处理技术主体十周年汇报——自适应光学望远镜技术,1996:1~14.
    [9] Greenwood D P, Primmerman C A. Adaptive optics research at Lincoln Laboratory. The LincolnLaboratory Journal,1992,5(1):3~24.
    [10] Lena P J. Astrophysical results with the COME-ON+adaptive optics system. Proc. SPIE,1994,2201:1099~1109.
    [11] Hardy J W. Adaptive optics: a progress review. Proc. SPIE,1991,1542:2~17.
    [12] Gallagher D B, Beckert J C. Ground testing of the Wide Field/Planetary Camera-II, or 'BringingHubble back into focus'. AIAA, Aerospace Ground Testing Conference,1994.
    [13]侯静.共光路/共模块自适应光学与位相畸变光束变频过程研究.长沙:国防科技大学出版社,2007:4~7.
    [14] Genetron E, Cuby J G, Rigaut F, et al.. Come-On-Plus project: an upgrade of the Come-Onadaptive optics prototype system, Proc. SPIE,1991,1542:298~307.
    [15] Rousset G, Madec P Y, Beuzit J L, et al.. The COME-ON-PLUS adaptive optics system-Resultand performance. International Commission for Optics, Conference on Active and AdaptiveOptics,1993:123~131.
    [16] Daukantas P. Ground-based Telescope for the21th century. Opt. Photon News,2006,18(9):28~34.
    [17]赵秋艳.美国成像侦察卫星的发展.光机电信息.2001,(10):15~23.
    [18]薛海中.新概念武器.北京:航空工业出版社,2009:36~37.
    [19]张洪涛.空间光通信原理与技术.吉林:吉林大学出版社,2009:2~22.
    [20]王廷尧.无线光接入技术进展和应用.北京:科学出版社,2009:185~188.
    [21]翟旭华,张洪涛,姜威远.国外空间激光链路通信技术进展.光通信技术,2004,(1):42~45.
    [22] Jason P, Hope M Q, Julianna E L, et al.. Adaptive optics for vision science: principles, practices,design, and application. Hoboken: John Wiley&Sons, Inc.,2006:1~11.
    [23]陈波,杨阳,耿则勋.自适应光学技术及其军事应用.火力与指挥控制,2011,36(8):160~163.
    [24]姜文汉.自适应光学技术进展.成都:四川科学技术出版社,2007.
    [25]姜文汉,黄树辅,吴旭斌.爬山法自适应光学波前校正系统.中国激光,1988,15(1):19~22.
    [26] Jiang W H, Huang S F, Ling N, et al.. Hill climbing wave-front correcting system for large laserengineering, Proc. SPIE,1988,965:266~272.
    [27] Jiang W H, Li M G, Tang G M, et al.. Adaptive optical image compensation experiments onstellar objects. Optical Engineering,1995,34(1):15~20.
    [28] Ling N, Zhang Y D, Rao X J, et al.. Small table-top adaptive optical systems f or human retinalimaging. Proc. SPIE,2001,4825:99~108.
    [29]饶瑞中.光在湍流大气中的传播.合肥:安徽科学技术出版社,2005.
    [30]张家如.自适应光学波前校正优化方法研究,[硕士学位论文].绵阳:中国工程物理研究院,2002.
    [31]白福忠,饶长辉.自参考干涉波前传感器中针孔直径对闭环自适应光学系统校正精度的影响.物理学报,2010,59(11):8280~8286.
    [32]王鹏,周昕,王勇,等.哈特曼波前传感器光斑质心探测窗口的自动确定方法研究.激光杂志,2005,26(5):46~47.
    [33]饶伏波,乔大勇,苑伟政.自适应光学系统MEMS微变形镜的研究.纳米技术与精密工程,2004,2(4):288~293.
    [34]李邦明,廖文和,沈建新,等.微机械薄膜变形镜在人眼像差校正中的波前控制算法研究.光学学报,2010,30(4):917~921.
    [35] Niu S S, Shen J X, Liang C, et al.. High-resolution retinal imaging with micro adaptive opticssystem. Applied Optics,2011,50(22):4365~4375.
    [36] Wang L, Santaella R M, Booth M, et al.. Higher-order aberrations from the internal optics of theeye. Journal of Cataract and Refractive Surgery,2005,31(8):1512~1519.
    [37] Thibos L N, Hong X, Bradley A, et al.. Statistical variation of aberration structure and imagequality in a normal population of healthy eyes. J. Opt. Soc. Am. A,2002,19(12):2329~2348.
    [38] Pallikaris A, Williams D K, Hofer H. The reflectance of single cones in the living human eye.Investigative Ophthalmology&Visual Science,2003,44(10):4580~4592.
    [39] Donnelly W J, Roorda A. Optimal pupil size in the human eye for axial resolution. J. Opt. Soc.Am. A,2003,20(11):2010~2015.
    [40] Hofer H, Artal P, Singer B, et al.. Dynamics of the eye's wave aberration. J. Opt. Soc. Am. A,2001,18(3):497~506.
    [41]朱林泉,牛晋川,朱苏磊.现代激光工程应用技术.北京:国防工业出版社,2008:108~110.
    [42] Liang J Z, Grimm B, Goelz S, et al. Objective measurement of the wave aberrations of thehuman eye with the use of Hartmann-Shack wave-front sensor. J. Opt. Soc. Am. A,1994,11(7):1949~1957.
    [43] Liang J Z, Williams D R. Aberrations and retinal image quality of the normal human eye. J. Opt.Soc. Am. A,1997,14(11):2873~2883.
    [44] Liang J Z, William D R, Miller D T. Supernormal vision and high resolution retinal imagingthrough adaptive optics. J. Opt. Soc. Am. A,1997,14(11):2884~2892.
    [45] Hofer H, Chen L, Yoon G Y, et al.. Performance of the Rochester2nd generation adaptive opticssystem for the eye. Optics Express,2001,9(8):631~643.
    [46] Miller D, Thibos L, Hong X. Requirements for segmented correctors for diffraction-limitedperformance in the human eye. Optics Express,2005,13(1):275~289.
    [47] Bille J F, Agopov M, Alvarez-Diez C, et al.. Compact adaptive optics system for multiphotonfundus imaging. Journal of Modern Optics,2008,55(4-5):749~758.
    [48] Yamaguchi T, Nakazawa N, Bessho K, et al.. Adaptive optics fundus camera using a liquidcrystal phase modulator. Optical Review,2009,15(3):173~180.
    [49] Zawadzki R J, Jones S M, Olivier S S, et al.. Adaptive-optics optical coherence tomography forhigh-resolution and high-speed3D retinal in vivo imaging. Optics Express,2005,15(21):8532~8546.
    [50] Zhang Y H, Poonja S, Roorda A. MEMS-based adaptive optics scanning laser ophthalmoscopy.Optics Letters,2006,31(9):1268~1270.
    [51] Roorda A, Romero-Borja F, Donnelly W J, et al.. Adaptive optics scanning laser ophthalmoscopy.Optics Express,2002,10(9):405~412.
    [52] Fernandez E J, Iglesias I, Artal P. Closed-loop adaptive optics in the human eye. Optics Letters,2001,26(10):746~748.
    [53] Vilupuru A S, Rangaswamy N V, Frishman L J, et al.. Adaptive optics scanning laserophthalmoscopy for in vivo imaging of lamina cribrosa. J. Opt. Soc. Am. A,2007,24(5):1417~1425.
    [54] Zawadzki R J, Choi S S, Jones S M, et al.. Adaptive optics-optical coherence tomography:optimizing visualization of microscopic retinal structures in three dimensions. J. Opt. Soc. Am. A,2007,24(5):1373~1383.
    [55]凌宁,张雨东,饶学军,等.用于活体人眼视网膜观察的自适应光学成像系统.光学学报,2004,24(9):1153~1158.
    [56]姜文汉,张雨东,饶长辉,等.中国科学院光电技术研究所的自适应光学研究进展.光学学报,2011,31(9):72~80.
    [57]屈军乐, Jonnal R S, Thorn K E,等.视网膜单细胞成像技术研究.激光生物学报,2004,13(3):194~197.
    [58]程少园,胡立发,曹召良,等.液晶自适应光学在人眼眼底高分辨率成像中的应用.2009,36(10):2524~2527.
    [59]童桂.人眼波前像差微型自适应光学校正系统关键技术研究,[博士学位论文].南京:南京航空航天大学,2008.
    [60]梁春.视网膜细胞成像中波前技术的研究,[博士学位论文].南京:南京航空航天大学,2010.
    [61]李邦明.基于微机械薄膜变形镜的像差校正技术及其应用,[博士学位论文].南京:南京航空航天大学,2010.
    [62]陈波.自适应光学图像复原理论与算法研究,[博士学位论文].郑州:解放军信息工程大学,2008.
    [63]邹谋炎.反卷积和信号处理.北京:国防工业出版社,2001:1~10.
    [64] Fontanella J C. Analyse de surface d'onde, déconvolution et optique adaptative. J. Opt.(Paris),1985,16:257~268.
    [65] Primot J, Rousset G, Fontanella J C. Deconvolution from wave-front sensing: a new techniquefor compensating turbulence-degraded images. J. Opt. Soc. Am. A,1990,7(9):1598~1608.
    [66] Mugnier L M, Robert C, Conan J M, et al.. Myopic deconvolution from wave-front sensing. J.Opt. Soc. Am. A,2001,18(4):862~872.
    [67]梁莹.基于自适应光学补偿的高分辨力图像恢复算法研究,[硕士学位论文].成都:中国科学院光电技术研究所,2006.
    [68] Mugnier L M, Conan J M, Fusco T, et al.. Joint maximum a posteriori estimation of object andPSF for turbulence degraded images. Proc. SPIE,1998,3459:50~61.
    [69] Mugnier L M, Robert C, Conan J M, et al.. Regularized multiframe myopic deconvolution fromwavefront sensing, Proc. SPIE,1999,3763:134~144.
    [70] Conan J M, Mugnier L M Fusco T, et al.. Deconvolution of adaptive optics images using theobject autocorrelation and positivity. Proc. SPIE,1998,3126:56~67.
    [71] Mugnier L M, Fusco T, Conan J M. MISTRAL: a myopic edge-preserving image restorationmethod, with application to astronomical adaptive-optics-corrected long-exposure images. J. Opt.Soc. Am. A,2004,21(10):1841~1854.
    [72] Thiébaut E, Conan J M. Strict a priori constraints for maximum-likelihood blind deconvolution. J.Opt. Soc. Am. A,1995,12(3):485~492.
    [73] Chenegros G, Mugnier L M, Lacombe F, et al..3D phase diversity: a myopic deconvolutionmethod for short-exposure images: application to retinal imaging. J. Opt. Soc. Am. A,2007,24(5):1349~1357.
    [74] Christou J C, Bonaccini D, Ageorges N. Deconvolution of Adaptive Optics Near-Infrared System(ADONIS) images. Proc. SPIE,1997,3126:68~80.
    [75] Christou J C. Blind deconvolution post-processing of images corrected by adaptive optics. Proc.SPIE,1995,2534:226~234.
    [76] Christou J C, Roorda A, Williams D R. Deconvolution of adaptive optics retinal images. J. Opt.Soc. Am. A,2004,21(8):1393~1401.
    [77] Nourrit V, Vohnsen B, Artal P. Blind deconvolution for high-resolution confocal scanning laserophthalmoscopy. Journal of Optics A-Pure and Applied Optics,2005,7(10):585~592.
    [78] Geng Z X, Chen B, Xu Q, et al.. Dynamic support region based astronomical imagedeconvolution algorithm. Proc. SPIE,2008,7015:70152L.
    [79]陈波,程承旗,郭仕德,等.自适应光学图像非对称图像迭代盲复原算法.强激光与粒子束,2011,23(2):313~318.
    [80]田雨,饶长辉,魏凯.基于帧选择和多帧降质图像盲解卷积的自适应光学图像恢复.天文学报,2008,49(4):455~462.
    [81] Tian Y, Rao C H, Rao X J, et al. Hybrid deconvolution of adaptive optics retinal images fromwavefront sensing. Chinese Physics Letters,2008,25(1):105~107.
    [82] Webb R H, Hughes G W. Scanning laser ophthalmoscope. IEEE transactions on bio-medicalengineering,1981,28(7):488~492.
    [83] Webb R H, Hughes G W, Delori F C. Confocal scanning laser ophthalmoscope,1987,26(8):1492~1499.
    [84] Swanson E A, Izatt J A, Hee M R, et al.. In vivo retinal imaging by optical coherencetomography. Optics Letters,1993,18(21):1864~1846.
    [85] Shiroki K. Fluorescein fundus angiography. Ophthalmology,2004,46(11):1355~1364.
    [86]屈军乐, Miller D T,牛憨笨,等.高空间分辨视网膜成像技术研究.深圳大学学报,2005,22(2):121~126.
    [87] Rha J, Jonnal R S, Thorn K E, et al.. Adaptive optics flood-illumination camera for high speedretinal imaging. Optics Express,2006,14(10):4552~4569.
    [88] Dubra A, Sulai Y, Norris J L, et al.. Noninvasive imaging of the human rod photoreceptor mosaicusing a confocal adaptive optics scanning ophthalmoscope. Biomedical Optics Express,2011,2(7):1864~1876.
    [89] Dubra A, Sulai Y. Reflective afocal broadband adaptive optics scanning ophthalmoscope.Biomedical Optics Express,2011,2(6):1757~1768.
    [90] Lu J, Li H, Wei L, et al.. Retina imaging in vivo with the adaptive optics confocal scanning laserophthalmoscope. Proc. SPIE,2009,7519:75191I.
    [91]卢婧,李昊,何毅,等.超分辨率活体人眼视网膜共焦扫描成像系统.物理学报,2011,60(3):272~281.
    [92] Miller D T, Qu J L, Jonnal R S, et al.. Coherence gating and adaptive optics in the eye. Proc.SPIE,2003,4956:65~72.
    [93] Hermann B, Fernández E J, Unterhuber A, et al.. Adaptive-optics ultrahigh-resolution opticalcoherence tomography. Optics Letters,2004,29(18):2142~2144.
    [94]屈军乐, Jonnal R S, Thorn K E,等.基于自适应光学的视网膜单细胞光学相干层析成像技术.生物物理学报,2004,20(2):104~108.
    [95] Zhang Y, Rha J, Jonnal R S, et al.. Adaptive optics parallel spectral domain optical coherencetomography for imaging the living retina. Optics Express,2005,13(12):4792~4811.
    [96] Shi G H, Dai Y, Wang L, et al.. Adaptive optics optical coherence tomography for retina imaging.Chinese Optics Letters,2008,6(6):424~425.
    [97] Desidera G, Carbillet M. Strehl-constrained iterative blind deconvolution for post-adaptive-opticsdata. Astronomy&Astrophysics,2009,507(3):1759~1762.
    [98] Conan J M, Mugnier L M, Fusco T, et al.. Myopic deconvolution of adaptive optics images byuse of object and point-spread function power spectra. Applied Optics,1998,37(21):4614~4622.
    [99] Hom E F Y, Marchis F, Lee T K, et al.. AIDA: an adaptive image deconvolution algorithm withapplication to multi-frame and three-dimensional data. J. Opt. Soc. Am. A,2007,24(6):1580~1600.
    [100] Flicker R C, Rigaut F J. Anisoplanatic deconvolution of adaptive optics images. J. Opt. Soc. Am.A,2005,22(3):504~513.
    [101] Yang S Y, Erry G, Nemeth S, et al.. Image restoration with high resolution adaptive opticalimaging system. Proc.17th IEEE Computer-Based Medical Systems,2004:479~484.
    [102] Yang S Y, Erry G, Nemeth S, et al.. High resolution retinal image restoration with wavefrontsensing and self-extracted filtering. Proc. SPIE,2005,5747:1535~1543.
    [103]胡边,饶长辉.增量维纳滤波法在波前探测解卷积中的应用.光学学报,2004,24(10):1305~1309.
    [104]李昊,卢婧,史国华,等.视网膜图像的解卷积方法研究.光电子·激光,2011,21(10):1570~1573.
    [105] Galatsanos N P, Mesarovic V Z, Molina R, et al.. Hyperparameter estimation in image restorationproblems with partially known blurs. Optical Engineering,2002,41(8):1845~1854.
    [106] Blanco L, Mugnier L M, Glanc M. Myopic deconvolution of adaptive optics retina images. Proc.SPIE,2011,7904:790412.
    [107] Thibos L N, Applegate R A, Schwiegerling J T, et al.. Standards for reporting the opticalaberrations of eyes. Journal of Refractive Surgery,2002,18(5): S652~S660.
    [108] Thibos L N. Wavefront data reporting and terminology. Journal of Refractive Surgery,2001,17(5): S578~S583.
    [109] Donal R M. A Generalization of the radial polynomials of F. Zernike. SIAM Journal on AppliedMathematics,1966,14(3):476~489.
    [110] Hampson K M, Paterson C, Dainty C, et al.. Adaptive optics system for investigation of theeffect of the aberration dynamics of the human eye on steady-state accommodation control. J.Opt. Soc. Am. A,2006,23(5):1082~1088.
    [111] Charman W N, Heron G. Fluctuations in accommodation: a review. Ophthalmic&physiologicaloptics,1988,8(2):153~164.
    [112] Thibos L N, Hong X, Bradley A, et al.. Accuracy and precision of objective refraction fromwavefront aberrations. Journal of Vision,2004,4(4),329~351.
    [113] Marsack J D, Thibos L N, Applegate R A. Metrics of optical quality derived from waveaberrations predict visual performance. Journal of Vision,2004,4(4),322~328.
    [114] Mouroulis P. Visual Instrumentation: Optical Design and Engineering Principle. New York:McGraw-Hill,1999:27~68.
    [115]周仁忠,阎吉祥.自适应光学理论.北京:北京理工大学出版社,1996:135~137.
    [116]王鹏,周昕,王勇,等.哈特曼波前传感器光斑质心探测窗口的自动确定方法研究.激光杂志,2005,26(5):46~47.
    [117] Yin X M, Li X, Zhao L P, et al.. Adaptive thresholding and dynamic windowing method forautomatic centroid detection of digital Shack-Hartmann wavefront sensor. Applied Optics,2009,48(32):6088~6098.
    [118]任剑峰,饶长辉,李明全.一种Hartmann-Shack波前传感器图像的自适应阈值选取方法.光电工程,2002,29(1):1~5.
    [119] Prieto P M, Vargas-Martin F, Goelz S, et al.. Analysis of the performance of the Hartmann-Shacksensor in the human eye. J. Opt. Soc. Am. A,2000,17(8):1388~1398.
    [120] Baik S H, Park S K, Kim C J, et al.. A center detection algorithm for Shack-Hartmann wavefrontsensor. Optics and Laser Technology,2007,39(2):262~267.
    [121]全薇,王肇圻,张春书,等.用模板匹配法选取光斑质心探测窗口.光电子·激光,2002,13(11):1148~1151.
    [122] David H. Guide for the selection of laser eye protection. Florida: Laser Institute of America,2000:1~70.
    [123]戴华.矩阵论.北京:科学技术出版社,2001:117~142.
    [124]刘钦圣.最小二乘问题计算方法.北京:北京工业大学出版社,1989:39~46.
    [125]张运海.准分子激光视觉光学矫正关键建模技术研究,[博士学位论文].南京:南京航空航天大学,2006.
    [126] Stein C M. Inadmissibility of the Usual Estimator for the Mean of a Multivariate normalDistribution. Proceedings of the Third Berkeley Symposium on Mathematical Statistics andProbability,1955,1:197~206.
    [127] Hoerl A E, Kennard R W. Ridge regression: biased estimation for nonorthogonal problems.Technometrics,1970,12(1):55~67.
    [128] Hoerl A E, Kennard R W. Ridge regression: application to nonorthogonal problems.Technometrics,1970,12(1):69~82.
    [129]游扬声,王新洲,刘星.广义岭估计的直接解法.武汉大学学报(信息科学版),2002,27(2):175~178.
    [130]乔瑞杰,陈名松.自适应光学中变形镜的研究.电子设计工程,2010,18(3):74~75.
    [131] Dalimier E, Dainty C. Comparative analysis of deformable mirrors for ocular adaptive optics.Optics Express,2005,13(11):4275~4285.
    [132] Thibos L N, Bradley A, Hong X. A statistical model of the aberration structure of normal,well-corrected eyes. Ophthalmic and Physiological Optics,2002,22(5):427~433.
    [133] Correia C, Raynaud H F, Kulcsar C. et al.. Minimum-Variance Control for AstronomicalAdaptive Optics with Resonant Deformable Mirrors. European Journal of Control.2011,17(3):222~236.
    [134] Demerle M, Madec P Y, Rousset G. Servo-Loop Analysis for Adaptive Optics. NATO AdvancedScience Institutes Series, Series C, Mathematical and Physical Sciences.1994,423:73~88.
    [135]胡寿松.自动控制原理.北京:科学出版社,2003:118~133.
    [136]余成波,张莲,胡晓倩,等.自动控制原理.北京:清华大学出版社,2009:199~200.
    [137]陈宗海,杨晓宇,王雷.计算机控制工程.合肥:中国科学技术大学出版社,2008:195~197.
    [138] Looze D P. Linear-quadratic-Gaussian control for adaptive optics systems using a hybrid model.J. Opt. Soc. Am. A,2009,26(1):1~9.
    [139] Looze D P. Discrete-time model for an adaptive optics system with input delay. InternationalJournal of Control,2010,83(6):1217~1231.
    [140] Kulcar C, Raynaud H F, Petit C. et al.. Optimal control, observers and integrators in adaptiveoptics. Optics Express,2006,14(17):7464~7476.
    [141] Sorenson H W. Least-squares estimation: from Gauss to Kalman. IEEE Spectrum,1970,7:63~68.
    [142] Bar-Shalom Y, Tse E. Dual effect, certainty equivalence and separation in stochastic control.IEEE Trans. Automat. Contr.,1974,17:494~500.
    [143] Pandall R N, Anderson D J. Linear quadratic Gaussian control of a deformable mirror adaptiveoptics system with time-delayed measurements. Applied Optics,1993,32(31):6347~6358.
    [144]吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术.北京:北京大学出版社,2008:18~19.
    [145]吴显金.自适应正则化图像复原方法研究,[博士学位论文].长沙:国防科学技术大学,2006.
    [146] Banham M R, Katsaggelos A K. Digital image restoration. IEEE Signal Processing Magazine,1997,14(2):24~41.
    [147]曹茂永,孙农亮,郁道银.离焦模糊图像清晰度评价函数的研究.仪器仪表学报,2001,22(3,S1):259~268.
    [148]王鸿南,钟文,汪静.图像清晰度评价方法研究.中国图象图形学报,2004,9(7):828~831.
    [149]李奇,冯华君,徐之海.数字图像清晰度评价函数研究.光子学报,2002.31(6):736~738.
    [150] Shannon C E. Communication in the presence of noise. Proc. Institute of Radio Engineers,1949,37(1):10~21.
    [151] Ayers G R, Dainty J C. Iterative blind deconvolution method and its applications. Optics Letters,1988,13(7):547~549.
    [152] Davey B L K, Lane R G, Bates R H T. Blind deconvolution of a noisy complex-valued image.Optics Communications,1989,69(5,6):353~356.
    [153] Law N F, Lane R G. Blind deconvolution using least squares minimization. OpticsCommunication,1996,128(4-6):341~352.
    [154] Zhu H, Lu Y, Wu Q Z. Blind image deconvolution subject to band width and total variationconstraints. Optics Letters,2007,32(17):2550~2552.
    [155] You Y L, Kaveh M. A regularization approach to joint blur identification and image restoration.IEEE Trans Imag Processing,1996,5(3):417~428.
    [156] Biggs D S C, Andrews M. Acceleration of iterative image restoration algorithms. Applied Optics,1997,36(8):1766~1775.
    [157] Gonzalez R C, Woods R E, Eddin S L,阮秋琦,等译.数字图像处理(MATLAB版).北京:电子工业出版社,2005:103~143.
    [158] American National Standards Institute, ANSI Z136.1-2007American national standard for safeuse of lasers, Florida: Laser Institute of America,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700