差分GPS在理塘断裂带断裂微地貌调查中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究区位于四川省西部,川西高原理塘县境内。理塘断裂带的定位和定性研究是解决该断裂带晚第四纪以来活动性评价的基础性工作,也是评价该断裂带地震危险性所要解决的基本问题。本文应用差分GPS测量方法,沿理塘活动断裂带地表破裂形迹,对目标区断层陡坎、断塞塘、鼓包、地裂缝、位错等断裂微地貌进行调查,研究理塘断裂带的空间展布及断裂活动规律特征。
     应用差分GPS测量方法调查理塘断裂带断裂微地貌的综合实践表明:断塞塘、鼓包微地貌对断裂几何形态和定位认识具有重要指示作用;断层陡坎和位错地貌的垂直和水平位移量反映了断裂活动的期次性和强弱性;地裂缝的排列方式和组合形态反映了断裂形成时的构造应力状态。
     本文通过对理塘断裂带重点段落微地貌的差分GPS调查,支持了前人对该断裂带研究的相关结论:认为理塘断裂带由F1、F2、F3三条次级断裂组成,整体走向北西,倾向北东或南西,倾角较陡;F3断裂的构造应力状况是在一组近东西向的主压应力作用下,形成了一对北西和南东向的力偶,产生左旋走滑运动的结果;理塘盆地、甲洼—给忠盆地、德巫盆地等第四纪盆地均受到整条断裂带逆冲分量的构造影响。
     对目标断裂F3断裂的展布位置、活动性质及1948年7.3级地震宏观震中位置等有了一些新认识:第一,F3断裂并不连续。根据野外调查结果和地震破裂段落划分原则,将F3断裂在交德分水岭附近分为北西和南东两段,各长约20km,走向差异约10°左右。第二,F3断裂沿断裂面和倾向面均具波状起伏,北西段断层倾向北东,倾角80左右;南东段断层倾向南西,倾角65°左右。第三,发现F3断裂1948年7.3级大地震的宏观震中位置可能位于29°30'57.33"N,100°32'17.55"E附近。
     本文首次采用差分GPS高精度测量手段,对应用差分GPS测量手段进行高原地区活动断裂微地貌调查的可行性进行了评价。在获得丰富的第一手资料基础上,对理塘断裂带F3断裂地表微地貌进行调查,验证了前人的研究结论并得出了一些新的认识,丰富了该断裂带的研究成果,特别是对地表裂缝带的精确定位及断裂带微地貌演化特征方面的研究。
The study area is located in Western Sichuan Plateau, Litang county. Thepositioning and qualitative research work of Litang faults zone is the basis ofevaluating the activities of this faults zone since The Late Quaternary. Surveying byDGPS, along the faults traces of study area, this paper investigated the sag ponds,scarps, bulges and other microrelief of study area, then analysed it’s spatialdistribution and rupture characteristics.
     The application of DGPS surveying practices showing: the sag ponds and bulgerevealed the fracture geometry and positioning; displacement of scarps anddislocations of study area reflected the fault activities; ground fissures explained thetectonic stress state when the fault forming.
     Through the research wrok of study area, this paper verifed the representativestudy results that existed previously: Litang faults zone was consisted with3secondary faults, F1, F2and F3fault; Litang faults zone striked NW, slip NE or SW,it’s angle was dip; the tectonic stress of F3was in a group of principal compressivestress nearly east to west, then formed a pair of north and west, two parallel to eachother, the left-lateral strike-slip movement formed the thrust dip-slip of F3faults; TheQuaternary basin of this area, Litang, Jiawa-Geizhong, Dewu basin was influenced byF3fault zones.
     This paper proposed some new opinions about the characteristics and activitiesof F3fault, the magnitude earthquake epicenter in1948. Firstly, the F3fault is notcontinuous. According to the faults dividing principles and field surveying results, theF3fault should be divided into two sections, NW and SE, each section is about20kmlong and there is10°strikeward difference between the two sections. Secondly, the F3falult surface along with wavy tendency, the NW section dips NE, dip angle is about80; the SE section dips SW, angle is about65. Thirdly, according to the fields survey,this paper proposed that the epicenter location of MS7.3earthquake in1948maybe29°30'57.33"N,100°32'17.55"E.
     This paper adopted differential GPS measuring method for the research work ofstudy area, evaluated the activities and the feasibility about applying differential GPSmeasurement for micro geomorphology survey in plateau area. At the foundation ofacquiring rich first hand materials, this paper surveyed the miro geomorphology of F3fault, verifed the representative study results that existed previously and proposedsome new visions. The research work of this paper intensified the results of Litangfaults zone, especially for the reaearch about accurate positioning of surface faultfissures and Geomorphology evolution characteristics.
引文
[1] B. Choi, J. Cho, and S. Lee. Eistimation and analysis of GPS receiver differentialcode biases using KGN in Korean Peninsula. Advances in Space Research.2011,47(9):1590-1599
    [2] Cezary Specht. Accuracy and coverage of the modernized Polish Maritimedifferential GPS system. Advances in Space Research,2011,47(2):221-228
    [3] Chuang Shi, Yidong Lou, Weiwei Song, Shengfeng Gu, Changjiang Geng,Wenting Yi, and Yanyan Liu. A Wide Area Real-Time Differential Gps PrototypeSystem in China and Result Analysis. Survey Review,2011,43(322):351-360
    [4] E. Afraimovich, E. Astafyeva, I, E. Kosogorov, and Yu V. Yasyukevich. Themid-latitude field-aligned disturbances and their effect on differential GPS andVLBI. Advances in Space Research,2011,47(10):1804-1813
    [5] H. Dekkiche, S. Kahlouche, and H. Abbas. Differential ionosphere modelling forsingle-reference long-baseline GPS kinematic positioning. Earth Planets andSpace,2010,62(12):915-922
    [6] J. Kiema, D. Siriba, R. Ndunda, J. Mutua, S. Musyoka, and B. Langat.Microwave Path Survey Using Differential Gps. Survey Review,2011,43(323):451-461,
    [7] Junaidi, Naoto Wakae, Shigeru Kato, and Shin Ichi Aoki. MorphologicalMonitoring of Coastal Dune Using Differential Gps and3D Terrestrial Laser.Proceedings of the5Th International Conference on Asian and Pacific Coasts,2010, Vol2:313-320
    [8] Kizil U, Tisor L. Evaluation of RTK-GPS and Total Station for applications inland surveying[J]. Journal of Earth System Science,2011,120(2):215-221
    [9] Laszlo Kis and Bela Lantos. Aided Carrier Phase Differential GPS for AttitudeDetermination.2011Ieee/Asme International Conference on AdvancedIntelligent Mechatronics (Aim),2011,778-783
    [10] Lin Zhao, Shuaihe Gao, Jicheng Ding, and Yong Hao. Improved InertialMeasurement Unit-Aided GPS Signal Differential Acquisition UtilizingFrequency Estimation and Correction. Sensor Letters,2011,9(5):1874-1878
    [11] M. Mosavi and H. AmirMoini. An Intelligent Differential GPS using Pi-SigmaNeural Network.2010Ieee10Th International Conference on Signal ProcessingProceedings (Icsp2010),2010, Vols I-Iii:1418-1420
    [12] Marchamalo M, Galan D, Sanchez J A, et al. DGPS technology in construction:movement control in large structures[J]. informes de la construccion,2011,63(522):93-102
    [13] Ortiz M, Reyna J A, Balcazar M, et al. Comparison of regional elevation heightsin the Aguascalientes basin using DGPS technique with INEGI's digital terrainmodel[J]. geofisica internacional,2010,49(4):195-199
    [14] Paul S. Spencer and Cathryn N. Mitchell. Imaging of3-D plasmaspheric electrondensity using GPS to LEO satellite differential phase observations. RadioScience,2011,46
    [15] Petermann F, Koglin U. Explain, Decisions, Planning: Fourtyseventh Congressof the DGPs2010[J]. psychologische rundschau,2010,61(3):151-155
    [16] Radhakrishnan N. Application of GPS in Identifying Active Fault Plane inWestern Maharashtra Peninsular Shield of India[J]. Journal of the GeologicalSociety of India,2011,77(4):360-366
    [17] Saulius Jarmalavicius, Uwe Trefzer, and Peter Walden. Differential argininemethylation of the G-protein pathway suppressor GPS-2recognized bytumor-specific T cells in melanoma. Faseb Journal,2010,24(3):937-946
    [18] Schloderer G, Bingham M, Awange J L, et al. Application of GNSS-RTK derivedtopographical maps for rapid environmental monitoring: a case study of JackFinnery Lake (Perth, Australia)[J]. Environmental Monitoring and Assessment,2011,180(1-4):147-161
    [19] Shuqing Zeng. Performance Evaluation of Automotive Radars UsingCarrier-Phase Differential GPS. Ieee Transactions on Instrumentation andMeasurement,2010,59(10):2732-2741
    [20] Simone D'Amico and Oliver Montenbruck. Differential GPS: An EnablingTechnology for Formation Flying Satellites. Small Satellite Missions for EarthObservation: New Developments and Trends,2010,457-465
    [21] Tazio Strozzi, Reynald Delaloye, Andreas Kaab, Christian Ambrosi, EricPerruchoud, and Urs Wegmueller. Combined observations of rock massmovements using satellite SAR interferometry, differential GPS, airborne digitalphotogrammetry, and airborne photography interpretation. Journal ofGeophysical Research-Earth Surface,2010,115
    [22] V. Mikhailov, A. Nazaryan, V. Smirnov, M. Diament, N. Shapiro, E. Kiseleva, S.Tikhotskii, S. Polyakov, E. Smol'yaninova, I, and E. Timoshkina. Joint inversionof the differential satellite interferometry and GPS data: A case study of Altai(Chuia) Earthquake of September27,2003. Izvestiya-Physics of the Solid Earth,2010,46(2):91-103
    [23]陈文德. GPS(RTK)在数字地形图测绘中的应用[J].技术与市场.2011,(09):56-57
    [24]川北地区一个新活动断裂系的GPS,地貌和地震学证据[C].中国西安,2004
    [25]邓潇.基于差分GPS相对定位的方法探究[J].价值工程.2011,(20):125-126
    [26]董思学,郑南山.实时动态差分GPS技术在高程测量中的应用研究[J].科技信息.2011,(16):99
    [27]杜其方,李天袑,蒋远明.鲜水河断裂带上一个典型的地震地貌[J].地震研究.1988,(01):67-70
    [28]杜歆,李宏东,顾伟康.一种提高差分GPS基准站定位精度的新方法.浙江大学学报(理学版),2002,(06):637-642
    [29]冯先岳.地震断错地貌[J].内陆地震.1991,(01):17-26
    [30]冯先岳.论地震地貌[J].华北地震科学.1986,(03):66-71
    [31]付小方,应汉龙.甘孜-理塘断裂带北段新生代构造特征及金矿成矿作用[J].中国地质.2003(04):413-418
    [32]高建新.高精度全球差分GPS的应用.测绘信息与工程,2002,(02):16-18.
    [33]官凤英,范少辉,冯仲科,等.差分GPS定位精度研究[J].林业资源管理.2006,(06):88-90
    [34]郭卫英,马瑾,单新建.活动断裂带的地形地貌差异与红外亮温年变特征的研究[J].地球物理学进展.2008,(05):1437-1443
    [35]胡家华,陈清礼. GPS定位精度的影响因素及差分GPS.江汉石油学院学报,1997,(04):41-44
    [36]黄彩权.1948年理塘7(1/4)级地震的发震断裂及地震破裂带特征[J].四川地震.1983,(02):1-3
    [37]黄翠娟.基于GPS-RTK的工程测量技术优缺点分析[J].科技资讯.2010,(24):54.
    [38]吉长东,乔仰文,佐海玉.实时动态差分GPS在城市加密控制测量中的应用及其精度检验.测绘通报,2006,(06):29-30
    [39]蒋韧,樊太亮,徐守礼.地震地貌学概念与分析技术[J].岩性油气藏.2008(01):33-38
    [40]李传友,张培震,袁道阳,等.活动走滑断裂上断塞塘沉积特征及其构造含义—以西秦岭北缘断裂带断塞塘为例[J].地质学报,2010,84(1):90-106
    [41]李福顺,姚正明.浅谈RTK技术在地籍测量中的应用[J].测绘与空间地理信息,2012,35(1):142
    [42]李刚.浅论GPS(RTK)测量在工程测量中的应用[J].甘肃科技,2011,2(723):49
    [43]刘斌,易朝路,王宁练,等.祁连山小冰期冰碛垄差分GPS测量及其地貌意义[J].冰川冻土.2009,(05):945-952
    [44]刘国昌.论活动断裂[J].长安大学学报(地球科学版).1984,(02):54-59
    [45]龙德雄.从地震地裂缝及地貌特征分析鲜水河断裂带的现今应力状态[J].四川地震.1984,(02):16-18
    [46]罗福忠,柏美祥,张斌,等.新疆哈密地区东盐池、七角井、托莱泉活动断裂微地貌及新活动特征[J].内陆地震.2002,(01):40-47
    [47]罗业继. RTK在地形图测绘上的应用[J].技术与市场.2011,(08):174-175
    [48]彭文钧,丁士俊,陈春明.后处理差分GPS在南极格罗夫山中小比例尺地形图测图中的应用[J].极地研究.2001,(04):301-306
    [49]钱洪.鲜水河断裂带的断错地貌及其地震学意义[J].地震地质.1989,(04):43-49.
    [50]任金卫,李玶.则木河断裂带北段地震地貌及古地震研究[J].地震地质.1989,(01):27-34
    [51]任治坤,田勤俭,张军龙.后差分GPS测量则木河断裂地震微地貌特征[J].地震.2007,(03):97-104
    [52]四川省地质矿产局.理塘幅1比20万区域地质调查报告(地质部分).1984,597-563
    [53]孙竹友,李家灵,高维明.沂沭断裂带的构造地貌与地震[J].地震学刊.1981,(01):2-7
    [54]王春瑞,邓志军,任宪伟,等.星基广域差分GPS的应用与精度分析[J].海洋测绘.2010,(04):54-56
    [55]王雷,朱志春,张毅,等.星站差分GPS系统在地震监测中的应用[J].华南地震.2011,(02):110-116
    [56]王晓湘.差分GPS定位精度研究.北京邮电大学学报,1999,(04):25-29.
    [57]王亚毛.在不同区域内进行GPS-RTK测量的精度探讨[J].地矿测绘.2006,(01):41-43
    [58]肖军,孙传敏,刘严松,等.四川甘孜-理塘断裂带中段阿加隆洼金矿围岩蚀变特征及与金矿化关系[J].地质与勘探.2008,(06):8-12
    [59]徐茂其.对川西南北向地震带构造地貌的初步认识[J].西南师范学院学报(自然科学版).1981,(02):119-127
    [60]徐文革,田东,包晓明. GPS-RTK技术在矿山测量中的应用及优缺点[J].包钢科技.2010(03):90-92
    [61]徐锡伟,闻学泽,于贵华,等.川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J].中国科学(D辑:地球科学).2005,(06):540-551
    [62]徐周. GPS差分定位技术及实现方法的研究:[硕士学位论文].河南:解放军信息工程大学,2006
    [63]晏子贵.甘孜-理塘断裂带金矿成矿地质特征和控矿因素浅析[J].地质找矿论丛.2006,(S1):52-57
    [64]阳孝法,张学伟,林畅松.地震地貌学研究新进展[J].特种油气藏.2008,(06):1-5.
    [65]杨浩. GPS系统的误差来源分析[J].科技信息.2009,(11):49-59
    [66]杨军,姚学良.甘孜-理塘断裂带上巨大的推覆构造[J].四川地质学报.1998,(02):2-8
    [67]杨世学,刘宇明.高精度差分GPS技术在海洋资源调查中的应用.南海地质研究,2002,(00):91-96
    [68]杨伟寿,胡正文,何德润.四川甘孜-理塘断裂带中段阿加隆洼金矿床地球化学找矿模式[J].中国地质.2007,(01):123-131
    [69]姚晓燕.巡线机器人GPS网络RTK定位系统在线路巡检中的应用研究:[硕士学位论文].甘肃:兰州理工大学,2010
    [70]尹显科.甘孜-理塘断裂带北段玄武岩地球化学特征及构造意义[J].四川地质学报.1993,(03):201-208
    [71]尹显科.甘孜-理塘断裂带北段主要金矿类型及地质特征[J].四川地质学报.1995,(03):195-203
    [72]余小龙,胡学奎. GPS RTK技术的优缺点及发展前景[J].测绘通报.2007,(10):39-41
    [73]袁新强.浅谈差分GPS(DGPS)技术的广泛应用[J].山西建筑.2009,(14):359-360
    [74]张世民,谢富仁.鲜水河-小江断裂带7级以上强震构造区的划分及其构造地貌特征[J].地震学报.2001,(01):36-44
    [75]张新俊.鲜水河断裂带水平断错地貌特征与强震复发间隔估算[J].中国地震.1987,(S1):54-61
    [76]张延同. GPS_RTK技术在城区物探测量中的应用:[硕士学位论文].山东:山东科技大学,2006
    [77]张勇. GPS事后差分定位数据处理理论与应用研究:[硕士学位论文].安徽:安徽理工大学2009
    [78]张裕明.活断层的地貌特征[J].地震地质译丛.1983,(05):1-6
    [79]赵洪伟,杨胜雄,张志荣等.多波束测深系统的高精度差分GPS数据实时优化.中国区域地质,2001,(04):411-414
    [80]赵军祥.坐标转换误差对差分GPS测量精度的影响.飞行器测控学报,2001,(01):81-83
    [81]中国地质图集(电子版),地质出版社,2001,277-284
    [82]周坤. GPS(RTK)在大比例尺地形图中的应用研究[J].山西建筑.2010,(17):358-359
    [83]周满贵.论差分GPS(DGPS)方法[J].地矿测绘.1999,(03):15-17
    [84]周荣军,陈国星,李勇,等.四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J].地震地质.2005,(01):31-43
    [85]周荣军,叶友清,李勇,等.理塘断裂带沙湾段的晚第四纪活动性[J].第四纪研究.2007,(01):45-53
    [86]朱立辉,胡琴. GPS-RTK与测深技术在水下地形测量中的应用[J].测绘与空间地理信息,2011,34(5):163-165
    [87]邹光富,毛君一.甘孜-理塘断裂带构造演化与金矿的关系[J].成都理工学院学报.1998,(02):127-134
    [88]邹光富.甘孜-理塘断裂带北段构造特征及其演化过程[J].四川地质学报.1993,(03):193-200
    [89]邹光富.甘孜-理塘断裂带中韧性剪切带特征及其对金矿的控制作用[J].四川地质学报.1995,(01):10-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700