无定形聚合物力学行为的应变率依赖性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无定形聚合物的特点之一是具有粘弹性,即具有强烈的时间和温度依赖性,时间依赖性也表现为应变率的依赖性。在低应变率下,起主导作用的是代表主转变的链段运动,而在高应变率下,次级转变对材料的力学响应也发挥了重要作用,表现为主转变和次级转变的协同作用。无定形聚合物相对于金属、陶瓷等材料,其结构更加复杂,因此,研究其力学行为的应变率依赖性是一项复杂且困难的工作。无定形聚合物是热的不良导体,特别是在高应变率情况下,变形属于绝热变形,使得材料温度急剧上升,热软化十分突出,应变软化和热软化耦合作用。再者,从低应变率到高应变率,目前的本构模型预测结果尚不能与实验数据很好吻合,完全理解聚合物结构与力学性能的关系,还需要开展大量的研究工作。
     本文对聚甲基丙烯酸甲酯(PMMA)和聚碳酸酯(PC)两种无定形聚合物的应变率依赖性进行了分析和研究,主要研究内容及结论如下:
     1.介绍了无定形聚合物的特点和应用以及分子运动特性,分析评述了无定形聚合物应变率依赖性国内外研究现状,并论述了与应变率密切相关的热流变简单性和复杂性、固有变形行为和分子分析等内容。
     2.对PMMA进行动态力学分析,引入动态实验中应力应变的基本理论,建立起频率与等效应变率的关系,分析频率对PMMA玻璃化转变温度的影响以及升温速率、频率对PMMA动态力学性能的影响。结果表明:玻璃化温度Tg随频率和升温速率的增大而增大;应用损耗模量E″峰值温度定义的Tg比应用损耗因子tanδ峰值温度定义Tg偏小;储能模量E′随频率的增大呈现出缓慢增加的趋势;tanδ峰值对应的频率随温度的升高而增大,且随温度的升高tanδ曲线向高频方向漂移。
     3.进行了PC和PMMA的低应变率单轴压缩实验,分析和讨论了这两种无定形聚合物力学行为的应变率依赖性以及不同应变率下的分子运动。结果表明:PC和PMMA的屈服应力随对数应变率的增加基本呈线性增加趋势,而硬化模量则呈先增大后减小的趋势;PC和PMMA的非弹性行为指数I值并不完全符合Halary理论,而应变软化幅度SSA则与Halary理论基本相符。
     4.论述了聚合物材料SHPB实验技术中的关键问题。针对PMMA的力学响应分析表明,高应变率下弹性模量的应变率敏感性增加,屈服后材料存在明显的应变软化,由于高应变率下绝热变形导致的热软化,应力应变曲线不存在硬化阶段。
Amorphous polymer, which possesses the properties of time-dependence and temperature-dependence, is a class of typical viscoelastic material. Time-dependence is also manifested in the strain rate dependence. Under conditions of low strain rate for various values, primary transition motions play a main role because secondary transition motions are relatively free, while in the cases of dynamic high strain rates, secondary transition motions also play an important role and the coupling effects between primary and secondary transition motions are responsible for the mechanical response for materials because the secondary transition motions are restricted. Compared to metals, ceramics and other materials, the structures of amorphous polymers are more complex. Therefore, it is a complex and difficult work to study the strain rate dependence of mechanical behavior of amorphous polymer. Firstly, due to the polymeric material's poor thermal conductivity, especially in the case of high strain rate, its deformation belongs to adiabatic one, which results in the sharp rise in temperature, so the softening phenomenon is very prominent. In this case, strain softening and thermal softening coupling. Secondly, the theoretical results predicted by the current constitutive models are not well fitted with the experiment data as the strain rate varies from low values to high ones. there are a lot of work needed to be done to fully understand the relationship between amorphous polymers structure and mechanical properties.
     In this work, strain rate dependences of two kinds of amorphous polymers, poly methyl methacrylate (PMMA) and polycarbonate (PC), are analyzed and discussed. The main research contents and conclusions are as following:
     1. The properties, applications and molecular motions of amorphous polymers are introduced, and then the research situation and advances in the strain rate dependence of amorphous polymer are analyzed. Finally, the thermal rheological simplicity and complexity, the intrinsic deformation behavior and molecular analysis, which are closely related to strain rate dependence of polymer, are reviewed.
     2. The DMA tests of PMMA are carried out on a GABO EPLEXOR. The basic theory of stress and strain in the dynamic experiments is introduced, and the relation between frequency and equivalent strain rate is constructed. The influence of frequency on glass transition temperature, and the effects of heating rate and frequency on dynamic mechanical properties of PMMA are analyzed. It is showed that the glass transition temperature Tg increases with increasing frequency (equivalent strain rate) and heating rate. The value of glass transition temperature Tg definited by the peak temperature of the loss modulus E' curve is smaller than that definited by the peak temperature of the loss factor tanδcurve. Storage modulus E increases slowly with increasing frequency. As the temperature increased, the value of frequency corresponding to the peak of tanδcurve increases, the tanδcurve is shifted from low frequency to high one.
     3. A series of uniaxial compressive experiments for PC and PMMA specimens are implemented. The strain rate dependence of mechanical behavior and molecular motions at various strain rates are analyzed and discussed. It is showed that the yield stress, which increases with increasing strain rate, is approximatively linear with logarithmic strain rate, but the hardening modulus of PC and PMMA firstly increases and then decreases with increasing strain rate. The calculated results of non-elastic behavior index I of PC and PMMA are not completely coincidence with Halary's theory, while the strain-softening amplitude (SSA) is nearly consistent with Halary's theory.
     4. The key problems of the split Hopkinson pressure bar (SHPB) test technique in the polymeric materials are summarized. Under dynamic high strain rates, it is found from the study on the mechanical response of PMMA that the strain rate sensitivity of elastic modulus of polymeric material increases at high strain rates, and an obvious strain-softening phenomenon exists at the post-yield stage. Due to the thermal softening caused by the adiabatic deformation at high strain rates, no strain harding stage is observed in the stress-strain curve.
引文
[1]Miehe C, Goktepe S, Diez JM. Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space. International Journal of Solids and Structures,2009,46(1):181-202.
    [2]Mulliken AD, Boyce MC. Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates. International Journal of Solids and Structures, 2006,43(5):1331-1356.
    [3]杨挺青,罗文波,徐平,危银涛,刚芹果.粘弹性理论与应用.北京:科学出版社,2004.
    [4]Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR. Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering,2004,30(7):725-775.
    [5]过梅丽.高聚物与复合材料的动态力学热分析.北京:化学工业出版社,2002.
    [6]Eyring H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. The Journal of Chemical Physics,1936,4(4):283-291.
    [7]Robertson RE. Theory for the Plasticity of Glassy Polymers. The Journal of Chemical Physics, 1966,44(10):3950-3956.
    [8]David LH. The modulus and yield stress of glassy poly(methyl methacrylate) at strain rates up to 103 inch/inch/second. Journal of Applied Polymer Science,1968,12(7):1653-1659.
    [9]Bauwens JC, Bauwens-Crowet C, Homes G. Tensile yield-stress behavior of poly(vinyl chloride) and polycarbonate in the glass transition region. Journal of Polymer Science Part A-2:Polymer Physics,1969,7(10):1745-1754.
    [10]Bauwens-Crowet C, Bauwens JC, Homes G. Tensile yield-stress behavior of glassy polymers. Journal of Polymer Science Part A-2:Polymer Physics,1969,7(4):735-742.
    [11]Bauwens JC. Relation between the compression yield stress and the mechanical loss peak of bisphenol-A-polycarbonate in the β transition range. Journal of Materials Science,1972,7(5): 577-584.
    [12]Bauwens-Crowet C, Bauwens JC, Homes G. The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests. Journal of Materials Science,1972, 7(2):176-183.
    [13]Bauwens-Crowet C. The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates. Journal of Materials Science,1973,8(7): 968-979.
    [14]Chou S, Robertson K, Rainey J. The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics. Exp. Mech.,1973,13(10):422-432.
    [15]Albert FY, Pablo DD. The effect of sudden strain-rate change on the yield behavior of bisphenol-A polycarbonate. Polymer Engineering & Science,1974,14(10):691-695.
    [16]Ward IM. Review:The yield behaviour of polymers. Journal of Materials Science,1971, 6(11):1397-1417.
    [17]Argon AS. A theory for the low-temperature plastic deformation of glassy polymers. Philosophical Magazine,1973,28(4):839-865.
    [18]Lefebvre JM, Escaig B. Plastic deformation of glassy amorphous polymers:influence of strain rate. Journal of Materials Science,1985,20(2):438-448.
    [19]Boyce MC, Parks DM, Argon AS. Large inelastic deformation of glassy polymers. Part Ⅰ: Rate dependent constitutive model. Mechanics of Materials,1988,7(1):15-33.
    [20]Arruda EM, Boyce MC. Evolution of plastic anisotropy in amorphous polymers during finite straining. International Journal of Plasticity,1993,9(6):697-720.
    [21]Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids,1993,41(2): 389-412.
    [22]Povolo F, Hermida EB. Phenomenological description of strain rate and temperature-dependent yield stress of PMMA. Journal of Applied Polymer Science,1995,58(1):55-68.
    [23]Francisco P, Gustavo S, Hermida EB. Temperature and strain rate dependence of the tensile yield stress of PVC. Journal of Applied Polymer Science,1996,61(1):109-117.
    [24]Stachurski ZH. Deformation mechanisms and yield strength in amorphous polymers. Progress in Polymer Science,1997,22(3):407-474.
    [25]Rittel D. On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mechanics of Materials,1999,31(2):131-139.
    [26]Li Z, Lambros J. Strain rate effects on the thermomechanical behavior of polymers. International Journal of Solids and Structures,2001,38(20):3549-3562.
    [27]Frank GJ, Brockman RA. A viscoelastic-viscoplastic constitutive model for glassy polymers. International Journal of Solids and Structures,2001,38(30-31):5149-5164.
    [28]Mulliken AD. Low to high strain rate deformation of amorphous polymers:Experiments and modeling [MS Thesis]. USA:Massachusetts Institute of Technology, Department of Mechanical Engineering,2004.
    [29]Mulliken AD. Mechanics of amorphous polymers and polymer nanocomposites during high rate deformation [PhD thesis]. USA:Massachusetts Institute of Technology, Department of Mechanical Engineering,2006.
    [30]Senden DJA. Constitutive modeling of medical grade ultra-high molecular weight polyethylene [MS Thesis]. Holand:Eindhoven University of Technology,2008.
    [31]Siviour CR, Walley SM, Proud WG, Field JE. The high strain rate compressive behaviour of polycarbonate and polyvinylidene difluoride. Polymer,2005,46(26):12546-12555.
    [32]Klompen ETJ, Engels TAP, Govaert LE, Meijer HEH. Modeling of the postyield response of glassy polymers:influence of thermomechanical history. Macromolecules,2005,38(16): 6997-7008.
    [33]Govaert LE, Tervoort TA. Strain hardening of polycarbonate in the glassy state:influence of temperature and molecular weight. Journal of Polymer Science Part B:Polymer Physics,2004, 42(11):2041-2049.
    [34]Arruda EM, Boyce MC, Jayachandran R. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mechanics of Materials,1995,19(2-3):193-212.
    [35]Richeton J, Ahzi S, Daridon L, Remond Y. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer, 2005,46(16):6035-6043.
    [36]Richeton J, Schlatter G, Vecchio KS, Remond Y, Ahzi S. A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer, 2005,46(19):8194-8201.
    [37]Richeton J, Ahzi S, Vecchio KS, Jiang FC, Adharapurapu RR. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers:characterization and modeling of the compressive yield stress. International Journal of Solids and Structures,2006, 43(7-8):2318-2335.
    [38]Fortunelli A, Ortiz M. Constitutive model for plasticity in an amorphous polycarbonate [EB/OL]. Physical Review E,2007,76(4). Art. No.041806,1-14. [2009-11-25]. http://authors.library.caltech.edu/9018/1/FORpre07.pdf
    [39]Anand L, Ames NM, Srivastava V, Chester SA. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part Ⅰ:Formulation. International Journal of Plasticity,2009,25(8):1474-1494.
    [40]Ames NM, Srivastava V, Chester SA, Anand L. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part Ⅱ:Applications. International Journal of Plasticity,2009,25(8):1495-1539.
    [41]Varghese AG, Batra RC. Constitutive equations for thermomechanical deformations of glassy polymers. International Journal of Solids and Structures,2009,46(22-23):4079-4094.
    [42]Schwarzl F, Staverman AJ. Time-temperature dependence of linear viscoelastic behavior. Journal of Applied Physics,1952,23(8):838-843.
    [43]Tervoort TA, Klompen ETJ, Govaert LE. A multi-mode approach to finite, three-dimensional, nonlinear viscoelastic behavior of polymer glasses. J. Rheol.,1996,40(5):779-797.
    [44]Klompen ETJ, Govaert LE. Nonlinear viscoelastic behaviour of thermorheologically complex materials. Mechanics of Time-Dependent Materials,1999,3(1):49-69.
    [45]Hutchinson JM. Relaxation processes and physical aging//Haward RN, Young RJ, editors, The Physics of Glassy Polymers. London:Chapman & Hall,1997:85-154.
    [46]Klompen ETJ. Mechanical properties of solid polymers Constitutive modelling of long and short term behaviour [PhD thesis]. Holand:Eindhoven University of Technology,2005.
    [47]Roetling JA. Yield stress behaviour of poly(methyl methacrylate). Polymer,1965,6(6): 311-317.
    [48]G'Sell C, Hiver JM, Dahoun A, Souahi A. Video-controlled tensile testing of polymers and metals beyond the necking point. Journal of Materials Science,1992,27(18):5031-5039.
    [49]van Melick HGH, Govaert LE, Meijer HEH. On the origin of strain hardening in glassy polymers. Polymer,2003,44(8):2493-2502.
    [50]van Melick HGH, Govaert LE, Meijer HEH. Localisation phenomena in glassy polymers: Influence of thermal and mechanical history. Polymer,2003,44(12):3579-3591.
    [51]Kierkels JTA. Tailoring the mechanical properties of amorphous polymers [PhD Thesis]. Holand:Eindhoven University of Technology,2006.
    [52]Hoy RS, Robbins MO. Strain hardening in polymer glasses:limitations of network models. Physical Review Letters,2007,99(11):117801-117804.
    [53]Capaldi FM, Boyce MC, Rutledge GC. Molecular response of a glassy polymer to active deformation. Polymer,2004,45(4):1391-1399.
    [54]Rana D, Sauvant V, Halary JL. Molecular analysis of yielding in pure and antiplasticized epoxy-amine thermosets. Journal of Materials Science,2002,37(24):5267-5274.
    [55]Brul B, Halary JL, Monnerie L. Molecular analysis of the plastic deformation of amorphous semi-aromatic polyamides. Polymer,2001,42(21):9073-9083.
    [56]Dubault A, Bokobza L, Gandin E, Halary JL. Effects of molecular interactions on the viscoelastic and plastic behaviour of plasticized poly(vinyl chloride). Polymer International, 2003,52(7):1108-1118.
    [57]Boughalmi R, Dubault A, Halary JL, Ben Cheikh Larbi F, Jarray J. Molecular analysis of the mechanical behaviorof plasticized amorphous polymers. Oil & Gas Science and Technology, 2006,61(6):725-733.
    [58]Soong SY, Cohen RE, Boyce MC, Mulliken AD. Rate-dependent deformation behavior of POSS-filled and plasticized poly(vinyl chloride). Macromolecules,2006,39(8):2900-2908.
    [59]Soong SY, Cohen RE, Boyce MC, Chen W. The effects of thermomechanical history and strain rate on antiplasticization of PVC. Polymer,2008,49(6):1440-1443.
    [60]Loo LS, Cohen RE, Gleason KK. Chain mobility in the amorphous region of nylon 6 observed under active uniaxial deformation. Science,2000,288(5463):116-119.
    [61]Lee H-N, Paeng K, Swallen SF, Ediger MD. Direct measurement of molecular mobility in actively deformed polymer glasses. Science,2009,323(5911):231-234.
    [62]Lyulin AV, Vorselaars B, Mazo MA, Balabaev NK, Michels MAJ. Strain softening and hardening of amorphous polymers:atomistic simulation of bulk mechanics and local dynamics. Europhysics Letters,2005,71(4):618-624.
    [63]Riggleman RA, Schweizer KS, Pablo JJd. Nonlinear creep in a polymer glass. Macromolecules,2008,41(13):4969-4977.
    [64]焦剑,雷渭媛.高聚物结构、性能与测试.北京:化学工业出版社,2005.
    [65]何平笙.高聚物的力学性能.合肥:中国科学技术大学出版社,1997.
    [66]马德柱,何平笙,徐种德,周漪琴.高聚物的结构与性能.北京:科学出版社,1999.
    [67]Brul B, Halary JL, Monnerie L. Molecular analysis of the plastic deformation of amorphous semi-aromatic polyamides. Polymer,2001,42(21):9073-9083.
    [68]Ferry J. Viscoelastic properties of polymers (3rd). New York:John Wiley.1980.
    [69]Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos. Trans. R. Soc. Lond., Ser. A,1914,213:437-456.
    [70]Landon JW, Quinney H. Experiments with the Hopkinson pressure bar. Philos.Trans. R. Soc. Lond., Ser. A,1923,103:622-643.
    [71]Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading//Proceedings of the Physical Society of London.1949, B62:676-700.
    [72]Shim J, Mohr D. Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates. International Journal of Impact Engineering,2009,36(9):1116-1127.
    [73]Bjerke T, Li Z, Lambros J. Role of plasticity in heat generation during high rate deformation and fracture of polycarbonate. International Journal of Plasticity,2002,18(4),549-567.
    [74]Trojanowski A, Ruiz C, Harding J. Thermomechanical properties of polymers at high rates of strain. J. Phys. IV France,1997,7:C447-452.
    [75]Gorham DA. The effect of specimen dimensions on high strain rate compression measurements of copper. Journal of Physics D:Applied Physics,1991,24(8):1481-1492.
    [76]Lee W-S, Liu C-Y. The effects of temperature and strain rate on the dynamic flow behaviour of different steels. Materials Science and Engineering A,2006,426(1-2):101-113.
    [77]段祝平,孙琦清,杨大光,田兰桥,褚瑶.高应变率下金属动力学性能的实验和理论研究———维杆的实验方法及其应用.力学进展,1980,(1):1-15.
    [78]Lankford J. High strain rate compression and plastic flow of ceramics. Journal of Materials Science Letters,1996,15:745-750.
    [79]Fang Q-Z, Wang TJ, Beom HG, Zhao HP. Rate-dependent large deformation behavior of PC/ABS. Polymer,2009,50(1):296-304.
    [80]Chen W, Song B. Dynamic Compressive response of polymeric nanocomposites. ICCES, 2007,3(1):51-55.
    [81]Tagarielli VL, Deshpande VS, Fleck NA. The high strain rate response of PVC foams and end-grain balsa wood. Composites Part B:Engineering,2008,39(1):83-91.
    [82]卢子兴,王仁,黄筑平,韩铭宝,田常津,李怀祥.泡沫塑料力学性能研究综述.力学进展,1996,26(3):306-323.
    [83]Meyers M A. Dynamic Behavior of Materials. New York, USA:John Wiley & Sons, inc. 1994.
    [84]Wu X, Gorham D. Stress equilibrium in the split Hopkinson pressure bar test. J. Phys. IV France,1997,7:C391-C396.
    [85]Wang YG, Wang LL. Stress wave dispersion in large-diameter SHPB and its manifold manifestations. Journal of Beijing Institute of Technology,2004,13(3):247-253.
    [86]Chen W, Lu F, Zhou B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials. Experimental Mechanics,2000,40(1):1-6.
    [87]Gorham DA. Specimen inertia in high strain-rate compression. Journal of Physics D:Applied Physics,1989,22(12):1888-1893.
    [88]Harrigan JJ, Reid SR, Peng C. Inertia effects in impact energy absorbing materials and structures. International Journal of Impact Engineering,1999,22(9-10):955-979.
    [89]Chen W, Lu F, Frew D J, Forrestal MJ. Dynamic compression testing of soft materials. Journal of Applied Mechanics,2002,69(3):214-223.
    [90]宋力,胡时胜.软材料的霍普金森压杆测试新技术.工程力学,2006,23(5):24-28.
    [91]朱珏,胡时胜,王礼立.SHPB试验中粘弹性材料的应力均匀性分析.爆炸与冲击,2006,26(4):315-322.
    [92]Chen W, Song B. Split Hopkinson pressure bar techniques for characterizing soft materials. Latin American Journal of Solids and Structures,2005,2(2):113-152.
    [93]Casem D, Weerasooriya T, Moy P. Inertial effects of quartz force transducers embedded in a split Hopkinson pressure bar. Experimental Mechanics,2005,45(4):368-376.
    [94]Gray G T, Blumenthal W R. Split-Hopkinson pressure bar testing of soft materials. ASM Handbook, Mechanical Testing and Evaluation,ASM Int, Materials Park OH,2000,8:488-496.
    [95]Gama BA, Lopatnikov SL, Gillespie JW. Hopkinson bar experimental technique:a critical review. Applied Mechanics Reviews,2004,57(4):223-250.
    [96]Lee OS, Kim KJ. Dynamic compressive deformation behavior of rubber materials. Journal of Materials Science Letters,2003,22(16):1157-1160.
    [97]宋博,姜锡权,陈为农.霍普金森压杆实验中的脉冲整形技术//第三届全国爆炸力学实验技术交流会论文集.2004,1-70.
    [98]Christensen R, Swanson S, Brown W. Split-hopkinson-bar tests on rock under confining pressure. Experimental Mechanics,1972,12(11):508-513.
    [99]Ellwood S, Griffiths L J, Parry D J. Materials testing at high constant strain rates. J. Phys. E: Sci. Instrum.,1982,15:280-282.
    [100]赵习金,卢芳云,林玉亮.硅橡胶的动态压缩实验和力学性能研究.高压物理学报,2004,18(4):328-332.
    [101]喻炳,施绍裘.PP/PA共混高聚物在冲击载荷下的热粘弹性力学响应.宁波大学学报(理工版),2005,18(2):163-169.
    [102]宋力,胡时胜.SHPB测试中的均匀性问题及恒应变率.爆炸与冲击,2005,25(3):207-216.
    [103]Song B, Chen W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials. Experimental Mechanics,2004,44(3):300-312.
    [104]Chen W, Zhang B, Forrestal M. A split Hopkinson bar technique for low-impedance materials. Experimental Mechanics,1999,39(2):81-85.
    [105]Song B, Chen W, Antoun B, Frew DJ. Determination of early flow stress for ductile speci-mens at high strain rates by using a SHPB. Experimental Mechanics,2007,47(5):671-679.
    [106]宋力,胡时胜.SHPB数据处理中的二波法与三波法.爆炸与冲击,2005,25(4):368-373.
    [107]王礼立,王永刚.应力波在用SHPB研究材料动态本构特性中的重要作用.爆炸与冲击,2005,25(1):17-25.
    [108]Parry DJ, Dixon PR, Hodson S, Al-Maliky N. Stress equilibrium effects within Hopkinson bar specimens. Journal de physique Ⅳ,1994,4:C8-107-112.
    [109]王宝珍,胡时胜,周相荣.不同温度下橡胶的动态力学性能及本构模型研究.实验力学,2007,22(1):1-6.
    [110]Gray III GT, Blumenthal WR, Trujillo CP, Carpenter II RW. Influence of temperature and strain rate on the mechanical behavior of Adiprene L-100. J. Phys. IV France,1997,7: 523-528.
    [111]周风华,王礼立,胡时胜.高聚物SHPB试验中试件早期应力不均匀性的影响.实验力学,1992,7(1):23-29.
    [112]林玉亮,卢芳云,卢力.石英压电晶体在霍普金森压杆实验中的应用.高压物理学报,2005,7(1):299-304.
    [113]Yi J, Boyce MC, Lee GF, Balizer E. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes. Polymer,2006,47(1):319-329.
    [114]王晓燕,卢芳云,林玉亮.SHPB实验中端面摩擦效应研究.爆炸与冲击,2006,26(2):134-139.
    [115]Trautmann A, Siviour CR, Walley SM, Field JE. Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar. International Journal of Impact Engineering, 2005,31(5):523-544.
    [116]Lindholm U, Yeakley L. High strain-rate testing:Tension and compression. Experimental Mechanics,1968,8(1):1-9.
    [117]Davies EDH, Hunter SC. The dynamic compression testing of solids by the method of split Hopkinson pressure bar. Journal of the Mechanics and Physics of Solids,1963,11(3):155-179.
    [118]Zhao H, Gary G, Klepaczko JR. On the use of a viscoelastic split hopkinson pressure bar. International Journal of Impact Engineering,1997,19(4):319-330.
    [119]Gary G, Klepaczko JR, Zhao H. Generalization of split Hopkinson bar technique to use viscoelastic bars. International Journal of Impact Engineering,1995,16(3):529-530.
    [120]Casem D, Fourney W, Chang P. A polymeric split Hopkinson pressure bar instrumented with velocity gages. Experimental Mechanics,2003,43(4):420-427.
    [121]Rao S, Shim VPW, Quah SE. Dynamic mechanical properties of polyurethane elastomers using a nonmetallic Hopkinson bar. Journal of Applied Polymer Science,1997,66(4):619-631.
    [122]Bacon C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar. Experimental Mechanics,1998,38(4):242-249.
    [123]Sawas O, Brar N, Brockman R. Dynamic characterization of compliant materials using an all-polymeric split Hopkinson bar. Experimental Mechanics,1998,38(3):204-210.
    [124]Davies R M. A critical study of the Hopkinson pressure bar. Philos. Trans. R. Soc. London, Ser. A,1948,240(821):375-457.
    [125]陶俊林.SHPB实验技术若干问题研究[博士学位论文].绵阳:中国工程物理研究院,2005.
    [126]黄德进,孙紫建,王礼立.PP/PA/TPEg共混高聚物动态力学性能研究.上海塑料,2006,3(1):15-17.
    [127]朱兆祥,徐大本,王礼立.环氧树脂在高应变率下的热粘弹性本构方程的时温等效性.宁波大学学报,1988,1(1):58-68.
    [128]Hao X, Gai G, Lu F, Zhao X, Zhang Y, Liu J, Yang Y, Gui D, Nan C-W. Dynamic mechanical properties of whisker/PA66 composites at high strain rates. Polymer,2005, 46(10):3528-3534.
    [129]Gray GT, Idar DJ, Blumenthal WR, Cady CM, Peterson PD. High-and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature//11th International Detonation Symposium, Snowmass, CO(US),1998.
    [130]Naik NK, Ch V, Kavala VR. Hybrid composites under high strain rate compressive loading. Materials Science and Engineering A,2008,498(1-2):87-99.
    [131]Tagarielli VL, Deshpandea VS, Fleck NA. The high strain rate response of PVC foams and end-grain balsa wood. Composites:Part B,2008,39(1):83-91.
    [132]Shergold OA, Fleck NA, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. International Journal of Impact Engineering,2006, 32(9):1384-1402.
    [133]Pan Y, Chen W, Song B. Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens. Experimental Mechanics,2005,45(5):440-446.
    [134]Lee OS, Kim MS. Dynamic material property characterization by using split Hopkinson pressure bar (SHPB) technique. Nuclear Engineering and Design,2003,226(2):119-125.
    [135]Rittel D. Transient temperature measurement using embedded thermocouples. Experimental Mechanics,1998,38(2):73-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700