混凝土破坏过程细观数值模拟与动态力学特性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土在细观层次上由骨料、砂浆及其之间的界面过渡区组成,各细观组分对其宏观力学性能均有直接影响。采用宏观与细/微观相结合的研究方法,可以在物理机制上给予混凝土宏观力学行为合理的解释,细观数值技术已成为该领域重要的发展方向之一。有鉴于此,本文基于材料细观物理特征的考察,开展混凝土破坏过程的细观数值模拟研究以及混凝土动态力学特性的机理研究。
     1.采用一维统计细观损伤力学模型,考虑损伤耗能与应变能释放之间的平衡,对混凝土材料的静态轴拉破坏过程进行了稳定性分析,解析表达了材料由均匀损伤过渡到局部损伤的临界状态、失稳破坏导致的应力跌落现象和临界状态的尺寸效应律,为混凝土破坏过程细观数值模型研究提供了参考。
     2.从概率体元建模和界面过渡区模拟两方面对细观数值模型展开研究。在更低的尺度上,分属于骨料、砂浆和界面过渡区的细观单元本身也是由复合材料组成,应用复合材料力学中的Voigt近似和Reuss近似,讨论了细观单元弹性模量和抗拉强度的分布特征;与可靠度理论中抗力考虑成多个随机变量的乘积类似,以强度和弹性模量的乘积作为细观单元的一种综合性能参数,提出了基于综合性能参数的概率体元建模方法,且该方法可以反映前述弹性模量与抗拉强度的分布特征。对细观单元材质组成的单一化假定进行改进,视内嵌界面过渡区的细观单元为一种广义复合材料单元,将修正的Vogit-Reuss模型运用到复合材料单元并形成等效均质单元,单元的损伤通过各组成材料的损伤体现,建立了复合型界面损伤模型。
     3.应用上述细观数值模型,仅考虑细观介质的惯性效应,对混凝土材料的动态破坏过程进行了数值模拟研究,表明材料非均质性和应力波传播是与混凝土动态力学特性有关的两个基本要素。以一维非均质杆的动态破坏为原型对此进行了理论论证,进一步探讨了混凝土动态力学特性的物理机理:应力波传播的时空性使材料中的应力非均匀性异于静态加载时仅由材料非均匀性决定的应力非均匀性,故动态加载混凝土的破坏形态及其演化过程不同于静态加载;在动态加载情形下,大多数材料单元的应力水平比静态加载高,材料单元发生破坏的概率更大,以致混凝土的动态破坏形成更多的裂纹;应力波传播引起的应力非均匀性和材料性能的非均匀性,造成了动力强度与静力强度的不同,推导了动力增强系数关于应变率的表达式,该式给出的动力增强系数表现形式及其特征规律与试验资料和相关经验公式符合。
At mesoscale, concrete may be regarded as a three-phase composite consisting of mortar matrix, coarse aggregate and interfacial transition zone (ITZ) between them. The macroscopic mechanical behaviour of the concrete depended on the properties of its components. It has been noted that the physical explanation of concrete macroscopic mechanical behaviour could be given by adopting a multi-scale analysis approach. In view of this, the mesoscale mechanical model for fracture simulation and the dynamic behavior of concrete were thoroughly studied in this paper base on the mesoscale physics of concrete. The major contributions are summarized as follows:
     1. A one-dimensional stochastic micromechanical damage model was adopted to study the failure process of concrete specimen subjected to uniaxial tension. A balance was taken into account between the dissipated energy in damage evolution and the released elastic strain energy of the specimen during the loading process. Within the frame of energy principle, the stability analysis of the failure process was conducted and a stability criterion was derived. The critical state that's a transition from uniform damage to local damage, the stress drop phenomena caused by instable failure and the size effect law of critical state were analyzed. These investigations provide useful information and suggestion for the mesoscale mechanical model research.
     2. A mesoscale numerical model for concrete was developed by incorporating into the model framework two key components:1) an improved modeling of probability volume element and2) the composite interface damage model.
     The mesoscale element that belongs to aggregate, matrix or interfacial transition zone can be considered as a composite at lower length scale. By exploiting this observation, the distribution difference between elastic modulus and tensile strength of mesoscale element was studied based on Voigt and Reuss prediction. Structural resistance could be considered as the product of all random variables in structural reliability theory. Accordingly, the product of strength and elastic modulus was assumed to be a comprehensive property parameter for mesoscale element, and an improved modeling of probability volume element was proposed. Moreover, the distribution difference derived ahead can be reflected in the improved modeling.
     A composite interface damage model was developed for the element including the interfacial transition zone but not located in a single material phase, which was considered as a composite element in a broader sense. Using the modified Voigt-Reuss averaging scheme, the influence of the interfacial transition zone was smeared into the composite element. The elastic constants of the composite element were defined in terms of the constitutive properties of both the adjacent materials and the interfacial transition zone, as well as the geometry of the homogenized element. The damage of the composite element was felt in the damage of its each component.
     3. Numerical analyses of direct dynamic tensile test and direct dynamic compressive test were performed by employing the mesoscale mechanical model developed above without considering the strain-rate effects of material properties. But the effect of inertia, which is essentially a structural feature of the response, was included in the mesoscale numerical simulations. It was found that the predicted results from these tests show correctly strain-rate dependence of tensile and compressive strength and correctly strain-rate effects on concrete fracturing behaviour, which indicates that the observed dynamic properties of concrete can be attributed to two elementary factors:the heterogeneity of concrete and stress wave propagation.
     The two elementary factors were further investigated with reference to the dynamic failure process of a one-dimensional heterogeneous bar. The physical explanations on mechanisms of concrete dynamic properties described below may be drawn from the study. Because of the spatio-temporal characteristics of stress wave propagation, the stress heterogeneity in a dynamically loaded specimen was different from a static loaded specimen, which leads to the difference of failure modes and evolutions between the dynamically loaded specimen and the static loaded specimen. Furthermore, the local stresses in a dynamically loaded specimen are higher, than a static loaded specimen for most materials. Thus, more materials are damaged so as to form more fractures in the dynamically loaded concrete specimen. The increase of strength with strain rate can also be largely attributed to the stress heterogeneity cause by stress wave propagation and the heterogeneity of concrete, and a formula of strength dynamic increase factor was derived.
引文
[1]李杰.结构工程研究中的关键科学问题[R].同济大学学术报告.上海,2006.
    [2]水工建筑物抗震设计规范(DL5073-2000).北京:中国电力出版社,2001.
    [3]李杰,任晓丹.混凝土静力与动力损伤本构模型研究进展述评[J].力学进展,2010,40(3):284-297.
    [4]王礼立.爆炸与冲击荷载下结构和材料动态响应研究的新进展[J].爆炸与冲击,2001,21(2):81-88.
    [5]朱万成,赵启林,唐春安,等.混凝土断裂过程的力学模型与数值模拟[J].力学进展,2002,32(4):579-598.
    [6]张楚汉.论岩石、混凝土离散-接触-断裂分析[J].岩石力学与工程学报,2008,27(2):217-236.
    [7]WITTMANN F H. Structure of concrete with respect to crack formation[C]. In:WITTMANN F H. Fracture Mechanics of Concrete. El sever Science Publishers,1989:43-74.
    [8]王宗敏,朱明霞,赵晓西.混凝土断裂问题研究的层次方法[J].郑州工业大学学报,2000,21(4):16-22.
    [9]LI Y Y, CUI J Z. The multi-scale computational method for the mechanics parameters of the materials with radom distribution of multi-scale grains[J]. Composites Science and Technology,2005,65(9):1447-1458.
    [10]白以龙.工程结构损伤的两个重要科学问题——分布式损伤和尺度效应.华南理工大学学报(自然科学版),2002,30(11):11-14.
    [11]何国威,夏蒙棼,柯孚久,等.多尺度耦合现象:挑战和机遇[J].自然科学进展,2004,(2):3-6.
    [12]冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社,2002.
    [13]夏蒙棼,韩闻生,柯孚久,等.统计细观损伤力学和损伤演化诱致突变(Ⅰ)[J].力学进展,1995,25(1):1-40.
    [14]白以龙,夏蒙棼,柯孚久.固体损伤的演化诱致灾变和预测[J].失效分析与预防,2007,2(1):1-5.
    [15]任晓丹.混凝土随机损伤本构关系试验研究[D].上海:同济大学,2006.
    [16]KRAJCINOVIC D, SILVA M A G. Statistical aspects of the continuous damage theory [J]. International Journal of Solids Structures,1982,18(7):551-562.
    [17]KANDARPA S, KIRKNER D J, SPENCER B F. Stochastic damage model for brittle materials subjected to monotonic loading[J]. Journal of Engineering Mechanics,1996,122(8): 788-795.
    [18]李杰,张其云.混凝土随机损伤本构关系[J].同济大学学报,2001,29(10):1135-1141.
    [19]李杰,卢朝晖,张其云.混凝土随机损伤本构关系——单轴受压分析.同济大学学报[J],2003,31(5):505-509.
    [20]李杰.混凝土随机损伤力学-—背景、意义与研究进展[C].见:李宏男,伊廷华.结构防灾、监测与控制——第二届“结构工程新进展国际论坛”特邀报告集.北京:中国建筑工业出版社,2008,69-86.
    [21]李杰,杨卫忠.混凝土弹塑性随机损伤本构关系研究[J].土木工程学报,2009,42(2):31-38.
    [22]LI J, REN X D. Stochastic damage model of concrete based on energy equivalent strain[J]. International Journal of Solids and Structures,2009,46:2407-2419.
    [23]白卫峰,陈健云,胡志强,等.准脆性材料单轴拉伸破坏全过程物理模型研究[J].岩石力学与工程学报,2007,26(4):670-681.
    [24]陈健云,白卫峰.考虑动态应变率效应的混凝土单轴拉伸统计损伤模型[J].岩石力学及工程学报,2007,26(8):1603-1611.
    [25]BAI W F, CHEN J W, FAN S L, et al. Statistical damage constitutive model for concrete materials under uniaxial compression[J]. Journal of Harbin Institute of Technology, 2010,17(3):338-344.
    [26]白卫峰.混凝土损伤机理及饱和混凝土力学性能研究[D].大连:大连理工大学,2008.
    [27]刘智光,陈健云,白卫峰.基于随机损伤模型的混凝土单轴拉伸破坏过程研究[J].岩石力学与工程学报,2009,28(10):2048-2058.
    [28]梁正召.三维条件下的岩石破裂过程分析及其数值试验方法研究[D].沈阳:东北大学,2005.
    [29]杜修力,金浏.混凝土静态力学性能的细观力学方法评述[J].力学进展,2011,41(4):411-426.
    [30]CHIAIA B, VERVUURT A, VAN MIER J G M. Lattice model evaluation of progressive failure in disordered particle composites[J]. Engng. Frac. Mech.,1997,57(2/3):301-318.
    [31]SCHLANGEN E, VAN MIER J G M. Experimental and numerical analysis of micromechanisms of fracture of cement-based composites[J]. Cem. Concr. Comp.,1992,14(2):105-118.
    [32]SCHLANGEN E, GARBOCZI E J. New method for simulating fracture using an elastically uniform random geometry lattice[J]. Int. J. Engng. Sci.,1996 34(10):1131-1144.
    [33]SCHLANGEN E, GARBOCZI E J. Fracture simulations of concrete using lattice models: computational aspects[J]. Engng. Frac. Mech.,1997,57(2/3):319-332.
    [34]SCHLANGEN E, VAN MIER J G M. Simple lattice model for numerical simulation of fracture of concrete materials and structures[J]. Materials and Structures,1992,25:534-542.
    [35]VAN MIER J G M, VAN VLIET M R A, WANG T K. Fracture mechanisms in particle composites: statistical aspects in lattice type analysis[J]. Mechanics of Materials,2002,34(11): 705-724.
    [36]GRASSL P, BAZANT Z P, Hon M. Random Lattice-Particle Simulation of Statistical Size Effect in Quasi-Brittle Structures Failing at Crack Initiation[J]. Journal of Engineering Mechanics,2009,135(2):85-92.
    [37]LILLIU G, VAN MIER J G M. 3D lattice type fracture model for concrete [J]. Engineering Fracture Mechanics,2003,70(7-8):927-941.
    [38]杨强,张浩,周维垣.基于格构模型的岩石类材料破坏过程的数值模拟[J].水利学报,2002,4:46-50.
    [39]MOHAMED A R, HANSEN W. Micromechanical modeling of concrete response under static loading:Part I:Model development and validation[J]. ACI Materials Journal,1999, 96 (2):196-203.
    [40]MOHAMED A R, HANSEN W. Micromechanical modeling of concrete response under static loading:Part II:Model predictions for shear and compressive loading[J]. ACI Materials Journal,1999,96(3):354-358.
    [41]CUSATIS G, BAZANT Z P, Cedolin L. Confinement-shear lattice CSL model for fracture propagation in concrete[J]. Computer methods in applied mechanics and engineering, 2006,195(52):7154-7171.
    [42]CUSATIS G L, BAZANT Z P, CEDOLIN L. Confinement-shear lattice model for concrete damage in tension and compression:I Theory [J]. Journal of Engineering Mechanics,2003, 129(12):1439-1448.
    [43]CUSATIS G, BAZANT Z P, CEDOLIN L. Confinement-shear lattice model for concrete damage in tension and compression:II Computation and val idati on [J]. Journal of Engineering Mechanics,2003,129(12):1449-1458.
    [44]GRASSL P, BAZANT Z P. Random lattice-particle simulation of staticstical size effect in quasi-brittle structures failing at crack initiation[J]. Journal of Engineering Mechanics,2009,135(2):85-92.
    [45]VAN MIER J G M. Fracture processes of concrete:assesment of material parameters for fracture models[M]. Boca Raton:CRC Press,1997.
    [46]WANG Z M, KWAN A K H, CHAN H C. Mesoscopic study of concrete Ⅰ:generation of random aggregate structure and finite element mesh[J]. Computer and Structures,1999,70(5): 533-544.
    [47]KWAN A K H, WANG Z M, CHAN H C. Mesoscopic study of concrete Ⅱ:nonlinear finite element analysis[J]. Computer and Structures,1999,70(5):545-556.
    [48]CAROL I, LOPEZ C M, ROA 0. Micromechanical analysis of quasi-brittle materials using fracture-based interface elements[J]. International Journal for Numerical Methods in Engineering,2001,52:193-215.
    [49]LOPEZ C M, CAROL I, AGUADO A. Meso-structural study of concrete fracture using interface elements. Ⅰ:numerical model and tensile behavior[J]. Materials and Structures,2008,41(3):583-599.
    [50]LOPEZ C M, CAROL I, AGUADO A. Meso-structural study of concrete fracture using interface elements. Ⅱ:compression, biaxial and Brazilian test[J]. Materials and Structures,2008,41(3):601-620.
    [51]王宗敏,邱志章.混凝土细观随机骨料结构与有限元网格剖分[J].计算力学学报,2005,22(6):728-732.
    [52]VONK R. Softening of concrete loaded in compression[D]. Eindhoven:Technische Universiteit Eindhoven,1992.
    [53]CABALLERO A, CAROL I, LOPEZ C M. A meso-level approach to the 3D numerical analysis of cracking and fracture of concrete materials[J]. Fatigue Fracture Engneering for Materials and Structure,2006,29:979-991.
    [54]唐春安,朱万成.混凝土损伤与断裂-数值试验[M].北京:科学出版社,2003.
    [55]朱万成.混凝土断裂的细观数值模型及应用[D].沈阳:东北大学,2000.
    [56]ZHU W C, TANG C A. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model[J]. Construction and Building Materials,2002,16(8): 453-463.
    [57]于庆磊,唐春安,朱万成,等.基于数字图像的混凝土破坏过程的数值模拟[J].工程力学,2008,25(9):72-78.
    [58]于庆磊,杨天鸿,唐春安,等.界面强度对混凝土拉伸断裂影响的数值模拟[J].建筑材料学报,2009,12(6):643-649.
    [59]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报,1996,36(1):84-89.
    [60]马怀发,陈厚群,吴建平,等.大坝混凝土三维细观力学数值模型研究[J].计算力学学报,2008,25(2):241-247.
    [61]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,35(10):27-35.
    [62]唐欣薇.基于宏细观力学的混凝土破损行为研究[D].北京:清华大学,2008.
    [63]唐欣薇,张楚汉.基于改进随机骨料模型的混凝土细观断裂模拟[J].清华大学学报,2008,48(3):348-351.
    [64]杜修力,金浏.基于随机多尺度力学模型的混凝土力学特性研究[J].工程力学,2011,28(s1):151-155.
    [65]杜成斌,尚岩.三级配混凝土静、动载下细观力学破坏机制研究[J].工程力学,2006,23(3):141-147.
    [66]杜成斌,孙立国.任意形状混凝土骨料的数值模拟及其应用[J].水利学报,2006,37(6):662-667.
    [67]党发宁,梁昕宇,陈厚群.混凝土三维细观接触面模型数值模拟与CT试验验证[J].计算力学学报,2011,28(1):119-124.
    [68]邬昆,李庆斌.初始缺陷对细观模拟混凝土准脆性的影响[J].人民长江,2010,41(10):63-66.
    [69]张子明,赵吉坤,倪志强.混凝土拉伸断裂的细观力学模拟[J].河海大学学报,2005,33(3):287-290.
    [70]陈永强.非均匀材料有效力学性能和破坏过程的数值模拟[D].北京:清华大学,2001.
    [71]夏晓舟.混凝土细观数值仿真及宏细观力学研究[D].南京:河海大学,2007.
    [72]周尚志.混凝土动静力破坏过程的数值模拟及细观力学分析[D].西安:西安理工大学,2007.
    [73]李建波,林皋,陈健云.复杂轮廓实体内级配随机颗粒的受控填充算法[J].计算机辅助设计与图形学学报,2008,20(11):1521-1526.
    [74]林皋,李建波,赵娟,等.单轴拉压状态下混凝土破坏的细观数值演化分析[J].建筑科学与工程学报,2007,24(1):1-6.
    [75]李建波,林皋,陈健云,等.混凝土损伤演化的随机力学参数细观数值影响分析[J].建筑科学与工程学报2007 24(3):7-12.
    [76]方志,杨钻,苏捷.混凝土受压性能的非均质细观数值模拟[J].湖南大学学报,2010,37(3):1-6.
    [77]李朝红,王海龙,徐光兴.混凝土损伤断裂的三维细观数值模拟[J].中南大学学报,2011,42(2):463-469.
    [78]邬翔,李杰.基于细观物理机制的混凝土损伤数值仿真[J].建筑材料学报,2009,12(3):259-265.
    [79]刘金庭,朱合华,莫海鸿.非均质混凝土破坏过程的细观数值试验[J].岩石力学与工程学报,2005,24(22):4120-4133.
    [80]CUNDALL P A. A computer model for simulating progressive, large-scale movements in blocky rock systems[C]. Symposium ISRM, Nancy,1971:129-136.
    [81]刘凯欣,高凌天.离散元法研究的评述[J],力学进展,2003,33(4):483-490.
    [82]KAWAI T. New element models in discrete structural analysis[J]. J. Soc. Nav. Archit. Jpn., 1977,141,187-193.
    [83]王宝庭.基于刚体-弹簧模型的混凝土微裂纹行为模拟[D].大连:大连理工大学,1997.
    [84]刘玉擎.模拟水泥基复合材料细观断裂过程的随机弹簧元[J].复合材料学报,2003,20(2):106-111.
    [85]王立成,陈桂斌.基于细观刚体弹簧元的轻骨料混凝土力学性能数值模拟[J].水利学报,2008,39(5):588-595.
    [86]KOHEI N, YASUHIKO S, TAMON U. Mesoscopic simulation of failure of mortar and concrete by 2D RBSM[J]. Journal of Advanced Concrete Technology,2004,2(3):359-374.
    [87]WANG Z L, LIN F, GU X L. Numerical simulation of failure process of concrete under compression based on mesoscopic discrete element model[J]. Tsinghua Science and Technology,2008,13(Sl):19-25.
    [88]王卓琳.基于离散单元法的混凝土细观力学模型及其应用[D].上海:同济大学,2009.
    [89]TAMON U. Prediction of structural performance during service life from microstructure. Workshop Proceedings-Microstructure and Durability to Predict Service Life of Concrete Structures, Sapporo,2004:39-48.
    [90]BAZANT Z P, TABBARA M R, KAZEMI M T,·et al. Random particle models for fracture of aggregate or fiber composites[J]. Journal of Engineering Mechanics,1990,116(8): 1686-1705.
    [91]邢纪波.梁-颗粒模型导论[M].北京:地震工程出版社,1999.
    [92]张德海,朱浮生,邢纪波.混凝土拉伸断裂的细观数值分析[J].计算力学学报,2006,23(1):65-70.
    [93]ZUBELEWICZ A, BAZANT Z P. Interface element modeling of fracture in aggregate composites[J]. Journal of Engineering Mechanics,1987,113(11):1619-1630.
    [94]DONZE F V, MAGNIER S A, Daudeville L, et al. Numerical study of compressive behavior of concrete at high strain rates[J]. Journal of Engineering Mechanics,1999, 125(10):1154-1163.
    [95]ZHONG X X, CHANG C S. Micromechanical modeling for behavior of cementitious granular materials[J]. Journal of Engineering Mechanics,1999,125(11):1280-1285.
    [96]SAWAMOTOY, TSUBOTA H, KASAI Y, et al. Analytical studies on local damage to reinforced conerete struetures under impact loading by discrete element method[J]. Nuclear Engineering and Design,1998,179:157-177.
    [97]LIU K, ZHENG W, GAO L, et al. A numerical analysis for stress wave propagation of anisotropic solids by dicerete element method[C].Proeeedings of the 4th International Symposium on Impact Engineering. Kumamoto,2001:589-594.
    [98]LIU K, GAO L. The application of discrete element method in solving three dimensional impact dynamics problems[J]. Acta Mechniaca solida,2003,16(3):256-261.
    [99]ABRAMS D A. Effect of the rate of application of load on the compressive strength of concrete [J]. ASTM J,1917,17:364-377.
    [100]胡时胜.研究混凝土材料动态力学性能的试验技术[J].中国科学技术大学学报,2007,37(10):1312-1319.
    [101]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的试验研究及其本构模型[J].水利学报,1997,7:72-77.
    [102]WATSTEIN D. Effect of straining rate on the compressive strength and. elastic properities of concrete[J]. ACI J,1953,49:732-744.
    [103]COWELL W L. Dynamic properities of plain Portland cement concrete. Technical Report No. R447, DASA130181,Us Naval Civil Engineering Laboratory, California,1966.
    [104]SPARKS P R, MENZIES J B. The effect of the rate of the loading upon the static fatigue strength of plain concrete in compression[J]. Magazine of Concrete Research,1973, 25 (83):73-80.
    [105]MAINSTINE R J. Properities of materials at high rates of straining or loading[J]. Materials & Structures,1975,8(44):102-116.
    [106]KLEPACZHO J R, BRARA A. An experiment method for dynamic tensile testing of concrete by spal ling[J]. International Journal of Impact Engineering,2001,25:387-409.
    [107]王永刚,王礼立.平板撞击下C30混凝土中冲击波的传播特性[J].爆炸与冲击,2010,30(2):119-124.
    [108]MALVAR L J, CRAWFORD J E. Dynamic increase factors for concrete[A]. Twenty-Eighth DDESB Seminar Orlando FL[C],1998.
    [109]BISCHOFF P H, PERRY S H. Compressive behavior of concrete at high strain rates[J]. Materials and Structures,1991,24(144):425-450.
    [110]YOU J H, HAWKINGS N M, KOBAYASHI A S. Strain rate sensitivity concrete mechanical properties[J].ACI Materials Journal,1992,89(2):146-453.
    [111]MALVAR L J, ROSS C A. Review fo strain rate effects for concrete in tension[J]. ACI Materials journal,1998,95(6):735-739.
    [112]尚仁杰.混凝土动态本构行为研究[D].大连:大连理工大学,1994.
    [113]肖诗云.混凝土率型本构模型及其在拱坝动力分析中的应用[D].大连:大连理工大学,2002.
    [114]闫东明.混凝土动态力学性能试验与理论研究[D].大连:大连理工大学,2006.
    [115]王怀亮,闻伟.碾压混凝土单轴动态力学性能研究[J].水力发电学报,2011,30(4):155-167.
    [116]周继凯,吴胜兴,沈德建,等.小湾拱坝三级配混凝土动态弯拉力学特性试验研究[J].水利学报,2009,40(9):1108-1115.
    [117]牛卫晶,闫晓鹏,张立军,等.高应变率下混凝土动态拉伸性能的实验研究[J].太原理工大学学报,2006,37(2):238-241.
    [118]田威,党发宁,陈厚群.动力荷载作用下混凝土破裂特征的CT试验研究[J].地震工程与工程振动,2011,31(1):30-34.
    [119]胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究[J].工程力学,20018(5):115-126.
    [120]王道荣,胡时胜.骨料对混凝土材料冲击压缩行为的影响[J].实验力学,2002,17(1):23-29.
    [121]宁建国,商霖,孙远翔.混凝土材料冲击特性的研究[J].力学学报,2006,38(2):199-208.
    [122]闫东明,林皋.影响混凝土动态性能的因素分析[J].世界地震工程,2010,26(2):30-36.
    [123]吕培印.混凝土单轴双轴动态强度和变形试验研究[D].大连:大连理工大学,2001.
    [124]WEERHEIJIM J. Concrete under impact tensile loading and lateral compression[D]. Delft: Delft University of Technology,1992.
    [125]FUJIKAKE K, MORI K, UEBAYASHI K, et al. Dynamic properties of concrete materials with high rates of tri-axial compressive loads[J]. Structures and Materials,2000,8: 511-522.
    [126]吴胜兴,周继凯,陈厚群.基于微观结构特征的混凝土动态抗拉强度提高机理及其统一模型[J].水利学报,2010,41(4):419-528.
    [127]宁建国,商霖,孙远翔.混凝十材料动态性能的经验公式、强度理论与唯象本构模型[J].力学进展,2006,36(3):389-405.
    [128]ROSSI P. Influence of cracking in presence of free water on the mechanical behavior of concrete[J]. Magazine of concrete research,1991,43(154):53-57.
    [129]ZHENG D, LI Q B. An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity[J]. Eng. Frac. Mech.,2004,71(16-17): 2319-2327.
    [130]王海龙.自由水细观作用机理及其对混凝土宏观力学性能影响分析[D].北京:清华大学,2006.
    [131]TANG T, MALVERN L E, JENKINS D A. Rate effects in uniaxial dynamic compression of concrete[J]. Journal of Engineering Mechanics,1992,118(1):108-124.
    [132]高原.混凝土动力强度与静力强度的关系探讨[D].北京:清华大学,2008.
    [133]GEBBEKEN N, RUPPERT M. A new material model for concrete in high-dynamic hydrocode simulations[J]. Archive of Applied Mechanics,2000,70:463-478.
    [134]TEDESCO J W, ROSS C A. Strain-rate-dependent constitutive equation for concret[J]. Journal of Pressure Vessel Technology,1998,120:395-405.
    [135]HOLMQUIST T J, JOHNSON G R, COOK W H. A computaitional constitutive model for concrete subjected to large strains, high strain rates and high pressure. In:Fisher E, ed. 14th International Symposium on Ballistics, Quebec, Canada.1993. Canada:IEEE Press, 1993,591-600.
    [136]FARIA R, OLIVER J, CERVERA M. A strain-based plastic viscous-damage model for massive concrete structures [J]. International Journal of Solids and Structures,1998,35(14): 1533-1558.
    [137]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [138]李庆斌,邓宗才,张立翔.考虑初始弹性模量变化的混凝土动力损伤本构模型[J].清华大学学报,2003,43(8):1088-1091.
    [139]陈健云,林皋,胡志强.考虑混凝土应变率变化的高拱坝非线性动力响应分析[J].计算力学学报,2004,21(2):45-49.
    [140]吴建营,李杰.考虑应变率效应的混凝土动力弹塑性损伤本构关系[J].同济大学学报,2006,34(11):1427-1430.
    [141]杜修力,王阳,路德春.混凝土材料的非线性单轴动态强度准则[J].水利学报,2010,41(3):300-309.
    [142]EIBL J, SCHMIDT-HURTIENCE B. Strain-rate-sensitive constitutive law for concrete [J]. Journal of Engineering Mechanics,1999,125(12):1411-1420.
    [143]KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension[J]. J. Mech. Phys. Solids,1985,33 (4):399-415.
    [144]郑丹.基于细观机理的混凝土动力强度与动力本构研究[D].北京:清华大学,2005.
    [145]朱万成,尚世明,李占海,等.动态荷载作用下混凝土破裂的数值模拟[J].建筑材料学报,2008,11(6):709-714.
    [146]秦川,张楚汉.基于细观力学的混凝土劈拉破坏率相关特性研究[J].岩土力学,2010,31(12):3771-3777.
    [147]QIN C, ZHANG C H. Numerical study of dynamic behavior of concrete by meso-scale particle element modeling[J]. International Journal of Impact Engineering,2011, 38(12):1011-1021.
    [148]CUSATIS G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering,2011,38(4):162-170.
    [149]梁昕宇,党发宁,田威,等.不同加载率对混凝土试件动力特性的影响研究[J].水力发电学报,2009,28(5):35-40.
    [150]杜修力,田瑞俊,彭一江,等.冲击荷载作用下混凝土抗压强度的细观力学数值模拟[J].北京工业大学学报,2009,35(2):213-217.
    [151]ZHOU X Q, HAO H. Mesoscale modeling of concrete tensile failure mechanism at high strain rates[J]. Computers and Structures,2008,86(21-22):2013-2016.
    [152]马怀发,王力涛,陈厚群,等.混凝土动态损伤的滞后特性[J].水利学报,2010,4l(6):659-664.
    [153]张明,李仲奎,苏霞.准脆性材料弹性损伤分析中的概率体元建模[J].岩石力学与工程学报,2005,24(23):4282-4287.
    [154]刘西拉,温斌.考虑广义边界条件的混凝土应变软化[J].岩石力学与工程学报,2008,27(5):885-892.
    [155]夏蒙棼,许向红.临界敏感性:寻找灾变预测的线索[J].物理通报,2005,(4):7-10.
    [156]中华人民共和国国家标准编写组.GB50010-2002混凝十结构设计规范.北京:中国建筑工业出版社,2002.
    [157]BAZANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Materials and Structures,1983,16(3):155-177.
    [158]姚武,吴科如.混凝土拉伸应力-应变全曲线实验测定的条件[J].同济大学学报,1996,24(2):142-145.
    [159]徐志英.岩石力学[M].北京:中国水利水电出版社,1993.
    [160]周小平,张永兴,哈秋舲,等.单轴拉伸条件下细观非均匀性岩石变形局部化分析及其应力-应变全过程研究[J].岩石力学与工程学报,2004,23(1):1-6.
    [161]王文标,黄晨光,赵红平,等.结构破坏的尺度律[J].力学进展,1999,29(3):383-433.
    [162]CARP INTER I A, CHIAIA B, FERRO G. Size effects on nominal tensile strength of concrete structures:multifractality of material ligaments and dimensional transition from order to disorder[J]. Materials and Structures,1995,28(6):311-317.
    [163]BAZANT Z P. Size effect in blunt fracture:concrete, rock, metal[J]. Journal of Engineering Mechanics,1984,110(4):518-535.
    [164]BAZANT Z P. Fracture in concrete and reinforced concrete. In:BAZANT Z P, ed. IUTAM Prager Symposium on Mechanics of Geomaterials:Rock, Concretes, Soils. Northwestern Univ:1983:281-316.
    [165]BAZANT Z P, CHEN E P. Scaling of Structural Failure[J]. Applied Mechanicals Reviews, 1997,50 (10):593-627.
    [166]CARPINTERI A, CHIAIA B. Multifractal scaling laws in the breaking behaviour of disordered materials[J] Chaos, Solitons and Fractals,1997,8(2):135-150.
    [167]WALRAVEN J C, REINHARDT H W. Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading[J]. Heron,1991, 26 (1A):26-35.
    [168]傅宇芳.岩石脆性破裂过程的数值模拟试验研究[D].沈阳:东北大学,2000.
    [169]YUE Z Q, CHENS, THAM L G. Finite element modeling of geomaterials using digital image processing. Computers and Geotechnics,2003,30(5):375-397.
    [170]TANG C A, LIU H, LEE P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part Ⅰ:effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(4):555-569.
    [171]TANG C A, THAM L G, LEE P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part Ⅱ:constraint slenderness and size effect[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(4):571-583.
    [172]梁正召,唐春安,张永彬,等.准脆性材料的物理力学参数随机概率模型及破坏力学行为特征[J].岩石力学与工程学报,2008,27(4):718-727.
    [173]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [174]KARIHALOO B L, SHAO P F, XIAO Q Z. Lattice modelling of the failure of particle composites[J]. Engineering Fracture Mechanics,2003,70(17):2385-2406.
    [175]OLIVER J. A consistent characteristic length for smeared cracking models[J]. International Journal for Numerical Methods in Engineering,1989,28(2):461-474.
    [176]李光伟,吴政.溪洛渡水电站人工骨料全级配混凝土性能试验研究[J].水电站设计,1999,15(2):101-107.
    [177]过镇海.混凝土的强度和变形:试验基础和本构关系[M].北京:清华大学出版社,1997.
    [178]王怀亮.复杂应力状态下大骨料混凝土力学特性的试验研究和分析[D].大连:大连理工大学2006.
    [179]OHTSU M, WATANABE H. Quantitative damage estimation of concrete by acoustic emission[J]. Construction and building materials,2001,15(5-6):217-224.
    [180]纪洪广,蔡美峰.混凝土材料声发射与应力-应变参量耦合关系及应用[J].岩石力学与工程学报,2003,(2):57-61.
    [181]ELAQRA H, GODIN N, PEIX G, et al. Damage evolution analysis in mortar during compressive loading using acoustic emission and X-ray tomography: Effects of the sand/cement ratio[J]. Cement and concrete research,2007,37(5):703-713.
    [182]陈厚群,丁卫华,蒲毅彬,等.单轴压缩条件下混凝土细观破裂过程的X射线CT实时观测[J].水利学报,2006,37(9):1044-1050.
    [183]党发宁,刘彦文,丁卫华,等.基于破损演化理论的混凝土CT图像定量分析[J].岩石力学与工程学报,2007,26(8):1588-1593.
    [184]KESAVAN K; RAVISANKAR K, PARIVALLAL S, et al. Experimental studies on fiber optic sensors embedded in concrete[J]. Measurement,2010,43 (2):157-163.
    [185]LEUNG C K Y. Fiber optic sensors in concrete:the future [J]. NDT&E International,2001, 34(2):85-94.
    [186]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007.
    [187]DER KIUREGHIAN A LIU P L. Structural reliability under incomplete probability information[J]. Journal of Engineering Mechanics,1986,112(1):85-104.
    [188]WRIGGERS P, MOFTAH S 0. Mesoscale models for concrete:Homogenisation and damage behavior[J]. Finite Elements in Analysis and Design,2006,42(7):623-636.
    [189]陈惠发,萨里普A F.混凝土和土的本构方程[M].余天庆,王勋文,刘西拉,等泽.北京:中国建筑工业出版社,2004.
    [190]VAN MIER J, SHAH S P, ARNAUD M. Strain-softening of concrete in uniaxial compression[J]. Materials and Structures,1997,30(4):195-209.
    [191]VAN VLIET M, VAN MIER J. Experimental investigation of concrete under uniaxial compression[J]. Mechanics of Cohesive-frictional Materials,1996,1(1):115-127.
    [192]VAN VLIET M, VAN MIER J. Softening behaviour of concrete under uniaxial compression. In: Wittmann F H. Fracture Mechanics of Concrete Structures. Freiburg, Aedificatio, 1995:383-396.
    [193]张我华,金荑,陈云敏.损伤材料的动力响应特性[j].振动工程学报,2000,13(3):413-425.
    [194]Comite Euro-International du Beton, CEB-FIP Model Code 1990 Redwood Books Trowbridge Wiltshire, UK,1993.
    [195]刘传雄,李玉龙,吴子燕,等.混凝土材料的动态压缩破坏机理及本构关系[J].振动与冲击2011,30(5):1-5.
    [196]王礼立.应力波基础[M].北京:国防工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700