基于环境与荷载因素的混凝土率效应及破坏机理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构的强度、刚度和延性会受到加载速率的变化而产生显著影响,因而混凝土率效应特性和破坏机理也成为抗震安全评价中的关键性因素之一。本文在大量试验基础上对混凝土材料的率效应及其发生机理进行了系统的研究。利用三轴仪对混凝土在水饱和状态、有加载历史和双向受压状态下进行了动态抗压试验,对CT图像进行了破坏机理分析,累计完成247个试件的加载试验,共获取168组有效数据。主要研究内容如下:
     第一,研究了水环境对混凝土率效应特性的影响。对大气自然湿度状态下的混凝土和水饱和混凝土在10-5/S、5×10-5/s、10-4/S、5×10-4/S应变速率下进行单轴抗压试验与4MPa、8MPa两种围压下的常三轴抗压试验,分析了在不同应变速率、不同围压下大气自然湿度状态和水饱和状态下的混凝土强度、变形特性及弹性模量等物理力学参数及性能的变化特性,并就水介质对混凝土率效应特性的影响程度与规律给出了明确结论,建立了三轴强度率效应经验公式。
     第二,研究了不同荷载类型与加载历史对混凝土率效应特性的影响。对预静载历史和预循环加载历史的混凝土试件在同应变速率下进行单轴抗压试验,对比分析在不同预静载加载历史、预循环加载历史和应变速率下混凝土的峰值应力、峰值应变以及弹性模量等的变化规律。在高应变速率(10-3/s)作用下,加载历史对混凝土强度的影响作用减弱,当预静态加载历史幅值为60%的极限抗压强度时弹性模量达到最大值。在低应变速率(10-5/S)作用下,循环加载历史对混凝土强度的劣化更加明显。
     第三,研究了单双向应力状态下混凝土的率效应特性。对大尺度混凝土试件进行了10-5/S、10-4/S和10-3/s应变速率下单轴压缩试验和在一向侧应力为0MPa、8.3MPa、5.6MPa、8.3MPa下的双轴压缩试验,对比并分析了混凝土的单轴受压和混凝土在不同侧应力下强度、变形特性以及弹性模量等力学性能,对其变化规律给出明确结论。
     第四,基于CT图像分析了混凝土的破坏机理。通过CT实时对混凝土试件横断面在不同加载阶段进行了11次扫描和第9、10、11次加载进行了从外向里的切面扫描,分析了混凝土的破坏机理。对水饱和混凝土动态损伤与破坏形态从细观层面给出了清晰的描述,对其损伤与破坏机理给出了明确的解释。
Due to the strength, stiffness and ductility of the concrete structure will be subjected to the influence of loading rate. Therefore, rate effect and failure mechanism of concrete is one of the key factor in seismic safety evaluation. This paper attempted to experimentally and theorecitally study rate effect of concrete and its dynamic failure mechanism.The dynamic compression test of concrete was carried out under water saturated, loading history and biaxial compression by triaxial apparatus. And analyzed the destruction mechanism of concrete CT images. completed total247specimen loading test, selected168valid data sets for analysis. The main research contents are as follows:
     First, the rate effect of concrete was investigated detailedly under water saturated. Uniaxial compression test and triaxial compression test of two confining pressure(4MPa>8MPa) of concrete under condition of atmospheric natural moisture and water saturated has been carried out at four loading rates(10-5/s、5×10-5/s、10-4/s、5×10-4/s) in this paper.The physical and mechanical parameters such as the elastic modulus, the strength, the deformation were studied under the different strain rate and confining pressure. This paper gave a definite conclusion about the influence extent and rule of rate effect of concrete under water environment and established triaxial strength rate effect empirical formula.
     Second, the rate effect of concrete was investigated detailedly under different load types and loading history. To study the dynamic uniaxial compression test of concrete under static load and cyclic loading history at there different strain rates. Comparatively analyzed the mechanical properties such as peak stress, peak strain and elastic modulus of concrete under different static loadings history and strain rate. The mechanical properties of concrete were analyzed under different cyclic amplitude, cyclic frequency and strain rate. The influence of concrete strength was weakened by loading history at high strain rate (10"3/s). Modulus of elasticity has reached the maximum when static loading history of value is60%of the ultimate compressive strength. The degradation of concrete strength under cyclic loading historyis more clear at low strain rate (10-3/s).
     Third, the rate effect of concrete was investigated detailedly under uniaxial and biaxial compression. Compression tests of concrete samples of large scale under uniaxial and biaxial compression at three loading rates (10-5/s,10-4/s,10-3/s) and four kinds of lateral stress levers (OMPa,2.8MPa,5.6MPa,8.4MPa). And the mechanical property of concrete as uniaxial compression strength, deformation characteristic and elastic modulus under uniaxial compression or different lateral stress levers were analysed, gave a clear conclusion about the variety regulation.
     Fourth, the destruction mechanism of concrete was analyzed according to the images obtained from CT. Through the CT real-time of concrete specimen cross section at different loading stages11scanning and peripheral section and the section in the middle of the scan.concrete specimen cross-sectional was scaned11times at different loading stages and the ninth, tenth, eleventh loading stages were scaned from outside to inside. This paper gave a clear description of the water saturation concrete dynamic damage and failure pattern from the mesoscopic level and explainde the damage and failure mechanism.
引文
[1]张楚汉.高坝-水电站工程中的关键科学问题[J].三峡大学学报,2004,26(03):193-197.
    [2]Chopra A K. (1992) Earthquake analysis, design and safety evaluation of concrete arch dams [A]. Proc. Tenth WCEE[C]. Madrid, Spain:[s. n.].1992,6763-6782.
    [3]陈健云,李静,林皋.(2005)基于率性损伤模型的混凝土重力坝地震响应分析[J].哈尔滨工业大学学报.2005.6,37(6):786-789.
    [4]林皋.混凝土大坝抗震安全评价的发展趋向[J].防灾减灾工程学报,2006,26(1):1-12.
    [5]樊明武.发展核电保护环境[J].太原理工大学学报,2010,41(5):459-463.
    [6]肖东生.基于核电站安全的组织因素研究[D],中南大学,2009.10.
    [7]钱国桢,孙宗光,倪一清.对现行核电站抗震设计规范中若干问题的讨论与建议[J].工程抗震与加固改造,34(6):111-115,2012.12.
    [8]宁建国,商霖,孙远翔.混凝土材料动态性能的经验公式、强度理论与唯象本构模型[J].力学进展,36(3):389-405,2006.8.
    [9]陈书宇.混凝土本构模型及其动态有限元算法研究.上海力学,1998,19(2):109~116.
    [10]江见鲸.关于钢筋混凝土数值分析中的本构关系.力学进展,1994,24(1):117~122.
    [11]Balan T A, Spacone E, Kwon M. A 3D hypo-plastic model for cyclic analysis of concrete structures. Engineering Structures,2001,23:333-342.
    [12]Grassl P, Lundgreren K, Gylltoft K. Concrete in compression:a plasticity theory with a novel hardening law. International Journal of Solids and Structures,2002,39:5205-5223.
    [13]高路彬.混凝土变形与损伤的分析.力学进展,1993,23(4):510~519.
    [14]郭少华.混凝土破坏理论研究进展.力学进展,1993,23(4):520~529.
    [15]Jefferson A D. Craft-a plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations. International Journal of Solids and Structures, 2003,40:5973-5999.
    [16]Li.Q.B.Damage constitutive for high strength concrete in tri-axial cyclic compression. International Journal of Solids and Structures,2002,39:4013-4025.
    [17]Kuna-Ciskal H, Skrzypek J J. CDM based modeling of damage and fracture mechanisms in concrete under tension and compression. Engineering Fracture Mechanics,2004, 71:681-698.
    [18]ASCE Task Committee on Finite Element Analysis of Reinforced Concrete Structure. Finite element analysis of reinforced concrete structure. ASCE,1982.
    [19]Yip W K. Generic form of stress-strain equations for concrete. Cement and concrete research,1998,28(1):33-39.
    [20]ACI Committee 446. Finite element analysis in concrete structures. ACI report 446.3R-97, 1998.
    [21]Abrams D A. Effect of rate of application of load on the compressive strength of concrete. ASTM J,1917,17(partⅡ):364-377.
    [22]Bazant Z P. Scaling of structural strength. London:Penton,2002.
    [23]Carpinteri A, Chiaia B, Ferro G. Multi-fractal scaling law for the nominal strength variation of concrete strength. in Size Effect In Concrete Structure, eds. H. Mhashi, H. Okamura, Z. P. Bazant, E & FNSpon,1994.
    [24]Tokyay M, Ozdemir M. Specimen shape and size effect on the compressive strength of higher strength concrete. Cement and Concrete Research,1997,27(8):1281-1289.
    [25]Karihaloo B L, Abdalla H M, Xiao Q Z. Size effect in concrete beam. Engineering Fracture Mechanics,2003,70:979-993.
    [26]Ince R, Arici E. Size effect in bearing strength of concrete cubes. Construction and Building Materials,2004,18:603-609.
    [27]Van Mier J G M, Van Vliet M R A. Experimental investigation of size effect in concrete and sandstone under uniaxial tension. Engineering Fracture Mechanics,2000,65:165-188.
    [28]Van Mier J G M, Van Vliet M R A. Influence of microstructure of concrete on size/scale effects in tensile fracture. Engineering Fracture Mechanics,2003,70:2281-2306.
    [29]钱觉时,黄煜镔.混凝土强度尺寸效应的研究进展.混凝土与水泥制品,2003,3:1-5.
    [30]尚仁杰,赵国藩,黄承逵.(1996)低周循环荷载作用下混凝土轴向拉伸全曲线的试验研究[J].水利学报,1996,7:82-87.
    [31]Spark, P. R., Menzies, J. B. The effect of rate loading upon the static and fatigue strengths of plain concrete in compression[J], Magazine of Concrete Research,2007,25(83): 73-80.
    [32]柏巍,彭刚,周丽娜,戚永乐.钢纤维混凝土动态特性三轴试验研究[J].矿业研究与开发,2008,28(1):21-24.
    [33]邓宗才,薛会青.玄武岩纤维混凝土的抗弯冲击性能[J].建筑科学与工程学报,2009,26(1):80-83.
    [34]彭刚,刘德富,戴会超.钢纤维混凝土动态抗压性能及全曲线模型研究[J].工程力学,2009,26(2):142-147.
    [35]彭刚,戚永乐,王乾峰,柏巍.复杂动载作用下钢纤维混凝土材料参数特征分析[J].土木工程学报,2010,(2):34-38.
    [36]董毓利,谢和平,赵鹏.不同应变率下混凝土抗压全过程的实验研究及其本构关系[J].水利学报,1997,(7):71-77.
    [37]肖诗云,李宏男,杜荣强,林皋.混凝土四参数动态本构模型[J].哈尔滨工业大学学报,200638(10),1754-1757,1785.
    [38]Hatano, T. and Tsutsumi, H. Dynamic compressive deformation and failure of concrete under earthquake load[A], Proceeding of 2nd world conference on earthquake engineering, 2008,3:1963-1978.
    [39]沈新普,冯金龙,杨璐,代述红,潘一山.混凝土结构损伤过程区几何特性数值研究[J].岩石力学与工程学报,2008,27(Supp.1):3261-3273.
    [40]马怀发,王立涛,陈厚群,李德玉.混凝土动态损伤的滞后特性[J].水利学报,2010,41(6):659-664.
    [41]杜修力,王阳,路德春.混凝土材料的非线性单轴动态强度准则[J].水利学报,2010,41(3):300-309.
    [42]Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates. Material and structure,1991,144(24):425-450.
    [44]Malvar L J and John E C. (1998) Dynamic increase factors for concrete. Twenty-Eighth DDESB Seminar Orlando, FL, August 1998.
    [45]Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:Ⅰ. experimental characterization. International Journal of Impact Engineering, 2001,25:869-886.
    [46]Ragueneau F, Gatuingt F. Inelastic behavior modeling of concrete in low and high strain rate dynamics. Computers and Structures,2003,81:1287-1299.
    [47]Cadoni E, Labibes K etc. High-strain-rate tensile behavior of concrete. Magazine of concrete research,2000,52(5):365-370.
    [48]Rossi P, Toutlemonde F. Effect of loading rate on the tensile behavior of concrete: description of the physical mechanisms. Materials and Structures,1996,29:116-118.
    [49]陈厚群,丁卫华,党发宁,尹小涛.混凝土CT图像中等效裂纹区域的定量分析[J].中国水利水电科学研究院学报,2006,4(1):1-7.
    [50]廖隽勇.基于细观力学的混凝土数值模拟初步研究[D],三峡大学,湖北宜昌,2007.
    [51]柏巍,彭刚,戚永乐,王乾峰.基于CT图像的混凝土细观结构的有限元重建[J].混凝土,2008,(2):63-69.
    [52]戚永乐,彭刚,柏巍,王乾峰.基于CT技术的混凝土三维有限元模型构建[J].混凝土,2008,(5):26-29.
    [53]吴胜兴,周继凯,沈德建,陈厚群.混凝土动态弯拉试验技术与数据处理方法[J].水利学报,2009,40(5):569-575.
    [54]杜修力,田瑞俊,彭一江,田予东.冲击荷载作用下混凝土抗压强度的细观力学数值模拟[J].北京工业大学学报,2009,35(2):213-217.
    [55]丁卫华,陈厚群,刘少聪,张健,冯雨.丛于CT的混凝土动力破坏过程的试验研究[J].水力发电,2009,35(5):21-23.
    [56]Moore, O. L. Report of working committee of committee C-1 on plastic mortar tests for Portland cement[A]. Proceeding of the American society for testing materials.1934,34: 322.
    [57]Evans, R. H. Effect of rate of loading on the mechanical properties of some materials[J]. J of Inst. of civ. Engrs.,1942,18(7-8):296-306.
    [58]Murdock, J. W. A critical review of research on fatigue of plain concrete[D]. Urbana, University oflllinois, pp.25, Engineering experiment station bulletin No.475,2006.
    [59]Dhir R. K., Sangha C. M. A Study of relationships between time, strength, deformation and fracture of plain concrete[J]. Magazine of Concrete Research,2007,24(81):197-208.
    [60]Thaulow, S. Rate of loading or compressive strength test[D], Betong,1993,38(1):11-15.
    [61]Rush, H. Research towards a general flexural theory for structural concrete[J]. ACI J.,2006, 57(l):1-28.
    [62]Spooner, D.C. Stress-stress-time relationships for concrete[J]. Mag. Concr. Res.,2008, 24(81):197-208.
    [63]Dilger, W. H., Koch, R., and Kowalczyk, R. Ductility of plain and confined concrete under different strain rates[J]. ACI Journal,2008,81(1):73-81.
    [64]刘钧玉,林皋,胡志强,李建波.裂纹内水压分布对重力坝断裂特性的影响[J].土木工程学报,2009.3,42(3):132-141.
    [65]李宗利,王锦丽,刘霞.考虑水力劈裂效应的重力坝坝踵裂缝稳定分析[J].人民长江,20 1 0.4,41(8):86-88.
    [66]Spark, P. R., Menzies, J. B. The effect of rate loading upon the static and fatigue strengths of plain concrete in compression[J], Magazine of Concrete Research,2007,25(83):73-80.
    [67]吴胜兴,周继凯,沈德建,陈厚群.混凝土动态弯拉试验技术与数据处理方法[J].水利学报,2009.5,40(5):569-575.
    [68]Hatano, T. and Tsutsumi, H. Dynamic compressive deformation and failure of concrete under earthquake load[A],Proceeding of 2nd world conference on earthquake engineering, 2008,3:1963-1978.
    [69]李新忠,魏雪英,赵均海.混凝十力学性能的应变率效应[J].长安大学学报,2012,32(02),82-86.
    [70]李庆斌,陈樟福生,孙满义,吕培印.真实水荷载对混凝土强度的试验研究[J].水利学报,2007.7,38(7):786-791.
    [71]李庆斌,王海龙.水环境对混凝土力学性能的影响研究评述[J].中国科技论文在线,2006.9,1(2):83-94.
    [72]杜守来,李宗利,金学洋.孔隙水压对混凝土抗压强度影响的初步研究[J].人民长江,2009.2 40(3):54-55.
    [73]张劲松,刘利珍.输水洞侵蚀破坏机理分析及防护措施研究.武汉大学学报(工学版),2003(2):29~31.
    [74]张红霞.浅谈混凝土的腐蚀与防止.太原科技,2000(6):29-31.
    [75]张云莲.液态腐蚀性介质对混凝土结构耐久性的影响.腐蚀与防护,2001(5):202-204.
    [76]王少明.大黑汀水库大坝除险加固处理初步探讨.大坝与安全,2000(4):51~52.
    [77]陈江茂.钢筋混凝土在使用中与外部环境发生化学作用及其防护.韩山师范学院学报,2002(6):112-116.
    [78]李旭春,张国立.环境水对回龙山水电站水工建筑物侵蚀的研究.海河水利,2002(3)37~38.
    [79]张文渊.环境水对水泥混凝土的侵蚀作用及防护措施.腐蚀与防护,2000(2):83-85.
    [80]张云莲,李家康.液态腐蚀性介质条件下混凝土结构耐久性设计.杭州应用工程技术学院学报,2001(3):26-29.
    [81]张晓静.腐蚀对混凝土结构物的影响及防治.黑龙江水专学报,2002(12):105~106.
    [82]朴龙泽,赵淑明,高伟平.丰满大坝渗水对混凝土的溶蚀分析.水利水电技术,2000(10):34-36.
    [83]水利水电科学研究院结构材料研究所.大体积混凝土[M].北京:水利水电出版社,1990.
    [84]邢林生,聂广明,混凝土坝坝体溶蚀病害及治理.水力发电,2003(11):60~63.
    [85]李金玉,曹建国,徐文雨等.压力水下混凝土渗漏溶蚀的试验研究.重点工程混凝土耐久性的研究与工程应用.中国建材工业出版社.2000.
    [86]陈一飞,混凝土结构劣化机理及耐久性设计研究.煤炭工程,2003(12):48-52.
    [87]吴相豪.盐酸对混凝土腐蚀的试验研究.南昌水专学报,1995(1):1-5.
    [88]蓝俊康,王焰新.酸性气体对混凝土耐久性的影响及研究进展.地质灾害与环境保护,2002(9):22-26.
    [89]杜洪彦,邱富荣,林昌健.混凝土的腐蚀机理与新型防护方法.腐蚀科学与防护技术,2001(5):156-161.
    [90]孙兆雄,葛毅雄.天然硫酸环境水对混凝土的侵蚀例析.新疆农业大学学报,2003,26(2):65-71.
    [91]张德思,成秀珍.混凝土在工业环境下的抗化学侵蚀性.工业建筑,1999(11):51~52.
    [92]谢邵东,周定,岳奇贤.混凝土、砂浆和灰砂砖在模拟酸雨条件下的化学行为.重庆环境科学,1996(8):33~38.
    [93]朱永斌,孙兆雄,葛毅雄.“双掺”普通水泥混凝土抗硫酸盐、镁盐侵蚀破坏微观结构的研究.新疆农业大学学报,1999,22(2):137-144.
    [94]贾锋,韩传峰,李积华.受硫酸腐蚀混凝土抗压强度的试验研究.山东建筑工程学院学报,1996(6):41-45.
    [95]吴邦彦.海水对钢筋混凝土的侵蚀机理与防护措施探讨.福建建设科技,2000(3):34-37.
    [96]郑继东,胡斌,李明.碱性废液对水处理构筑物的腐蚀破坏研究.焦作工学院学报(自然科学版),2003(9):379-382.
    [97]马晓辉,彭汉兴,杨光中等.大坝环境水质特征与化学潜蚀.水利学报,2001(10):44~47.
    [98]刘光华,徐亚萍,陈鹤云等.新型抗高浓度盐卤腐蚀材料.重点工程混凝土耐久性的研究与工程应用.中国建材工业出版社.2000.
    [99]MEHTA P K, NONTEIRO P J M. Concrete Microstructure Properties and Materials [M].New York:Indian Concrete Institute,1997.
    [100]NEVILLE A. Properties of concrete [M].Pitman, London:McGraW-Hill,1973.
    [101]Yaman 10, Hearn N, Aktan HM. Active and non-active porosity in concrete Part I Experimental Evidence, Materials and Structures,2002,35:102-109.
    [102]白卫峰,陈健云,孙胜男.孔隙湿度对混凝土初始弹性模量影响[J].大连理工大学学报,2010,50(5):712-716.
    [103]王海龙,李庆斌.饱和混凝土的弹性模量预测.清华大学学报(自然科学版),2005,45(6):761-763.
    [104]Wang HL, Li QB, Prediction of elastic modulus and Poisson's ratio for unsaturated concrete International Journal of Solid and Structures,2007,44:1370-1379.
    [105]Wang H L, Li Q B. Experiments of the compressive under different loading rates, Journal of Hydroelectric properties of dry and saturated concrete Engineering,2007,26(l):84-89.
    [106]杜修力,金浏.饱和混凝土有效模量及有效抗拉强度研究[J].水利学报,2012,43(6):667-673.
    [107]李林.含水率对混凝土性能影响的研究[D].北京交通大学.
    [108]Wittmann F H. Interaction of hardened cement paste and water[J]. Journal of the American Ceramic Society,1973,56(8):409-415.
    [109]刘保东,李鹏飞.混凝土含水率对强度影响的试验[J].北京交通大学学报,2011,35(1):9-12.
    [110]Li G The effect of moisture content on the tensile strength properties of concrete. Florida University,2004.
    [111]Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Materials Journal,1996,93(3):293-300.
    [112]Kaplan S A. Factors affecting the relationship between rate of loading and measured compressive strength of concrete[J].Magazine of Concrete Research,1980,32(111):79-88.
    [113]Xuan Hong Vu, Malecot Y, Daudeville L, et al. Experimental analysis of concrete behavior under high confinement:effect of the saturation ratio, Int. J. Solids Struct.2009 (46): 1105-1120.
    [114]Cadoni E, Labibes K, Albertini C, et al. Strain-rate effect on the tensile behavior of concrete at different relative humidity levels. Materials and Structure,2001,34:21-26.
    [115]Imran I, Pantazopoulou S J. Experimental study of plain concrete under triaxial stress[J]. ACI Materials Journal,1996,93(6):589-601.
    [116]李坚.水灰比对水泥混凝土各力学指标影响的试验研究[D].吉林大学.
    [117]王海龙,李庆斌.湿态混凝土抗压强度与本构关系的细观力学分析[J].岩石力学与工程学报.2006.8.
    [118]王海龙,李庆斌.饱和混凝土静动力抗压强度变化的细观力学机理[J].水利学报,2006.8.
    [119]王海龙,李庆斌.水饱和混凝土静力抗拉强度降低细观机理及本构模型[J].应用基础与工程科学学报,2008,16(1):65-71.
    [120]王海龙,李庆斌.孔隙水对湿态混凝土抗压强度的影响[J].工程力学,2006,23(10):141-144
    [121]Oshita H and Tanabe. Water migration phenomenon model in cracked concrete I: formulation [J]. Journal of engineering mechanics,May,2000,P539-543.
    [122]Butler J E.The influence of pore pressure upon concrete[J]. Magazine of concrete research. Vol33,No.114.March 1981.
    [123]姬永生,董亚男,袁迎曙等.混凝土孔隙水饱和度的机理分析[J].四川建筑科学研究,2010,36(2)215-218.
    [124]Bjerkei L, Jensen J J, Lenschow R. Strain development and static compressive str ength of concrete ex posed to water pressure loading[J]. ACI Structure J.,1993,90 (3):310-315.
    [125]李鑫鑫.孔隙水对混凝土静力特性的影响研究[D].重庆交通大学.
    [126]林凯生,李宗利.高孔隙水压作用下混凝土渗流-损伤祸合模型[J].水利水运工程学报,2010,38(2):51-55.
    [127]李宗利,杜守来.高渗透孔隙水压对混凝土力学性能的影响试验研究[J].工程力学,2011,28(11):72-77.
    [128]Rossi P. Influence of cracking in the presence of free water on the mechanical behavior of concrete. Magazine of concrete research,43,1991, P53-57.
    [129]Allen C, David M. Jerome, Joseph W. Tedesco & Mary L. Hughes. Moisture and strain rate effects on concrete strength. ACI Material Journal, P293-300,1996.
    [130]Ross C A, Jerome DM, Tedesco JW, Hughes ML. Moisture and strain rate effects on concrete strength. ACI Materials Journal,96:293-300,1996.
    [131]Rossi P. Influence of cracking in the presence of free water on the mechanical behavior of concrete. Magazine of Concrete Research,1991,43(154):53-57.
    [132]Zheng Dan, Li Qingbin. An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity. Eng. Frac. Mech,2004,71(16-17): 2319-2327.
    [133]Zheng D, Li Q B, Wang L B. A microscopic approach to rate effect on compressive strength of concrete. Eng. Frac. Mech,2005,72:2316-2327.
    [134]Rossi P, van Mier JGM, Toutlemonde F et.al. Effect of loading rate on the strength of concrete subjected to uniaxial tension. Materials and Structures,1994,27:260-264.
    [135]Rossi, P. Strain rate effects in concrete structure:the LPC experience. Materials and Structures, Supplement March PP.54-62,1997.
    [136]Allen C, David M. Jerome, Joseph W. Tedesco & Mary L. Hughes. Moisture and strain rate effects on concrete strength.ACI Material Journal, Mary-June,1996, P293-300.
    [137]Cadoni E, Labibes K, Albertini C et al. Strain-rate effect on the tensile behavior of concrete at different relative humidity levels. Materials and Structures, V34, PP.21-26,2001.
    [138]Wittmann F H. Interaction of hardened cement paste and water. Journal of the American ceramic society, V56,1973,P409-415.
    [139]王海龙,李庆斌.不同加载速率下干燥与饱和混凝土抗压性能试验研究分析[J].水力发电学报,2007,26(1):84-89.
    [140]徐世娘,王建敏.水压作用下大坝混凝土裂缝扩展与双K断裂参数[J].土木工程学报,2009,42(2):119-125.
    [141]朱方之,刘健,李泽良.动弹性模量测试中的含水率影响因素探讨[J].混凝土,2012,11(1):40-43.
    [142]Kupfer H, Hilsdorf HK., Rusch H. Behavior of concrete under biaxial stresses. ACI.Iournal, 1969,66(8):656-666.
    [143]Rosenthal L, Glucklich J. Strength of Plain Concrete under Biaxial Stresses, Journal of ACI, 1970,67(11):903-914.
    [144]Torrenti J. M., Djebri B. Behavior of Steel-Fiber-Reinforced Concretes under Biaxial Compression Loads, Cement and Concrete Composites,1995,17(4):261-266.
    [145]Hussein A. Marzouk H. Behavior of high-strength concrete under biaxial stresses, ACI materials journal,2000 97 (1):27-36.
    [146]Lim D.H.Navvy E.G. Behavior of plain and steel-fibre-reinforced high-strength uniaxial and biaxial compression. Magazine of concrete Research,2005,57(10):603-610.
    [147]王传志,过镇海,张秀琴等.二轴和三轴受压混凝土的强度试验[J].土木工程学报,1987,20(1):15-26.
    [148]陈志达.复杂应力状态下混凝土的强度估计[J].水利学报,1991,3(2):60-64.
    [149]李嘉进,陈志勋.多轴受力下混凝土强度和变形的试验研究[J].水电站设计,1991,7(04):45-52.
    [150]朱乃龙,彭少民,宋显辉.多轴应力状态下混凝土强度和理论的研究[J].第二届结构工程学术会议论文集,1993:414-419.
    [151]赵国藩,宋玉普.复杂应力状态下混凝土的变形和强度特性[J].海洋工程,1991,(02):20-32.
    [152]金生吉,陈四利,孙一民.复杂应力状态下混凝土的强度理论研究[J].沈阳工业大学学报,2004,26(3):329-332.
    [153]吕培印,宋玉普,李庆斌.定侧压混凝土双轴压疲劳性能研究[J].工程力学,2004,(02):173-177.
    [154]吕培印,李庆斌,张立翔.定侧压混凝土双压疲劳损伤模型[J].工程力学,2004,(05):77-82.
    [155]林皋,闫东明,袁颖,刘钧玉.定侧压下混凝土的双轴动态抗压强度及破坏模式[J].水利学报,2006,37(27):33-37.
    [156]闫东明,林皋,刘钧玉.定侧压下混凝土的双轴动态抗压强度及破坏模式[J].水利学报,2006,(02):200-204.
    [157]李嘉进,陈志勋.多轴受力下混凝土强度和变形的试验研究[J].水电站设计,1991,(04):45-52.
    [158]揽生瑞,过镇海.定侧压下混凝土二轴受压变形特性的试验研究.土木工程学报,19%,29(2):28-36.
    [159]吕培印,宋玉普,吴智敏.变速率加载下有侧压混凝土强度和变形特性[J].大连理工大学学报,2001,(06):716-720.
    [160]李杰,任晓丹,杨卫忠.混凝土二维本构关系试验研究[J].土木工程学报,2007,(04):6-12.
    [161]关萍.定侧压下混凝土双轴动态抗压性能的试验研究[J].土木工程学报,2009,42(04):33-37.
    [162]Cook D J, Chindaprasirt P. Infulence of loading history upon the compressive properities of concrete[J].Magazine of Concrete Research,1980,32(111):89-100.
    [163]Cook D J, Chindaprasirt P. Infulence of loading history upon the tensile properities of concrete[J].Magazine of Concrete Research,1981,33(116):154-160.
    [164]Akutagawa S, Jeang F L, Hawkins N M, et al. Effects of loading history on fracture properties of concrete[J].ACI Materials Journal,1991,88(2):170-180.
    [165]Walraven J, Frenay J, Pruijssers A. Influence of concrete strength and load history on the shear friction capacityof concrete members[J].PCI Journal (Prestressed Concrete Institute),1987,32(1):66-84.
    [166]Stankowski T, Gerstle K H.Simple formulation of concrete behavior under multiaxial load histories[J].Journalof the American Concrete Institute,1985,82(2):213-221.
    [167]Delibes Liniers A. Microcracking of concrete under compression and its influence on tensile strength[J].Material and Structures,1987,20(116):111-116.
    [168]Meier R W,Gerstle K H,Ko H Y. Effects of multiaxial compressive loading on the residual tensile strength of plain concrete[R].Albuquerque:University of New Mexico,1981.
    [169]逯静洲,林皋,肖诗云等.混凝土材料经历三向受压荷载历史后抗拉强度劣化的研究[J].水利学报,2001(1):68-75.
    [170]谢玖杨,彭刚,胡海等.等幅循环加载历史后混凝土动态特性试验[J].水利水电工程,2013(2):105-107.
    [171]邓宗才,钱在兹.低周循环加载历史对碳纤维混凝土断裂特性影响的试验研究[J].中国公路学报,2000,13(2):64-68.
    [172]林峰,Stangenberg,Friedhelm,顾祥林.考虑加载历史的约束混凝土动力本构模型[J].同济大学学报.2008,(4):432-437.
    [173]袁建力,王仪,张靖静等.荷载历程对预应力梁的耗能及破坏特征的影响[J].工程力学,2007,24(10):137-143.
    [174]肖诗云,张剑.荷载历史对混凝土动态受压损伤特性影响试验研究[J].水利学报,2010,41(8):943-952.
    [175]逯静洲,林皋,王哲.混凝土经历荷载历史后损伤特性研究[J].烟台大学学报,2004,17(4):277-287.
    [176]刘俊飞,田汉儒,孙吉书.低经历荷载历史后的混凝土动态抗压试验[J].低温建筑技术,2012,11(173):1-3.
    [177]林皋,王哲,逯静洲等.三向等压荷载历史对混凝土的强度和变形特性影响的研究[J].水力发电学报,2001,20(3):31-41.
    [178]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proc 7th Int Symp Ballistics, Am Def Prep Org (ADPA), The Hague, Netherlands,1983:541-547.
    [179]Cowper G R, Symonds P S. Strain hardening and strain rate effects in the impact loading of cantilever beams. Technological Report No.28, ONR Contr No.562(10), Div. of Engng, Brown University, Providence, RI,1957.
    [180]陈大年,Al-Hassani S T S,尹志华,俞宇颖,沈雄伟.混凝土的冲击特性描述.爆炸与冲击,2001,21(2):89~97.
    [181]陈书宇.混凝土本构模型及其动态有限元算法研究.上海力学,1998,19(2):109~116.
    [182]Eibl S J, Wunderlich W. Behavior of reinforced concrete during shock wave loading, Computational modeling of concrete Structures, EURO-C 1994, H. Mang et al., eds,. Pineridge press, Swansea, Wales, U.K.,639-648.
    [183]王礼立,余同希,李永池.冲击动力学进展.中国科学技术大学出版社,合肥,1992.
    [184]Georgin J F, Reynouard J M. Model of structures subjected to impact:concrete behavior under high strain rate. Cement and Concrete Composites,2001:1-13.
    [185]Winnicki A, Pearce C J, Bicanic N. Viscoplastic hoffman consistency model for concrete. Computers and Structures,2001,79:7-19.
    [186]Lemaitre J. Application of damage concepts to predict creep-fatigue failure. Journal of Engineering Materials and Technology (ASME),1979,101(1):202-209.
    [187]陈江瑛,王礼立.水泥砂浆的率型本构方程.宁波大学学报(理工版),2000,13(2):1-5.
    [188]李庆斌,邓宗才,张立翔.考虑初始弹性模量变化的混凝土动力损伤本构模型.清华大学学报,2003,43(8):1088-1091.
    [189]李兆霞.损伤力学及其应用.北京:科学出版社,2002.
    [190]商霖,宁建国,孙远翔.强冲击载荷作用下钢筋混凝土本构关系的研究.固体力学学报,2005,26(2):1-8.
    [191]Krajcinovic D, Silva M A G. Statistical aspects of the continuous damage mechanics. International Journal of Solids and Structures 1982,18:551.
    [192]Rossi P, Toutlemonde F. Effect of loading rate on the tensile behavior of concrete: description of the physical mechanisms. Materials and Structures,1996,29:116-118.
    [193]钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报:自然科学版,1989,3(3).
    [194]尹双增.断裂,损伤理论及应用[M].清华大学出版社,1992.
    [195]余天庆.混凝土的分段线性损伤模型[J].岩石,混凝土断裂与强度,1985,(2):14-16.
    [196]邓宗才.单轴状态下混凝土的静力、动力损伤本构模型[J].山东建材学院学报,1999,13(4):334~337.
    [197]李庆斌,邓宗才,张立翔.考虑初始弹模变化的混凝土动力损伤本构模型[J].清华大学学报:自然科学版,2003,43(008):1088-1091.
    [198]李庆斌,张楚汉.单轴状态下混凝土的动力损伤本构模型[J].水利学报,1994,(012):55-60.
    [199]过镇海,时旭东.钢筋混凝土原理和分析[M].清华大学出版社,2003.
    [200]COWELL-W. CALIF N C E L P H. DYNAMIC PROPERTIES OF PLAIN PORTLAND CEMENT CONCRETE[M]. NAVAL CIVIL ENGINEERING LAB PORT HUENEME CALIF,1966.
    [201]尚仁杰.混凝土动态本构行为研究[D].大连:大连理工大学,1994.
    [202]王海龙,李庆斌.饱和混凝士的弹性模量预测[J].清华大学学报:白然科学版,2005,45(006):761-763.
    [203]闫东明,林皋,徐平.三向应力状态下混凝土动态强度和变形特性研究[J].工程力学,2007,24(3):58-64.
    [204]闫东明,林皋.三向应力状态下混凝土强度和变形特性研究[J].中国工程科学,2007,9(6):64-70.
    [205]吕培印,宋玉普.混凝土动态抗压试验及其本构模型[J].海洋工程,2002,(02):43-48.
    [206]吕培印,宋玉普,吴智敏.变速率加载下有侧压混凝土强度和变形特性[J].大连理工大学学报,2001,(06):716-720.
    [207]杨钻.混凝土尺寸效应的细观数值分析及试验研究[D]:湖南大学,2009.
    [208]VAN MIER J.G.M. Fracture processes of concrete:assesment of material parameters for fracture models[M].1997.
    [209]杨卫忠,李杰,A任晓丹.混凝土二维本构关系试验研究[J].土木工程学报,2007,(04):6-12.
    [210]Morgan I L, et al. Examination of concrete by computerized tomography[J]. ACI Journal, 1980,77(1):23-27.
    [211]Oral Buyukozturk. Imaging of concrete structures[J]. NDT&E. International,1998,31(4): 233-243.
    [212]John S L, Denis T K, Surendra P S. Measuring three-dimensional damage inconcrete under compression[J].ACI Materials Journal,2001,98(6):465-475.
    [213]Lawer J S, Keane D, Shah S P. Measuring three_dimensional damage in concrete under compression[J].ACI MaterialsJournal,2001,98(6):465-475
    [214]尹小涛,葛修润,党发宁等.基于CT试验的混凝土破损机理生态学研究[J].混凝土,2006(8):21~24.
    [215]周尚志,党发宁等.基于单轴压缩CT实验条件下混凝土破裂分形特征分析[J].水利发电学报,2006(10):112~117
    [216]陈厚群,丁卫华,蒲毅彬等.单轴压缩条件下混凝土细观破裂过程的X射线CT实时观测[J].水利学报,2006,37(9):1044~1050.
    [217]于骁中,居襄.混凝土的强度和破坏[J].水利学报,1983,2.22-35.
    [218]王海龙,李庆斌.湿态混凝土抗压强度与本构关系的细观力学分析[J].岩石力学与工程学报,2006,25(8):1531-1536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700