高速进给驱动系统动态特性分析及其运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速加工技术要求数控机床的进给驱动系统具有高速度和高加速度,在高速度和高加速度运行工况下,进给驱动机构的动态特性将对机床的加工质量和效率产生显著影响,对现有的控制理论和方法提出了极大的挑战。在此情况下,必须深入研究进给驱动机构的动力学行为特性,并且这种动力学特性也必须在伺服控制和数控运动指令中加以考虑。本文以一种新型的进给驱动方式-重心驱动为对象,对高速进给驱动系统的动力学行为特性及其高精度运动控制策略进行了深入研究,主要包括以下几方面内容:
     建立了重心驱动机构的动力学模型,从理论上证明了理想的重心驱动方式能够抑制各轴运动时产生的回转振动和弯曲,从而实现稳定驱动。通过对重心驱动机构的参数化建模,分析了不同设计参数变化对重心驱动机构动力学性能的影响,研究结果为重心驱动机构的设计提供了原则。基于UG和ADAMS建立了高速进给驱动机构的整体动力学仿真平台,利用实验模态分析验证了仿真模型的有效性。通过对重心驱动方式与传统驱动方式的运动仿真对比表明,重心驱动方式在高加速度情况下优势突出,有效地抑制了振动,尤其是在轮廓拐角处,获得了比传统驱动方式高得多的运动精度,并进行了实验验证。
     建立了一种基于有限元方法的时变的进给驱动机构转子-丝杠系统扭转动力学模型,通过考虑移动部件位置和工件质量变化对系统扭转振动特性的影响规律进行了定量仿真研究。研究结果表明移动部件位置的变化对其扭转振动固有频率有显著影响,而工件质量变化虽然对其也有影响,但没有前者显著。
     考虑转子-丝杠系统的扭转动力学建立了其伺服驱动系统的数学模型,并设计了IIR陷波滤波器对其前两阶扭转振动模态进行了补偿,分析了扭转模态变化对陷波滤波控制的影响。为了使陷波滤波器能适应扭转模态的变化,提出了基于增益调度和基于神经网络的自适应陷波滤波控制方法,实例分析证明了这两种方法的有效性。
     基于数控机床进给驱动机构的动力学特性,分析了其物理约束条件,并针对NURBS曲线插补和小线段插补的几何与运动学约束,建立了运动指令的混合约束条件。基于混合约束条件,实现了插补过程的前瞻控制与自律规划。在华中世纪星HNC-22MF型数控系统上对所提出的插补算法进行了实验验证,证明了所提出方法的有效性。
     以重心驱动平台为例建立了数控进给驱动系统的机电联合仿真模型,改进了一种进给驱动系统动态性能的评价方法,在此基础上提出了一种两阶段的伺服参数调整方法。实例研究表明,利用该方法可有效地减少在实验平台上的调整过程。对传统驱动方式与重心驱动方式的动态性能进行了仿真对比研究,结果表明,采用重心驱动方式能够实现更高的位置环和速度环增益,即能实现更高的伺服控制带宽。
The high speed machining (HSM) requires that the feed drives of CNC machine tools have high speed and high acceleration. In such operation condition, the dynamic characteristic of the drive framework will have an important influence on machining quality and efficiency and challenge current control methods in machine tool. Therefore, the dynamic behavior of the drive framework should be researched deeply and considered in the servo control and the CNC motion command. A new feed drive, Drive at Center of Gravity (DCG), is researched as an object, including its dynamic behavior and high precision motion control strategy. The main contributions of this dissertation are shown as follows:
     The perfect DCG could eliminate the turnover vibration and distortion to get a smooth movement, which is proved theoretically by building the dynamic model of DCG in this thesis. The effect of changeable design parameters on the dynamic performance of DCG is analyzed by building parameter model. The results provide important design principles for DCG. A whole dynamic simulation platform of high speed feed drive is built based on UG and ADAMS. The validity of simulation model is validated using experimental mode analysis. The motion simulation results comparing a DCG with a traditional feed drive indicate that DCG has an outstanding advantage to restrain the vibration in a high acceleration. Especially in the corner of the contour, the DCG acquires preponderant precision. The experiments in the DCG platform validate the characteristic.
     A numerical analysis to the torsion vibration of time-varying rotor-screw feed drive system on the basis of finite element method is presented to get an insight for the effect of in-time moving position of the table and changeable work-piece mass on the free vibration characteristic of the system. The results obtained demonstrate that the natural frequencies are notably changed with the position change of the table movement.
     Considering the torsion dynamic of rotor-screw system, the mathematic model of servo drive system that utilizes IIR notch filter to compensate the torsion vibration of first two orders is built. Moreover, the effects of changing torsion modes on notch filter are analyzed. In order to adapt the changing modes, adaptive notch filters that are based on gain scheduling and neural net respectively are presented. Example analysis validates the two adaptive notch filters.
     Combining the geometrical and kinematic constraint conditions of NURBS interpolation and little line interpolation with the physical constraint conditions that are based on the dynamic characteristic of machine tool feed drive, the mixed constraint conditions are built for the motion command. Look-ahead control and autonomic scheduling are realized according to the mixed constraint conditions during the interpolaton process. The presented interpolation algorithms that are applied in the HNC-22MF CNC system are validated experimentally. The results indicate that the algorithms are viable.
     A mechatronic integrated simulation model for a CNC feed drive that takes example by DCG platform is building. Based on an improved evaluation method of dynamic performance for feed drives proposaled by this thesis, a two-stage tuning method of servo parameter is presented. A case study shows that this method simplifies the test process effectively in the experimental platform. Moreover, the dynamic performances comparing a DCG with a traditional feed drive are simulated. The results indicate that DCG can realize higher position loop gain and higher velocity loop gain, namely has a higher servo control bandwidth.
引文
[1] Tlusty J, Smith S, Badrawy J. Design of a high speed machine for aluminum aircraft parts. Manufacturing Science and Technology, 1997, 2:323~332
    [2] Reinhart G, Wei?enberger M. Multibody simulation of machine tools as mechatronic systems for optimization of motion dynamics in the design process. Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, Atlanta, 1999: 605~610
    [3] Kim M S, Chung S C. A systematic approach to design high-performance feed drive systems. International Journal of Machine Tools and Manufacture, 2005, 45:1421~1435
    [4]肖正义.滚珠丝杠副的发展趋势.制造技术与机床. 2000, 4:11~13
    [5]黄祖尧.精密高速滚珠丝杠副的最新发展及其应用.航空制造技术. 2003, 4:36~40
    [6] Braasch J. Accuracy of feed drives, http://www.heidenhain.com, 2004
    [7] Huang S C. Analysis of a model to forecast thermal deformation of ballscrew feed drive systems. International Journal of Machine Tools and Manufacture, 1995, 35(8):1099~1104
    [8] Kim S K, Cho D W. Real-time estimation of temperature distribution in a ball-screw system. International Journal of Machine Tools and Manufacture, 1997, 37(4): 451~464
    [9] Chen J S, Dwang I C. A ballscrew drive mechanism with piezo-electric nut for reload and motion control. International Journal of Machine Tools and Manufacture, 2000, 40(4):513~526
    [10] Ramesh R, Mannan M A, Poo A N. Thermal error measurement and modelling in machine tools. International Journal of Machine Tools and Manufacture, 2003, 43(4):391~404
    [11] Wu C H, Kung Y T. Thermal analysis for the feed drive system of a CNC machine center. International Journal of Machine Tools and Manufacture, 2003, 43(15): 1521~1528
    [12]叶云岳.新型直线驱动装置与系统.北京:冶金工业出版社. 2000
    [13]张春良,陈子辰,梅德庆.直线电机伺服进给系统及其关键技术问题.组合机床与自动化加工技术. 2001, 11:37~40
    [14]张伯霖,程光华,李锻能等.超高速机床进给系统的零传动.制造技术与机床. 1997(8):8~12
    [15]张伯霖,夏红梅,黄晓明.数控机床高速化的研究与应用.中国机械工程. 2001, 10:1132~1137
    [16]王先逵,陈定积,吴丹.机床进给系统用直线电动机综述.制造技术与机床. 2001, 8:18~21
    [17]魏志强,王先逵,杨志刚.高速加工机床及其关键技术.制造技术与机床. 1998, 1:5~7
    [18]郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制技术.北京:机械工业出版社. 2000
    [19]王贵明.直线电机进给系统特点及改进方案.制造技术与机床. 1999, 6:45~47
    [20] Pritschow G. A comparison of linear and conventional electromechanical drives. Annals of the CIRP, 1998, 47(2):541~548
    [21] Brandenburg G, Brückl S, Dormann J, et al. Comparative investigation of rotary and linear motor feed drive systems for high precision machine tools. IEEE AMC2000-Nagoya, 2000:384~389
    [22] Kumin L, Stumberger G, Dolinar D, et al. Modeling and control design of a linear induction motor. Proceedings of the IEEE International Symposium on Industrial Electronics, 1999, 2: 963 ~967
    [23] Dumetz E, Vanden Hende F, Barre P J. Resonant load control methods application to high-speed machine tool with linear motor. Proceedings of 2001 8th IEEE International Conference on Emerging Technologies and Factory Automation, 2001, 2:23 ~ 31
    [24] Renton D, Elbestawi M A. Motion control for linear motor feed drives in advanced machine tools. International Journal of Machine Tools and Manufacture, 2001, 41(4): 479~507
    [25] Van den Braembussche P, Swevers J, Van Brussel H. Design and experimental validation of robust controllers for machine tool drives with linear motor. International Journal of Machine Tools and Manufacture, 2001, 41(5): 545~562
    [26] Jang C, Kim J, Kim Y. Thermal resistance modeling of linear motor driven stages for chip mounter applications, Proceedings of The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2002:77~84
    [27] Kim J J, Jeong Y H, Cho D W. Thermal behavior of a machine tool equipped with linear motors. International Journal of Machine Tools and Manufacture, 2003, 44(7): 749~758
    [28] Weck M, Kruger P, Brecher C. Limits for controller settings with electric linear direct drives. International Journal of Machine Tools and Manufacture, 2001, 41(1):65~88
    [29]上银科技股份有限公司.滚珠丝杠高速化的技术对策.制造技术与机床. 2003, 12:87~88
    [30]张伯霖,黄晓明,范梦吾.高速机床进给系统的发展趋势.组合机床与自动化加工技术. 2002, 10:7~11
    [31]黄祖尧.精密滚珠丝杠副实现高速化的前景.制造技术与机床. 2001, 3:5~7
    [32]二宫瑞穗,宫口和男.滚珠丝杠高速化的最新技术动向.现代制造. 2002, 9:40~41
    [33] Tlusty J. High-speed machining. Annals of the CIRP, 1993, 42(2):733~738
    [34] Kakino Y, Matsubara A. High speed and high acceleration feed drive System for NC machine tool. International Journal of Precision Engineering, 1996, 30(4):295~298
    [35] Weck M, Schumacher A. Machine tools for high speed machining. Proceedings of the CIRP International Seminar on Improving Machine Tool Performance, Spain,A Publication of Michelena, 1998: 27~41
    [36] Weule H, Frank T. Advantages and characteristics of a dynamic feeds axis with ball screw drive and driven Nut. Annals of CIRP, 1999, 48(1):303-306.
    [37] Mori Seiki CO., LTD. This is the Mori Seiki approach to“Driven at the Center of Gravity”. http://www.moriseiki.co.jp/
    [38] Hiramoto K, Hansel A, Ding S, Yamazaki K. A Study on the Drive at Center of Gravity (DCG) feed principle and its application for development of high performance machine tool systems. Annals of CIRP, 2005, 54(1):333~336
    [39] Tomizuka M. Zero phase error tracking algorithm for digital control, ASME Journal of Dynamic System. Measurement, and Control, 1987, 109:65~68.
    [40] Tsao T C, Tomizuka M. Adaptive Zero Phase Error Tracking Algorithm for Digital Control. ASME Journal of Dynamic Systems, Measurement, and Control, 1987, 109:349~354
    [41] Yao B, Al-Majed M, Tomizuka M. High-performance robust motion control of machine tools: an adaptive robust control approach and comparative experiments.IEEE Transactions on Mechatronics, 1997, 2(2):63~76
    [42] Weck M, Ye G H. Sharp corner tracking using the IKF control strategy. Annals of CIRP, 1990, 39(1):437~441
    [43] Pritschow G, Kosiedowski U. Optimization strategies for adaptive feedforward control. Production Engineering Research and Development in Germany; Annals of the German Academic Society for Production Engineering, 1997, 4(2):69~72
    [44] Van Brussel H, Van den Braembussche P. Robust control of feed drives with linear motors. Annals of CIRP, 1998, 47(1):325~328
    [45] Altintas Y, Erkorkmaz K, Zhu W H. Sliding mode controller design for high speed drives. Annals of CIRP, 2000, 49(1):265~270
    [46] Boucher P, Dumur D, Rahmani K F. Generalized Predictive Cascade Control(GPCC) for machine tools drives. Annals of CIRP, 1990, 39(1):357~360
    [47] Koren Y. Cross-coupled biaxial computer control for manufacturing systems. ASME Journal of Dynamic System, Measurement, and Control, 1980, 102:265~272
    [48] Koren Y, Lo C C. Variable-gain cross-coupling controller for contouring. Annals of CIRP, 1991, 40(1):371~374.
    [49] Erkorkmaz K, Altintas Y. High speed contouring control algorithm for CNC machine tools. Proceedings of the ASME Dynamic Systems and Control Division, 1998 ASME International Mechanical Engineering Congress and Exposition, 1998, 64:463~469.
    [50] Southward S C, Radcliffe C J, MacCluer C R. Robust Nonlinear Stick-slip Friction Compensation. ASME Journal of Dynamic Systems, Measurement, and Control, 1991,113:639~645
    [51] Canudas de Wit C, Noel P, Brogliato B. Adaptive friction compensation in robot manipulators. Low-velocities. International Journal of Robotics Research, 1993,10(3):189~199
    [52] Canudas de Wit C, Ge S S. Adaptive friction compensation for systems with generalized velocity/position friction dependency. Proceedings of IEEE Conference on Decision and Control, SanDiego, 1997, 3:2466~2470
    [53] Tomizuka M. On the compensation of friction forces in precision motion control. Proceedings of Asia-Pacific Workshop on Advances in Motion Control, 1993:69~74
    [54] Armstrong H B, Dupont P, Canudas De Wit C. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 1994, 30(7):1083~1138
    [55]李书训,姚郁,王子才.一种自适应摩擦补偿方法研究,电机与控制学报, 1999,3(3):129~133
    [56] Erkorkmaz K, Altintas Y. High speed CNC system design: part I-jerk limited trajectory generation and quintic spline interpolation. International Journal of Machine Tools and Manufacture, 2001, 41(9):1323~1345
    [57] Erkorkmaz K, Altintas Y. High speed CNC system design: part II-modeling and identification of feed drives. International Journal of Machine Tools and Manufactune, 2001, 41(10):1487~1509
    [58] Erkorkmaz K, Altintas Y. High speed CNC system design: part III-high speed tracking and contouring control of feed drives. International Journal of Machine Tools and Manufacture, 2001, 41(11):1637~1658
    [59]刘强,尔联洁,刘金琨.参数不确定机械伺服系统的鲁棒非线性摩擦补偿控制.自动化学报, 2003, 29(4):628~632
    [60] Chen Y C, Tlusty J. Effect of low-friction guideways and lead-screw flexibility dynamics of high-speed machines. Annals of CIRP, 1995, 44(1):353~356
    [61] Pritschow G. On the influence of the velocity gain factor on the path deviation, Annals of CIRP, 1996, 45(1):367~371
    [62] Smith D A. Wide bandwidth control of high-speed milling machine feed drives. Ph.D. Thesis, University of Florida, Department of Mechanical Engineering, Florida, 1999.
    [63] Poignet P, Gautier M, Khalil W. Modeling, control and simulation of high speed machine tool axes. Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, Atlanta, 1999. 617~622
    [64] Khalil W, Gautier M. Modeling of mechanical systems with lumped elasticity. Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, 2000:3964~3969
    [65] Erkorkmaz K. Optimal trajectory generation and precision tracking control for multi-axis machines, Ph.D. Thesis, University of British Columbia, Department of Mechanical Engineering, Vancouver, 2004
    [66] Kamalzadeh A, Erkorkmaz K. Accurate tracking controller design for high-speed drives. International Journal of Machine Tools and Manufacture, 2007, 47:1393~1400
    [67] Zaeh M F, Oertli Th. Finite element modeling of ball screw feed drive system.Annals of CIRP, 2004, 53(1):289~292
    [68] Varanasi K K, Nayfeh S A. The dynamics of lead-screw drives: low-order modeling and experiments. ASME Journal of Dynamic System, Measurement, and Control, 2004, 26:388~396
    [69] Ebrahimi M, Whalley R. Analysis, modeling and simulation of stiffness in machine tool drives. Computers and Industrial Engineering, 2000, 38(1):93~105
    [70] Whalley R, Ebrahimi M, Jamil Z. The torsional response of rotor systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2005, 219:357~380
    [71] Whalley R, Ebrahimi M, Abdul-Ameer A A. Machine tool axis dynamics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220:403~419
    [72] Zhou Y, Peng F Y, Chen J H. Torsion vibration analysis of lead-screw feed drives with changeable table position and work-piece mass. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, 2007, 3:2194~2199
    [73] Burdekin M, Jywe W Y. Optimising the contouring accuracy of CNC machines using the CONTISURE system. Proceedings of the 29th International MATADOR Conference, April 1992, 231~238
    [74] Kakino Y, Matsubara A, Li Z, et al. A study on the total tuning of feed drive systems in NC machine tools (4th Report). Journal of Japan Society for Precision Engineering, 1997, 63(3):368~372
    [75] Kwon H D, Burdekin M. Adjustment of CNC machine tool controller setting values by an experimental method. International Journal of Machine Tools and Manufacture, 1998, 38(9):1045~1065
    [76] Pritschow G, Bretschneider J. A self-tuning controller for digitally controlled electromechanical servo drives in machine tools. Annals of the CIRP, 1999, 48(1):307~312
    [77] Ibarakil S, Kakinol Y, Lee K. Diagnosis and compensation of motion errors in NC machine tools by arbitrary shape contouring error measurement. Journal of the Japan Society for Precision Engineering, 2000, 66:434~438
    [78] Matsubara A, Ibarakil S, Kakino Y, et al. A practical servo parameter tuning method for high speed feed drives of NC machine tools. Proceedings of 2002 Japan-USA Symposium on Flexible Automation, Hiroshima, Japan, 2002, 71~74
    [79] Bedi S, Ali I, Quan N. Advanced interpolation techniques for NC machines. ASME Journal of Engineering for Industry, 1993, 11:329~336
    [80] Wang F C, Yang D C H. Nearly arc-length parameterized quintic-spline interpolation for precision machining. Computer Aided Design, 1993, 25(5):281~288
    [81] Huang J T, Yang D C H. A generalized interpolator for command generation of parametric curves in computer controlled machines. ASME Japan/USA Symposium on Flexible Automation, 1992(3):256~263
    [82] Shpitalni M, Koren Y, Lo C C. Real-time curve interpolators. Computer-Aided Design, 1994, 26(11):832~838
    [83] Yang D C H, Kong T. Parametric interpolator versus linear interpolator for precision CNC machining. Computer-Aided Design, 1994, 26(3):225~233
    [84] Lin R S. Real-time surface interpolator for 3-D parametric surface machining on 3-axis machine tools. International Journal of Machine Tools and Manufacture, 2000, 40(10):1513~1526.
    [85] Yeh S, Hsu P L.The speed-controlled interpolator for machining parametric curves. Computer-Aided Design, 1999, 31(5):349~357
    [86]游有鹏,王珉,朱剑英.参数曲线的自适应插补算法.南京航空航天大学报, 2000, 32(6):667~671
    [87]张伟. CNC系统中任意空间曲线的插补方法.机械, 2002, 9(2):36~37
    [88] Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience, 1985, 5:1688~1703
    [89] Yong T, Narayanaswami R. A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining. Computer-Aided Design, 2003, 35:1249~1259
    [90] Nam S H, Yang M Y. A study on a generalized parametric interpolator with real-time jerk-limited acceleration. Computer-Aided Design, 2004, 36:27~36
    [91] Yusuf Altintas著,罗学科译.数控技术与制造自动化.北京:化学工业出版社,2002
    [92] Tounsi N, Bailey T, Elbestawi M A. Identification of Acceleration Deceleration Profile of Feed Drive Systems in CNC Machines, International Journal of Machine Tool and Manufacture, 2003, 43(5):441~451
    [93]曹荃,韩明,肖跃加等.快速原型制造系统中自适应轨迹特征的插补算法.中国机械工程, 1997, 8(5):55~57
    [94]钟庆,李季,黄树槐.快速成型中的微线段连续高速高精度插补.华中理工大学学报, 2000, 3:39~41
    [95] Han G, Kim D, Kim H, et al. A high speed machining algorithm for CNC machine tools, Proceedings of IEEE IECON'99, San Jose, California, 1999:1493~1497
    [96]叶佩青,赵慎良.微小直线段的连续插补控制算法研究.中国机械工程, 2004, 15(15):1354~1356
    [97]徐志明,冯正进,汪永生等.连续微小路径段的高速自适应前瞻插补算法.制造技术与机床, 2003, 12:20~23
    [98] Farouki R T, Tsai Y F, Wilson C S. Physical constraints on feedrates and feed accelerations along curved tool paths. Computer Aided Geometric Design, 2000, (17):337~359
    [99]陈金成,徐志明,钟延修等.机床沿曲线高速加工时的运动学与动力学特性分析.机械工程学报, 2002, 38(1):31~34
    [100] Liu X B, Ahmad F, Yamazaki K, et al. Adaptive interpolation scheme for NURBS curves with the integration of machining dynamics. International Journal of Machine Tools and Manufacture, 2005, 45:433~444
    [101]刘可照,彭芳瑜,吴昊等.基于机床动力学特性的NURBS曲线直接插补.机床与液压, 2004, 11:19~22
    [102]彭芳瑜,何莹,罗忠诚等. NURBS曲线机床动力学特性自适应直接插补.华中科技大学学报(自然科学版), 2005, 33(7):80~83
    [103]彭芳瑜,何莹,李斌. NURBS曲线高速插补中的前瞻控制.计算机辅助设计与图形学学报, 2006, 18(5):625~629
    [104]彭芳瑜,李黎,陈徐兵等.连续小直线段高速高精插补中的动力学约束条件.计算机辅助设计与图形学学报, 2006, 18(12):1812~1816
    [105] Geels K, Ruckert M. Comparison between constant force and constant rate of feed in materialographic cut-off machines: Surface quality in relation to cutting speed, force, and rate of feed. Materials Characterization, 1996, 36:225~233
    [106] Tounsi N, Elbestawi M A. Optimized feed scheduling in three axes machining. Part I: Fundamentals of the optimized feed scheduling strategy. International Journal of Machine Tools and Manufacture, 2003, 43 (3):253~267
    [107] Tounsi N, Elbestawi M A. Optimized feed scheduling in three axes machining. Part II: Experimental validation. International Journal of Machine Tools and Manufacture,2003, 43 (3):269~282
    [108] Tikhon M, Ko T J, Lee S H, et al. NURBS interpolator for constant material removal rate in open. NC machine tools. International Journal of Machine Tools and Manufacture, 2004, 44:237~245
    [109] Chen J S, Huang Y K, Cheng C C. Mechanical model and contouring analysis of high-speed ball-screw drive systems with compliance effect. International Journal of Advanced Manufacturing Technology, 2004, 24:241~250
    [110]郑健荣. ADAMS—虚拟样机技术入门与提高.北京:机械工业出版社, 2002
    [111] THK CO., LTD. Caged Ball LM Guide, 2005
    [112]郭庆鼎,王成元.交流伺服系统.北京:机械工业出版社, 1994
    [113]秦忆等.现代交流伺服系统.武汉:华中理工大学出版社, 1995
    [114]符曦.高磁场永磁式电动机及其驱动系统。北京:机械工业出版社,1997
    [115] Tohme Y E. Implementation of high bandwidth control for rotary and linear motor drives of milling machines. Ph.D. Thesis, University of Florida, Department of Mechanical Engineering, Florida, 2001
    [116] Asrom K J, Wittenmark B.自适应控制(英文影印本),北京:科学出版社, 2003
    [117]曹树谦,张文德,萧龙翔。振动结构模态分析-理论、实验与应用,天津:天津大学出版社,2001
    [118]闻新等,MATLAB神经网络仿真与应用,北京:科学出版社,2003
    [119]刘叔军等,MATLAB 7.0控制系统应用与实例,北京:机械工业出版社,2006
    [120]高雪鹏,丛爽. BP网络改进算法的性能对比研究.控制与决策, 2001, 16(2):167~171
    [121] Nolzen H, Isermann R. Fast adaptive cutting force control for milling operation. Proceedings of the 4th IEEE Conference on Control Applications, Albany, 1995, 760~765
    [122] Yaskawa Electric Corporation. Sigma II Series Servo System User’s Manual, 2002
    [123] Heidenhain GmbH. User’Manual of ACCOM, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700