直流—直流开关功率变换器磁集成关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成化是电力电子技术发展的趋势,磁集成技术是无源电力电子集成化研究内容的重要组成部分。论文对直流-直流开关功率变换器中磁集成关键技术进行深入研究,包括集成磁件的分析方法、磁集成正激变换器的零纹波设计、倍流整流变换器磁集成技术、多路交错并联开关变换器磁集成技术、多功能集成磁件绕组交流损耗的机理分析与建模、近磁场耦合利用与控制技术、磁集成开关变换器的小信号建模技术。
     在集成磁件的分析方法上,提出磁路-电路综合时域分析法,物理概念清晰,可以直观方便地建立电路和磁性元件磁路参数的接口关系,直接获得磁芯磁通和绕组电流波形,并以磁集成正激变换器为例作详细阐述。
     根据磁件集成方式的不同,磁集成正激变换器可分为两种。针对磁集成正激变换器一,从集成磁件等效电路模型的角度,分析了其输出电流纹波减小特点,提出了磁集成对电流纹波的转移作用,阐述零纹波设计对磁通分布和绕组交流损耗的影响。进一步地,对磁集成正激变换器二的工作原理进行分析,发现该集成方案在副边绕组匝数相等的情况下也可以获得输出电流零纹波性能,并通过实验加以验证。
     提出一种新型的倍流整流磁集成方案,将现有倍流整流变换器集成磁件中一电感绕组去除,可以有效地简化绕组布线,减小原、副边漏感,有利于提高电源效率和功率密度。发现现有倍流整流半桥变换器集成磁件是磁集成正激变换器中集成磁件在双端变换器的应用,这为开关变换器磁集成技术研究提供新的认识。进一步地,提出副边绕组匝比配置为2:1的改进设计,将磁路的工作气隙减少为一个,可以实现新方案机构稳定。同时,由于气隙扩散磁通影响的减小,绕组纹波电流的改善,改进设计带来磁集成倍流整流半桥功率变换器效率提升3.5%。
     分析耦合电感在两路电压调整模块的应用特点,建立耦合参数对支路电流纹波的影响关系,研究电流纹波减小特征,提出能够反映耦合电感复杂交流绕组损耗特征的新型双电阻模型。进一步地,针对反激变压器绕组的交流电感器分量损耗大的缺点,提出新型磁集成交错并联反激变换器,可以有效抑制电流谐波,减小绕组损耗和磁芯损耗,降低开关损耗,提高变换效率。
     对电压调整模块多个电感的空间磁场进行改造和利用,提出近场耦合磁集成新思路。采用简易磁路结构,构造复杂多磁路耦合电感,具有磁芯结构简单、实现方便等优点。进一步地,将近场耦合磁集成推广应用于倍流整流变换器中,可更好地理解现有集成磁件的工作机理,揭示不同磁集成方案间的内在关系。通过减小近场磁阻可以减小激磁电流产生的绕组交流损耗,减小磁芯损耗和开关损耗,提高功率变换器效率。
     最后,以不同集成磁件分析方法为基础,结合状态空间平均法,分别提出三种磁集成开关功率变换器小信号建模方法,对磁集成有源箝位正激变换器一和新型磁集成倍流整流变换器作了小信号建模,分析了磁集成对电路动态性能的影响,为这类变换器的动态特性研究和控制设计建立理论基础。
Integration is the trend of power electronics technology. Magnetic integrationtechnology is an important part of the research contents of the passive integrated powerelectronics. In this dissertation, the key technologies of magnetic integration in DC-DCswitched-mode power converters have been studied, including analysis method ofintegrated magnetics, zero current ripple design of Forward converter with magneticintegration, magnetic integration techniques of current doubler rectifier (CDR) converterand multi-phase interleaving parallel converters, AC winding loss mechanism andmodeling of multi-function integrated magnetics, near-field magnetic coupling utilizationand control technique, small signal modeling technique of power converter with magneticintegration.
     On the analysis methods of integrated magnetics, a general time-domain analysismethod has been developed based on analog analysis method with electrical circuit andmagnetic circuit. It helps to visually and conveniently establish the interface relationshipbetween parameters of electrical circuit and magnetic circuit, and then achieve thewaveforms of magnetic flux and electric current. Forward converter with magneticintegration is illustrated as example.
     There are two types of Forward converter with magnetic integration due to thedifferent magnetic integrated schemes. From point of view of the equivalent electricalcircuit model of integrated magnetics, the output current ripple reduction has beenanalyzed in Forward converter with the first magnetic integration. The feature of the outputcurrent ripple reduction of the active clamp Forward converter with the first magneticintegration has been discovered by the concept of current ripple steering mechanism. Themagnetic flux distribution and AC winding losses under zero current ripple design havebeen explained. Furthermore, the principle of the active clamp Forward converter with thesecond magnetic integration has been analyzed. As the two secondary windings have sameturn numbers, it can also get zero ripple output current performance, which is verifiedexperimentally.
     A novel integrated magnetics of CDR converter has been proposed by the removal ofone of the inductor windings. It shows that this scheme helps to simply the winding layout,reduce the leakage inductance between primary winding and secondary windings, andeventually improve power efficiency and power density. It is also found that the existingintegrated magnetics of Half-bridge CDR converter is that of Forward converter applied inthe double-end converter, which will provides new understanding of magnetic integrationin switched-mode power converter. Furthermore, an improved design with winding turnsratio of2to1between secondary windings has been proposed to make intrinsic stability ofphysical structure by only one air gap. At the same time, due to the reduction of air gapfringing flux effect and the improvement of winding ripple current, the efficiency of theimproved magnetic design in Half-bridge CDR converter can be increased by3.5%
     The features of coupled inductors in the application of2-phase voltage regulatormodule (VRM) have been analyzed. The influence of the coupling parameters on phasecurrent ripple has been established. A new dual resistance model has been proposed toembody the complex AC winding loss characteristics based on the deep analysis andunderstanding of phase current ripple. Furthermore, to reduce the high AC winding lossescaused by the currents of inductor component of Flyback transformer, a novel multi-phaseinterleaving Flyback converter with magnetic integration has been proposed. It helps tosuppress current high-order harmonics, reduce the winding losses and core losses, reduceswitching losses and improve the conversion efficiency.
     A new idea of near-field flux coupling of magentic integration has been proposed torealize magnetic integration by transformation and utilization of spatial magnetic fielddistribution among phase inductors in VRM. It helps to use simple magnetic structure tofigure out much complex structures. Magnetics with this technique will be simple and easyto achieve. Furthermore, applied to magnetics integrated CDR converter, the near fieldcoupling magnetic integration can help to make better understand on the operationmechanism of the existing integrated magnetics and reveal the intrinsic relationship amongdifferent integration schemes. It is proved that the reduction of the near-fieldmagneto-resistance can reduce excitation current, reduce AC winding losses and the corelosses and switching losses, and then improve efficiency of power converter.
     Finally, three small-signal modeling methods of switched mode power converter withintegrated magnetics have been respectively proposed, based on the different approaches toanalyze integrated magnetics and combined with the state space averaging method. Smallsignal control features in Forward converter and CDR converter with magnetic integration have been explored. These help to obtain the system transfer function and establish atheoretical basis for the systematic research of magnetic integration power converter.
引文
[1] Kolar J W, Drofenik U, Biela J, et al. PWM converter power density barriers. IEEJ Trans. IA,128(4),2008:1-14.
    [2] Jovanovi M M. Power supply technology–past, present, and future. in: proceedings of PCIMChina2007.
    [3]科学技术部高新技术发展及产业化司[EB/OL].“电力电子关键器件及重大装备研制”课题申请指南. http://www.most.gov.cn/tztg/200707/t20070731_51921.htm.
    [4]陈为,何建农.电力电子高频磁技术及其发展趋势.电工电能新技术,2000,19(2):30-34.
    [5] Bloom G E, Severns R. Modern DC-DC switch mode power converter circuits. New York: VanNostrand Reinhold,1984:262-324.
    [6]蔡宣三,龚绍文.高频功率电子学.北京:科学出版社,1993.
    [7] Erickson R W, Maksimovic D. Fundamentals of power electronics (Second edition). New York:Library of Congress Cataloging in Publication,2001.
    [8] Chen Wei. Low voltage high current power conversion with integrated magnetics:[Dissertation].Blacksburg, Virginia, USA: Virginia Polytechnic Institute and State University,1998.
    [9]陈乾宏.开关电源中磁集成技术的应用研究:[博士学位论文].南京:南京航空航天大学,2001
    [10]陈乾宏,阮新波,严仰光.开关电源中磁集成技术及其应用.电工技术学报,2004,19(3):1-8.
    [11]王兆安,陈桥梁.集成化是电力电子技术发展的趋势.变流技术与电力牵引,2006,第1期:2-6.
    [12]钱照明,陈辉明,吕征宇,等.电力电子系统集成理论及若干关键技术.科学技术与工程.2004,4(7):580-583.
    [13] Bloom G E. Core selection for&design aspects of an integrated-magnetic forward converter. in:proceedings of IEEE APEC,1986:141-150.
    [14] Bloom G E, New integrated-magnetic DC-DC power converter circuits&systems. in: proceedingsof IEEE APEC,1987:57-66.
    [15]陈乾宏,冯阳,周林泉,等.输出纹波最小化有源箝位正激磁集成变换器.中国电机工程学报,2009,29(3):7-13.
    [16]王健.基于交流磁通正向耦合的IMTTF变换器:[硕士学位论文].南京,南京航空航天大学,2008.
    [17] Jitaru I D, Ivascu A. quasi-integrated magnetic an avenue for higher power density and efficiencyin power converters. in: proceedings of IEEE APEC, Atlanta, USA,1997:395-402.
    [18] Jitaru I D. High Efficiency DC-DC Converter. in: proceedings of IEEE APEC, Orlando, USA,1994:638-644.
    [19] Pietkiewicz Aand Tollik D. Coupled-inductor current-doubler topology in phase-shifted full-bridgeDC-DC converter. in: proceedings of IEEE INTELEC,1998:41-48.
    [20] Peng C, Hannigan M, Seiersen O. A new efficient high frequency rectifier circuit. in: proceedingsof High Frequency Power Conversion,1991:236-243.
    [21] Chen W, Hua G, Sable D, et al. Design of high efficiency, low profile, low voltage converter withintegrated magnetics. in: proceedings of IEEE APEC, Atlanta, USA,1997:911-917.
    [22] Xu P, Wu Q, Wong P, et al. A novel integrated current doubler rectifier. in: proceedings of IEEEAPEC, New Orleans, USA,2000:735-740.
    [23] Jitaru I D. Transformer providing low output voltage. USA,6400249,2002-6-4.
    [24] Liang Yan, Dayu Q, Brad Lehman. Integrated magnetic full wave converter with flexible outputinductor. IEEE Trans. on Power Electronics,2003,18(2):670-678.
    [25] Sun Jian, Kenneth F Webb, Vivek Mehrotra. Integrated magnetics for current-doubler rectifiers.IEEE Trans. on Power Electronics,2004,19(3):582-590.
    [26] George Q M. Magnetically integrated full-wave DC to DC converter. USA,5555494.1996-9-10.
    [27] Marty Perry. Full-wave coupled inductor power converter having synchronous rectifiers and twoinput switches that are simultaneously off for a time period of each switching cycle. USA,6765810.2004-7-20.
    [28] Milton W, Bogue G L, Beutler J F. Dual transformer device for power converters. USA,491456.1990-4-3.
    [29] Cielo J R, Hoffman H S. Combined transformer and indicator device. USA,3694726.1972-9-26.
    [30] Zhou Hua, Wu Thomas X, Batarseh Issa, et al. Comparative investigation on different topologies ofintegrated magnetic structures for current-doubler rectifier. in: proceedings of IEEE PESC,Orlando, USA,2007:337-342.
    [31] Njiende H, Froehleke N, Cronje W A. Modeling and analysis of integrated magnetic components.in: proceedings of IEEE PESC, Acapulco, Mexico,2003:283-288.
    [32] Njiende H D, Frohleke N, Bocker J. Derivation of integrated magnetic components usingreluctance and mathematical modeling. in: proceedings of IEEE PESC Aachen, Germany,2004:4855-4860.
    [33] Roumen D Petkov, Gueorgui J Anguelov. Full wave series resonant type DC to DC powerconverter with integrated magnetics, USA,7136293,2006-11-14.
    [34] Cheng D K, Wong Leung-Pong, Lee Yim-Shu. Design, modeling, and analysis of integratedmagnetics for power converter. in: proceedings of IEEE PESC, Galway, Ireland,2000:320-325.
    [35] Chen Wei and Lee F C. Integrated Planar Inductor Scheme for multi-module interleavedquasi-square-wave DC/DC converter. in Proceedings of IEEE PESC, Charleston, USA,1999:759-762.
    [36] Wong P L, Xu P, Yang B, et al. Investigating coupling inductors in the interleaving QSW VRM. in:proceedings of IEEE APEC, New Orleans, USA,2000:973-978.
    [37] Wong P L,Xu P,Yang B,et al.Performance improvements of interleaving VRMs with couplinginductors. IEEE Trans. on Power Electronics,2001,16(4):499-507.
    [38] Dong Yan, Lee F C, Zhou J, et al. Twisted core coupled inductors for microprocessor voltageregulators. in: proceedings of IEEE PESC, Orlando, USA,2007:2386-2392.
    [39] Dong Yan, Yang Yugang, Lee F C, et al. The short winding path coupled inductor VRs. in:proceedings of IEEE APEC, Austin, USA,2008:1446-1452.
    [40] Ledenev A V, Gurov G G, Porter R M. Multiple power converter system using combiningtransformers. USA,6362986,2003-04-08.
    [41] Schultz A M, Sullivan C R. Voltage converter with coupled inductive windings and associatedmethods. USA,6362986,2002-03-26.
    [42] Li Jieli, Sullivan C R, Aaron M Schultz. Coupled-inductor design optimization for fast-responselow-voltage DC-DC converters. in: proceedings of IEEE APEC, Dallas, USA,2002:817-823.
    [43] Li Jieli, Anthony stratakos, Aaron Schultz, etal. Using coupled inductors to enhance transientperformance of multi-phase buck converters. in: proceedings of IEEE APEC, Austin, USA,2004:1289-1293.
    [44] Kim Sangsun. DC to DC converter with high frequency zigzag transformer. USA,20060028187,2006-2-9.
    [45] Zumel P, Garcia O. magnetic integration for interleaved converters. in: proceedings of IEEE APEC,Miami Beach, USA,2003:1143-1149.
    [46]杨玉岗,李洪珠,王建林,等.可削减直流偏磁集成磁件在DC/DC变换器中的应用.中国电机工程学报,2005,25(11):50-54.
    [47]杨玉岗,于庆广,李洪珠,等.四相电压调整模块中平面型可消除直流偏磁集成磁件研究.中国电机工程学报,2006,26(24):179-185.
    [48]李洪珠,郝文慧,杨玉岗.无气隙可改变耦合度阵列式集成磁件在交错并联变换器中的应用.电工技术学报,22(7),2007:98-102.
    [49]余建生,张波,刘学超.集成耦合磁路的新型电压调整模块.电工技术学报,2006,21(10):94-100.
    [50]刘学超,张波,丘东元,等.多相并联磁集成电压调整模块的电路建模研究.中国电机工程学报,2006,26(19):145-150.
    [51]刘学超.平面磁集成电压调整模块建模方法及磁耦合微分几何解耦控制:[博士学位论文].广州:华南理工大学,2006.
    [52] Lu Zengyi, Chen Wei. Novel multi-coupled inductor solution for VRM.in: proceedings of the7thPCIM China Conference, Shanghai, China,2008:45-50.
    [53] Xu Ming, Ying Yucheng, Li Qiang, et al. Novel coupled-inductor multi-phase VRs. in: proceedingsof IEEE APEC, California, USA,2007:113-119.
    [54] Lu Zengyi, Chen Wei. Multi-phase inductor coupling scheme with balancing winding in VRMapplications. in: proceedings of IEEE APEC, California, USA,2007:731-735.
    [55] Vladimir Alexander Muratov. Inductive element for a multi-Phase interleaved power supply andapparatus and method using the same. USA,7667441,2010-2-23.
    [56] Chandrasekaran Sriram, Mehrotra Vivek, Sun Jian. A new matrix integrated magnetics(MIM)structure for low voltage high current DC-DC converters. in: proceedings of IEEE PESC,Queensland, Australia,2002:1230-1235.
    [57] Chandrasekaran Sriram, Mehrotra Vivek. Maxtrix integrated magnetics (MIM) for low voltageinterleaved DC-DC converters. in: proceedings of IEEE APEC Miami Beach, USA,2003:103-108.
    [58] Sun Jian, Mehrotra Vivek. Orthogonal Winding structures and design for planar integratedmagnetics. in: proceedings of IEEE APEC, Anaheim, USA,2004:933-938.
    [59] Xu Ming, Zhou Jinghai, Lee F C. A current-tripler DC/DC converter. IEEE Trans. on PowerElectronics,2004,19(3):693-700.
    [60] Xu Ming, Lee F C, Zhou Jinghai. Multi-phase interleaving isolated DC/DC converter. USA,6944033,2005-9-13
    [61] Chandrasekaran Sriram, Mehrotra Vivek. Power converter employing integrated magnetics with acurrent multiplier rectifier and method of operating the same. USA,20080310190,2008-12-18.
    [62] Slobodan Cuk. A new zero ripple switching DC to DC converter and integrated magnetics. in:proceedings of IEEE PESC,1980:12-32.
    [63] Matsuo. Comparison of multiple-output DC-DC Converters using cross regulation. IEEE Trans. onIndustrial Electronics and Control Instrumentation,27(3),1980:176-189.
    [64] Bloom G E, Severns R. The generalized use of integrated magnetics and zero-ripple techniques inswitchmode power converters. in: proceedings of IEEE PESC,1984:15-33.
    [65]陈乾宏,阮新波,严仰光.多路输出电源中耦合电感的模型及分析.电工技术学报,2001,16(5):40-45.
    [66] Schutten M J, Steigerwald R L, Sabate J A, Ripple current cancellation circuit. in: proceedings ofIEEE APEC, Miami Beach, USA,2003:464-470.
    [67] Hamill D C, Krein P T. A‘zero’ripple technique applicable to any DC converter. in: proceedings ofIEEE PESC, Charleston, USA,1999:1165-1171.
    [68] Kolar J W, Sree Hari, Mohan Ned, et al. Novel aspects of an application of zero ripple techniquesto basic converter topologies. in: proceedings of IEEE PESC, St. Louis, USA,1997:796-803.
    [69] Wang J, Dunford W, Mauch K. Afixed duty cycle boost converter with ripple free input current forunity power factor operation. in: proceedings of IEEE APEC, San Jose, USA,1996:1177-1183.
    [70] Kats A, Ivensky G, Sam Ben-Yakov. Application of interated magnetics in resonant converters. in:proceedings of IEEE APEC, Atlanta, USA,1997:925-930.
    [71] Meinhardt M, Duffy M, O’Donnell T, etal. New method for integration of resonant inductor andtransformer design, realisation, measurements. in: proceedings of IEEE APEC, Dallas, USA,1999:1168-1174.
    [72] Frederick W R. Integrated electromagnetic interference filter. USA,5083101,1992-1-21.
    [73] Bloom G E. Multi-chambered planar magnetic design techniques. in: proceedings of IEEE PESC,Galway, Ireland,2000:295-301.
    [74] Walker C S. Combined transformer and inductor. USA,4689592,1987-8-25.
    [75] Bridges J H. Fluorescent tube lighting system and apparatus. USA,2611885,1952-9-23.
    [76]陈艳军.高功率密度直流变流器及其无源元件集成研究:[博士学位论文].杭州:浙江大学,2008.
    [77]陈乾宏,阮新波,严仰光.磁集成变换器的推导及磁件等效电路通用模型.电力电子技术,2001,38(5):48-50.
    [78]徐立平,王仲奕,顾沈卉,等.磁集成技术中磁性元件等效电路模型的研究.西安交通大学学报,2005,39(10):1106-1110.
    [79] Hamill D C. Lumped equavalent circuits of magnetic components: the gyrator-capacitor approach.IEEE Trans. on Power Electronics,1993,8(2):97-103.
    [80] Hamill D C. Gyrator-capacitor modeling: a better way of understanding magnetic components. in:proceedings of IEEE APEC, Orlando, USA,1994:326-332.
    [81] Eaton M E. Adding flux paths to SPICE’s analytical capability improves the ease and accuracy ofsimulating power circuits. in: proceedings of IEEE APEC, Anaheim, USA,1998:386-392.
    [82] Liang Yan, Lehman Brad. Better understanding and synthesis of integrated magnetics withsimplified gyrator model method. in: proceedings of IEEE PESC, Vancouver, Canada,2001:433-438.
    [83] Wong Leung-Pong, Lee Yim-Shu, Cheng D K. A New approach to the analysis and design ofinterated magnetics. in: proceedings of IEEE PESC, Vancouver, Canada,2001:1196-1202.
    [84] Chen Qianhong, Xu Ligang, Ruan Xinbo, et al. Gyrator capacitor simulation model of nonlinearmagnetic core. in: proceedings of IEEE APEC, Washington, USA,2009:1740-1746
    [85]李竹筠.回转器电容磁件仿真模型的初步研究与应用:[硕士学位论文].南京,南京航空航天大学,2007.
    [86] Lu Zengyi, Chen Wei. Novel winding loss analytical model of flyback transformer. in: proceedingsof IEEE PESC, Jeju, Korea,2006:1213-1218.
    [87]毛行奎,陈为.反激式变换器的变压器线圈涡流损耗机制分析与新型损耗模型.中国电机工程学报,2009,29(3):29-35.
    [88] Prieto R, Cobos J A. Interleaving techniques in magnetic components. in: proceedings of IEEEAPEC, Atlanta, USA,1997:931-936.
    [89] Chen Wei, Yan Yipeng, Hu Yuequan, etal. Model and design of PCB parallel winding for planartransformer. IEEE Trans. on Magnetics,2003,39(5):3202-3204.
    [90]旷建军,阮新波,任小永.平面变压器中并联绕组的均流设计.中国电机工程学报,2005,25(14):146-150.
    [91]旷建军,阮新波,任小永.集肤和邻近效应对平面磁性元件绕组损耗影响的分析.中国电机工程学报,2006,26(5):170-175.
    [92]毛行奎,陈为.开关电源高频平面变压器并联PCB线圈交流损耗建模及分析.中国电机工程学报,2006,26(22):167-173.
    [93]毛行奎,陈庆彬,陈为.开关电源高频功率平面变压器串并混联PCB线圈交流损耗模型.电工电能新技术,2008,27(1):30-34.
    [94] Chew W M, Evans P D. High frequency inductor design concepts. in: proceedings of IEEE PESC,Massachusetts, USA,1991:673-678.
    [95] N.H Kutkut, Divan Deepak M. Optimal air-gap design in high-frequency foil windings. IEEETrans. on Power Electronics,1998,13(5):942-949.
    [96] Hu Jiankun, Sullivan Charles R. Analytical method for generalization of numerically optimizedinductor winding shapes. in: proceedings of IEEE PESC, Charleston, SC, USA,1999:568-573.
    [97] Hu Jiankun, Sullivan Charles R. AC resistance of planar power inductors and the quasi-distributedgap technique. IEEE Trans. on Magnetics,2001,16(4):558-567.
    [98] Albach M. The influence of air gap size and winding position on the proximity losses in highfrequency transformers. in: proceedings of IEEE PESC, Vancouver, Canada,2001.
    [99] Chen W,He J,Luo H,et al.Winding loss analysis and new air-gap arrangement for high frequencyinductors. in: proceedings of IEEE PESC, Vancouver, Canada,2001.
    [100]毛行奎,陈为.一种新型高频功率电感器分布磁压结构.中国电机工程学报,2006,27(27):32-38.
    [101]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.电子工业出版社,2005.
    [102]冯阳.适用于DC-DC模块电源的IM-FAC变换器:[硕士学位论文].南京:南京航空航天大学,2006.
    [103]卢增艺.一种高效多路低电压输出开关电源的研究:[硕士学位论文].福州:福州大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700