电网故障条件下VSC-HVDC系统特性及其控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
VSC-HVDC作为交直流混合电网的重要组成部分,应能够长期安全、稳定地运行,尤其在交流系统发生故障时,不仅要保障自身的安全性和可靠性,还能为故障电网提供支持,提高电网运行稳定性和可靠性,改善电网电能质量。本文针对交流电网故障条件下的VSC-HVDC系统,开展VSC-HVDC系统动态特性及改善交直流特性的VSC-HVDC控制策略研究。
     研究了交流电网故障、特别是相位跳变条件下的VSC-HVDC系统动态特性。以抑制直流电压脉动和负序电流为控制目标,建立了VSC-HVDC系统dq坐标正负序数学模型及两种不平衡控制系统;对比研究了抑制直流电压脉动和抑制负序电流控制系统与常规矢量控制系统的动态特性及其相位跳变控制特性。
     针对双序dq矢量电流控制中相序分解环节带来的系统动态性能降低和电流控制质量下降问题,提出一种基于静止αβ坐标的矢量电流控制策略和谐波补偿方法,实现了在交流系统不平衡条件下抑制直流电压脉动与提高交流电网电流质量控制的双重目标。
     建立VSC-HVDC统一动态模型,提出了基于有功功率/直流电压和无功功率调节的统一矢量控制方案。基于谐振积分器和谐振滤波器的外环控制可简便生成无谐波畸变的正负序电流指令,结合静止αp坐标下的内环矢量电流控制,无须附加谐波补偿措施,在PCC有功和无功功率调节基础上,能有效抑制直流电压脉动或者负序电流,同时降低VSC-HVDC不平衡运行时的低频谐波水平。
     在上述研究基础上,设计基于交流母线电压有差调节的VSC-HVDC统一矢量控制系统,研究了VSC-HVDC在供电系统应用中的相关电能质量控制问题。基于IEEE12-bus benchmark系统的VSC-HVDC仿真研究表明所设计的统一矢量控制系统可减缓电网电压跌落,快速恢复故障后电压,抑制系统低频谐波,提高了电网电压及电流质量。
     针对大连市区南部电网缺少大型电源,重要负荷所占比例高,存在供电可靠性和稳定性方面的问题,研究大连城市电网的VSC-HVDC供电方案。结果表明,采用统一矢量控制策略的VSC-HVDC方案可有效解决南部电网稳定性和可靠性问题,并提高电网供电质量。
As an important part of the ac/dc hybrid power grid, VSC-HVDC should be able to run safely and stably for a long time, especially when the ac system occurs faults. VSC-HVDC is expected to not only ensure its safety and reliability, but also provide support for the faulted power grid, enhance the system stability and reliability, and improve the power quality. This thesis researches on the dynamic characteristics of VSC-HVDC system and control strategy to improve the ac/dc system performance under ac faults.
     Dynamic characteristics of VSC-HVDC system are studied under the ac faults, especially coupled with the phase angle jump. To restrain the dc-link voltage ripple or negative-sequence currents, the positive-and negative-sequence models of VSC-HVDC and two stratiges applicable to the unbalanced faults are investigated. The dynamics of VSC-HVDC with the control systems for the restraint of dc-link voltage ripple or the negative-sequence current are investigated as compared with that of the conventional strategy, furthermore the system performance considering phase angle jump is analysed.
     To improve the dynamic performance and mitigate the ac current deterioration presented in the conventional dual vector current control due to the sequence component decomposition, a new vector current control strategy and harmonic compensation controller in the stationary αβ reference frame are proposed. It can restrain the2nd harmonic ripple on the dc link and decrease the harmonic level in the ac currents under unbalanced ac grid conditions.
     Based on the unified dynamic models, a novel unified control scheme for active power/dc-link voltage and reactive power regulation is proposed. The resonant integrator and filter based scheme in the outer loop enables the simple acquision of the positive-and negative-sequence current references without harmonic component. Combined with the inner vector current control in the stationary αβ frame, besides the active power and reactive power regulation at PCC, the proposed scheme can restrain the dc-link voltage ripple or the negative currents along with the restraint of low-order harmonics without additional harmonics compensation.
     The unified control system based on the ac voltage regulation with droop control is designed, and its application in power supply related to power quality issue is investigated. The simulation studies with the IEEE12-bus benchmark show that it can mitigate the voltage dip, restore the system voltage quickly after the fault, retain a rather low level harmonics and then improve the system operating voltage and current quality.
     Considering the problems that the south Dalian grid lacks of large internal power supplies and has a higer proportion of important load, which will make reliability and stability issues, VSC-HVDC for the south Dalian grid is studied. The results show that the introduction of VSC-HVDC based on the unified control scheme can effectively ehance the stability and reliability and impove the quality of power supply in the south Dalian grid.
引文
[1]浙江大学发电研究组直流输电科研组.浙江大学.直流输电[M].北京:水利电力出版社,1985.
    [2]Asplund G, Carlsson L, Tollerz 0.50 years HVDC part Ⅰ, ABB-from pioneer to world leader [C/OL]. http://www.abb.com/hvdc
    [3]Asplund G, Carlsson L, Tollerz 0.50 years HVDC part Ⅱ, The semiconductor 'takeover'[C/OL]. http://www.abb.com/hvdc
    [4]Davidson C C, De Preville G. The future of high power electronics in transmission and distributed power systems [C].13th European Conference on Power Electronics and Applications, Barcelona, Spain,2009.
    [5]Ooi B T, Wang X. Voltage angle lock loop control of the boost type PWM converter for HVDC application [J]. IEEE Trans. on Power Electronics,1990,5(2):229-235.
    [6]Wang X, Ooi B T. High voltage direct current transmission system based on voltage source converter [C]. Power Electronics Specialists Conference, San Antonio, USA, 1990.
    [7]Chaudhary S K, Teodorescu R, Rodriguez P. Wind farm grid integration using VSC based HVDC transmission-an overview [C]. Energy 2030 Conference, Atlanta, USA,2008.
    [8]Buijs P, Cole S, Belmans R. Ten-E revisited:Opportunities for HVDC technology [C]. Energy Market,6th International Conference on the European, Leuven, Belgium,2009.
    [9]CIGRE. B4-37 DC transmission using voltage sourced converters [R]. CIGRE B4-37 Working Group Technology Report,2004.
    [10]Asplund G, Erisson K, Sevensson K. DC transmission based on voltage source converters [C]. Proceeding of CIGRE SC14 Colloquium, South Africa,1997.
    [11]Flourentzou N, Agelidis V G, Demetriades G D. VSC-based HVDC power transmission systems:an overview [J]. IEEE Trans. on Power Electronics,2009,24(3):592-602.
    [12]Axelsson U, Holm A, Liljegren, et al. The Gotland HVDC Light project-experiences from trial and commercial operation [C].16th International Conference and Exhibition on Electricity Distribution, Amsterdam, Netherlands,2001.
    [13]Hyttinen M, Bentzen K. Operating experiences with a voltage source converter (HVDC Light) on the gas platform troll A [C]. International Energy Conference Energex 2006 Organising committee, Las Las Vegas, USA,2006.
    [14]Railing B D, Miller J J, Steckley P, et al. Cross Sound Cable Project second generation VSC technology for HVDC [C/OL] 2004, http://www.cigre.org
    [15]Bahrman M, Edris A A, Haley R. Asynchronous back-to-back HVDC link with voltage source converters [C]. Minnesota Power Systems Conference, Minnesota, USA,1999.
    [16]Eriksson K. Operational experience of HVDC light [C]. Seventh International Conference on AC-DC Power Transmission, London, England,2001.
    [17]Michael P B, Brian K J. The ABCs of HVDC transmission technologies [J]. IEEE power & energy magazine,2007 March/April:32-44.
    [18]汤广福.高压直流输电装备核心技术研发及工程化[J].电网技术,2012,36(1):1-6.
    [19]汤广福,罗湘,魏晓光.多端直流输电与直流电网技术[J].中国电机工程学报,2013,33(10):8-17,24.
    [20]张文亮,汤广福,查鲲鹏,等.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010,30(4):1-7.
    [21]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2009.
    [22]Ooi B T. Research opportunities in high power electronics [C]. The sixth international Conference on Power Electronics and Drives Systems, Kuala Lumpur, Malaysia,2005.
    [23]Vassilios G A, Georgios D D, Nikolas F. Recent advances in High-Voltage Direct-Current power transmission systems [C]. IEEE International Conference on Industrial Technology, Mumbai, India,2006.
    [24]Colin C D, Guillaume D P. The future of high power electronics in transmission and distributed power systems [C].13th European Conference on Poer Electronics and Applications, Barcelona, Spain,2009.
    [25]Bilodeau H, Mehraban B. Overview of a special publication on voltage soured converter application in power transmission [C]. Power Engineering Society General Meeting, Tampa, USA,2007.
    [26]Lesnicar A, Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range [C]. Proceedings of IEEE Bologna Power Tech Conference, Bologna, Italy,2003.
    [27]Henderson M, Gagnon J, Bertagnolli D, et al. Building a plan for HVDC [J]. IEEE Power and Energy Magazine, March-April 2007,5(2):52-60.
    [28]管敏渊,徐政.模块化多电平换流器型直流输电的建模与控制[J].电力系统自动化,2010,34(19):64-68.
    [29]Gemmell B, Dorn J, Retzmann D, et al. Prospects of multilevel VSC technologies for power transmission [C]. Transmission and Distribution Conference and Exposition, Bogota, Colombia,2008.
    [30]杨杰.电压源换相高压直流输电交直流系统故障特性研究[D].北京:清华大学,2010.
    [31]Rioual P, Pouliquen H, Louis J P. Regulation of a PWM rectifier in the unblanced network state using a generalized model [J]. IEEE Transactions on Power Electronics,1996,11(3):495-502.
    [32]Song H and Nam K. Dual current_control scheme for PWM converter under unbalanced input voltage conditions [J]. IEEE Transactions on Industrial Electronics,1999, 46(5):953-959.
    [33]Du C, Sannino A, Bollen M. Analysis of response of VSC-based HVDC to unbalanced faults with different control systems [C]. IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific, Dalian, China,2005.
    [34]Moran L, Ziogas P D, Joos G. Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions [J]. IEEE Transactions on Industrial Applications,1992,28(6):1286-1293.
    [35]Madrigal M and Acha E. Harmonic modeling of voltage source converters for HVDC stations [C]. Seventh International Conference on AC-DC Power Transmission,2001, California, America,2001.
    [36]Tang L, Ooi B T. Elimination of "harmonic transfer through converters" in VSC-based multiterminal DC system by AC/DC decoupling [J]. IEEE Transactions on Power Delivery,2008,23(1):402-409.
    [37]Sannino A, Bollen M, Svensson J. Voltage tolerance testing of three-phase voltage source converters [J]. IEEE Transactions on Power Delivery,2005,20(2):1633-1639.
    [38]Ana Diez Castro, Rickard Ellstrom, Ying Jiang Hafner, et al. Co-ordination of parallel AC-DC system for optimum performance [C]. Proceedings of the Power Delivery Europe'99 Conference, Madrid, Spain,1999.
    [39]Axelsson U, Holm A, Liljegren C, et al. Gotland HVDC Light transmission-world's first commercial small scale DC transmission [C].15th International Conference and Exhibition on Electricity Distribution, Nice, France,1999.
    [40]Asplund G. HVDC using voltage source converters-A new way to build highly controllable and compact HVDC substation [C]. Cigre SC 23 Symposium, Paris, France,2000.
    [41]Axelsson U, Holm A, Liljegren C, et al. The Gotland HVDC Light project-experience from trialand and commercial operation [C]. Proceeding 2001 CIGRE 16th International Conference and Exhibition on Electricity Distribution, pp.18-21. Amsterdam, Netherlands,2001.
    [42]Sobrink K H, Christensen P, Eriksson K, et al. DC feeder for connection of a wind farm [C]. Cigre Symposium on HVDC, Kuala Lumpur, Malaysia,1999.
    [43]Skytt A K, Holmberg P, Juhlin L Erik. HVDC Light for connection of wind farm [C]. Second International Workshop on Transmission Network for offshore wind farm, Royal Institute of Technology Stockholm, Sweden,2001.
    [44]ZStendius L, Eriksson K. HVDC Light an excellent tool for city center infeed [C]. PowerGen Conference, Singapore,1999.
    [45]Lu W, Ooi B T. Premium quality power park based on multi-terminal HVDC [J]. IEEE Transactions on Power Delivery,2005,20(2):978-983.
    [46]Zhang J, Liu Q, Rehtan C, et al. Investigation of several new technologies for mega city power grid issues [C].2006 International Conference on Power System Technology, Chongqing, China,2006.
    [47]Jacobson B, Fischer de Toledo P, Asplund G. City infeed with HVDC Light and extruded cables [C].16th Conference of the Electric Power Supply Industry, Mumbai, India, 2006.
    [48]Wang X. Advances in Pulse Width Modulation techniques [D]. Montreal, Canada:McGill University,1993.
    [49]殷自力,梁海峰,李庚银,等.基于模糊自适应PI控制的柔性直流输电系统实验研究[J].电力自动化设备,2008,28(7):49-53.
    [50]刘洪涛,徐政.基于三电平电压源换流器的高压直流输电系统的控制策略研究[J].电工技术学报,2003,18(3):102-106,58.
    [51]孙栩,孔力. VSC-HVDC系统的动态相量法建模仿真分析[J].电力系统自动化,2008,32(1):44-47.
    [52]姚伟,程时杰,文劲宇.电压源直流输电的动态相量建模与仿真[J].高电压技术,2008,34(6):1115-1120.
    [53]张桂斌,徐政,王广柱.基于VSC的直流输电系统的稳态建模及其非线性控制[J].中国电机工程学报,2002,22(1):17-22.
    [54]赵成勇,李金丰,李广凯.基于有功和无功独立调节的VSC-HVDC控制策略[J].电力系统自动化,2005,29(9):20-24.
    [55]赵成勇,孙营,李广凯.双溃入直流输电系统中的VSC-HVDC的控制策略[J].中国电机工程学报2008,28(7):97-103.
    [56]张崇巍,张兴书.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [57]梁海峰,李庚银,李广凯,等.向无源网络供电的VSC-HVDC系统仿真研究[J].电网技术,2005,29(8):45-50.
    [58]尹明,李庚银,牛同义,等.VSC-HVDC连续时间状态空间模型及其控制策略研究[J].中国电机工程学报,2005,25(18):34-39.
    [59]陈海荣,徐政.基于同步坐标变换的VSC-HVDC暂态模型及其控制器[J].电工技术学报,2007,22(2):121-126.
    [60]Durrant M. A Comparison of current controller designs for VSC-HVDC [C].10th European Conference on Power Electronics and Applications, Toulouse, France, 2003.
    [61]Padiyar K R, Prabhu N. Modelling, Control design and Analysis of VSC based HVDC Transmission Systems [C]. Proceedings of PowerCon2004, Singapore,2004.
    [62]Xu L, Agelidis V G. A VSC transmission system using flying capacitor multilevel converters and selective harmonic elimination PWM control [J/OL]. International Journal of Emerging Electrical Power Systems,2006,5(2), Article 4.
    [63]李国栋,毛承雄,陆继明,等.基于逆系统理论的VSC-HVDC新型控制[J].高电压技术,2005,31(8):45-50.
    [64]胡兆庆,毛承雄,陆继明.一种优化控制策略在基于电压源换流器的HVDC系统中的应用[J].电网技术,2004,28(10):38-41.
    [65]邹超,王奔,李泰.向无源网络供电的VSC_HVDC系统控制策略[J].电网技术,2009,33(2):84-88.
    [66]陈海荣,张静,潘武略.基于VSC的高压直流输电系统的非线性控制[J].电力建设,2008,29(12):19-22.
    [67]彭建春,金灵满,曾超.VSC-HVDC输电系统的非线性控制器设计[J].湖南大学学报,2008,35(8):38-42.
    [68]Farag A, Durrant M, Werner H, et al. Robust control of a VSC-HVDC terminal attached to a weak AC system [C]. Proceedings of IEEE 2003 Conference on Control Application, Istanbul, Turkey,2003.
    [69]Durrant M, Werner H, Abbott K. Synthesis of multi-objective controllers for a VSC HVDC terminal using LMIs [C].43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas,2004.
    [70]Bregeon S, Benchaib A, Poullain S, et al. Robust DC bus voltage control based on Backstepping abd Lyapunov methods for long distance VSC transmission scheme [C]. European Conference on Power Electronics and Applications, Toulouse, France,2003.
    [71]Ruan S Y, Li G J, Jiao X H, et al. Adaptive control design for VSC-HVDC systems based on backstepping method [J]. Electric Power Systems Research,2007,77(5-6): 559-565.
    [72]李广凯.VSC-HVDC系统及其在电网恢复中的应用研究[D].北京:华北电力大学,2007.
    [73]Cherouat H, Siguerdidjane H, Thomas J-L, et al. Sliding modes control of VSC-HVDC transmission systems [C].10th European Conference on Power Electronics and Applications. Toulouse, France,2003.
    [74]周国梁,石新春,魏晓光,等.电压源换流器高压直流输电不平衡控制策略研究[J].中国电机工程学报,2008,28(22):137-143.
    [75]Liang H F, Li G Y, Li G K, et al. Analysis and Design of H∞ controller in VSC HVDC systems [C]. IEEE/PES Transmission and Distribution Conference and Exhibition, Dalian, China,2005.1-6.
    [76]Durrant M, Werner H, Abbott K. Design of LQG Controllers for VSC HVDC Transmission Links Using Genetic Algorithms [C]. IEEE International Symposium on Intelligent Control, Munich, Germany,2006.
    [77]Moharana A K, Panigrahi K, Panigrahi B K, et al. VSC based HVDC for passive network with fuzzy controller [C]. International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, New Delhi, India,2006.
    [78]张海燕.VSC_HVDC输电系统的模糊神经网络控制[J].电测与仪表,2010,47(535):34-41.
    [79]何斌,张秀彬,赵兴勇.电压不对称条件下电压源换流器式高压直流输电的自适应无源控制[J].电网技术,2007,31(14):68-73.
    [80]王国强,王志新,张学燕.海上风电场柔性直流输电变流器的无源性控制策略[J].电力自动化设备,2011,31(8):11-15.
    [81]张静.VSC-HVDC控制策略研究[D].杭州:浙江大学,2009.
    [82]Rahmati A, Abrishamifar A, Abiri E. Direct Power Control of an HVDC system based on VSCs [C]. IEEE International Conference on Industrial Technology, Mumbai, India, 2006.
    [83]Rahmati A, Abrishamifar A, Abiri E. Direct Power Control of HVDC Light system for connecting two network at different frequency[C]. Proceeding of the 41st International Universities Power Engineering Conference, Newcastle-Upon-Tyne, UK, 2006.
    [84]Torres-Olguin, Undeland T M. An adaptive direct power control for multi-terminal HVDC transmission system under unbalanced conditions [C].2009 International Conference on Electric Power and Energy Conversion Systems, Sharjah, United Arab Emirates,2009.
    [85]李正熙,王久和,李华德.电压型PWM整流器非线性控制策略综述[J].电气传动,2006,36(1):9-13,27.
    [86]张静,徐政,潘武略.VSC-HVDC系统新型广义直流电压控制策略[J].电力系统自动化,2008,32(21):46-50.
    [87]周国梁.基于电压源换流器的高压直流输电系统控制策略研究[D].保定:华北电力大学,2009.
    [88]陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究[D].杭州:浙江大学,2007.
    [89]Xu L, Andersen B R, Cartwright P. Multilevel-converter-based VSC transmission operating under fault AC conditions [J]. IEE Proceeding on Transmission and Distribution,2005,152(2):185-193.
    [90]Xu L, Yao L, Sasse C. Grid integration of large DFIG-based wind farms using VSC transmission [J]. IEEE Transactions on Power Systems,2007,22(3):976-984.
    [91]张静,徐政,王峰.包含VDCCOL的VSC-HVDC改进控制策略[J].电力系统自动化,2008,32(22):41-46.
    [92]Jovcic D, Lamont L, Abbott K. Control system design for VSC transmission [J]. Electric Power Systems Research,2007,77(7):721-729.
    [93]Hagiwara M and Akagi H. An approach to regulating the DC-link voltage of a voltage-source BTB system during power line faults [J]. IEEE Transactions on Industry Applications,2005,41(5):1263-1271.
    [94]Xu L., Bjarne R. A, Phillip C. VSC transmission operating under unbalanced AC conditions-analysis and control design [J]. IEEE Transactions on Power Delivery, 2005,20(1):427-434.
    [95]Suh Y, Lipo T A. A control scheme of improved transient response for PWM AC/DC converter under generalized unbalanced operating conditions [C]. Power Electronics Specialists Conference,2004 IEEE 35th Annual, Aachen, Germany,2004.
    [96]周国梁,石新春,付超,等.VSC HVDC离散模型及其不平衡控制策略[J].电工技术学报,2008,23(12):137-143.
    [97]Xu L, Agelidis V G. A VSC transmission system using flying capacitor multilevel converters and hybrid PWM control [J]. IEEE Trans. on Power Delivery,2007, 22(1):693-702.
    [98]Leon A E, Mauricio J M, Solsona J A, et al. Adaptive control strategy for VSC-based systems under unbalanced network conditions [J]. IEEE transactions on Smart Grid, 2010,1(3):311-319.
    [99]李金丰,李广凯,赵成勇,等.三相电压不对称时带有电压源换流器的HVDC系统的控制策略[J].电网技术,2005,29(16):16-20.
    [100]Du C. The control of VSC-HVDC and its use for large industrial power systems [D]. Thesis for the degree of licentiate of engineering, Chalmers University of technology, Sweden,2003.
    [101]Du C, Agneholm E. A novel control of VSC-HVDC for improving power quality of an industrial plant [C].32nd Annual Conference on IEEE Industrial Electronics, Paris, France,2006.
    [102]邵文君,宋强,刘文华.轻型直流输电系统的不对称故障控制策略[J].电网技术,2009,33(12):42-48.
    [103]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2004.
    [104]李鹏,陈志业,尹华丽等.统一电能质量控制器及其控制信号检测方法探讨[J].华北电力大学学报,2002,29(2):1-5.
    [105]袁旭峰,程时杰,文劲宇.改进瞬时对称分量法及其在正负序电量检查中的应用[J].中国电机工程学报,2008,28(1):52-58.
    [106]Suh Y. Analysis and control of three phase AC/DC PWM converter under unbalanced operationg conditions [D]. Madison, Wisconsin:University of Wisconsin-Madison, 2004.
    [107]Bongiomo M, Svensson L, Sannino A. Effect of sampling frequency and harmonics on delay-based phase sequence estimation method [J]. IEEE Transactions on Power Delivery,2008,23 (3):1664-1672.
    [108]电力工业部GB/T14549-93电能质量公用电网谐波[S].北京:中国标准出版社,1994.
    [109]Rodriguez P, Poe J, Bergas J, et al. Decoupled double synchronous reference frame PLL for power converter control [J]. IEEE Transactions on Power Electronics,2007,22(2):584-592.
    [110]Zmood D N, Holmes D G. Stationary frame current regulation of PWM inverters with zero steaty-state error [J]. IEEE Transactions on Power Electronics,2003,18(3): 814-822.
    [111]Teodorescu R, Blaeabjerg F, Liserre M, et al. Proportional-resonant controllers and filters for grid-connected voltage-source converters [J]. IEE Proceedi gs of Electric Power Applications,2006,153(5):750-762.
    [112]姜齐荣,谢小荣,陈建业.电力系统的并联补偿——结构、原理、控制与应用[M].北京:机械工业出版社,2004.
    [113]Mohagheghi S. Adaptive critic designs based neurocontrollers for local and wide area control of a multimachine power system with a static compensator [D]. Atlanta: Georgia Institute of Technology,2006.
    [114]Fischer de Toledo P. Feasibility of HVDC for city infeed [D]. Stockholm:Royal Institute of Technology,2003.
    [115]王雪丽.交直流电力系统仿真方法与动态特性的研究,山东[D].济南:山东大学,2011.
    [116]葛维春,顾洪群,贺之渊.大连跨海柔性直流输电科技示范工程综述[J].东北电力技术,2012,(2):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700