共悬浮绕组式无轴承开关磁阻电机的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:无轴承开关磁阻电机(BSRM)兼具了磁轴承与开关磁阻电机(SRM)的特点,不但可避免传统机械轴承的缺点,还充分利用了开关磁阻电机自身的优点,因其在高速领域的应用价值得到了各国学者广泛的研究。传统结构双绕组BSRM悬浮绕组数量多,而且电机运行中,悬浮绕组要随主绕组的切换在各相间不断切换,增加了功率电路中开关器件的个数及控制的复杂性。
     本文提出一种新型的共悬浮绕组式BSRM绕组结构,不论几相电机,均只需要2套悬浮绕组实现径向悬浮控制。而且,电机在整个运行过程中,不需要切换悬浮绕组,功率器件个数减少为原来的三分之一,降低了系统成本和控制复杂性。
     首先,对提出的共悬浮绕组式BSRM的电磁特性进行了有限元计算,分析了其悬浮性能及悬浮绕组电流对旋转转矩的影响,以及磁饱和对悬浮性能及旋转转矩的影响等,证明了共悬浮绕组式无轴承开关磁阻电机在饱和情况下依然悬浮可控;与双绕组结构BSRM进行了对比分析,验证了其在悬浮与旋转方面具有同样的特性。
     其次,建立了共悬浮绕组式BSRM的等效磁路模型,求取了主绕组与悬浮绕组的自感及互感表达式;提出以定子极机械位置为参考考虑转子径向偏移对定转子极间气隙变化的影响,推导了定转子极间气隙长度与转子径向偏移位置、定子极位置的数学关系;采用直线磁路结合边缘椭圆形磁路的方法求取了气隙磁导;进一步推导出了径向力、静态转矩与绕组电流及转子旋转位置角之间的数学关系。与有限元仿真结果进行比较,验证了径向力及转矩数学模型的准确性。
     考虑转子偏心位移对定转子极间气隙磁导的影响,提出通过近似分析法求得绕组电感,从而建立了考虑转子偏心位移影响的共悬浮绕组式BSRM径向力解析模型,得到绕组电流、转子旋转位置、转子径向偏移位置与转子所受径向力的数学关系。该数学模型的计算结果与有限元仿真结果的一致性证实了该解析模型的正确性。
     然后,针对共悬浮绕组式BSRM径向悬浮力系统的严重非线性,提出了基于逆系统方法的径向力非线性控制方法,依据动态性能要求调节控制参数,实现了径向力控制的动态线性化,对不同动态性能指标下精确的转子径向位移控制进行仿真,验证了控制方案的有效性。
     最后,搭建了共悬浮绕组式BSRM实验平台,对该电机进行了悬浮旋转试验,证明了共悬浮绕组式BSRM的悬浮可控及优良性能,为其进一步深入研究奠定了基础。
The Bearingless Switched Reluctance Motor (BSRM) integrates both advantages of magnetic bearings and switched reluctance motor, where the suspension windings share the same stator core as the original stator torque windings, and a suitable control strategy is used to adjust the currents in both windings in such a way that the resultant radial forces support the rotor suspending in the stators center and the produced torque drives the rotor. However, the conventional double-winding BSRM has many suspension windings, e.g. three-phase motor features6sets of suspension windings. And the suspension windings have to be switched frequently during the torque windings commutation. As a result, the power converter requires many switches, and the control method and its implementation are complex, which increases the system cost and failure rate.
     Sharing suspension windings BSRM is proposed in the dissertation. The proposed BSRM uses only two suspension windings independent of the phase number to implement the rotor radial suspending. Because the number of suspension windings is greatly reduced, the motor structure becomes simpler. During motor operating, there is no need to switch the suspension windings. The number of IGBTs used in the power converter is reduced a lot, when compared to those required in the double-winding BSRM. The control circuit and algorithm have both been significantly simplified. The key foundation problems of the sharing suspension windings BSRM are studied in this dissertation.
     Firstly, the electromagnetic field of the sharing suspension windings BSRM are calculated in detail based on the Finite-element (FE) calculation. The suspension capacity and the affection of suspension windings on static torque are analyzed. The suspending force and the torque characteristics were obtained for different rotor positions and winding currents. The magnetic suspension performances of the sharing suspension windings BSRM and the double-winding BSRM are compared. The results indicate the proposed BSRM have a good suspension and rotation performance. The saturation effect on the suspending force and the torque has been also studied. The suspension controllability is verified even though the magnetic saturation of the sharing suspension windings BSRM.
     The magnetic equivalent circuit method is employed to obtain the self-inductances and mutual-inductances of the motor main windings and suspension windings. The affection of rotor eccentricity on the air-gap permeances between the stator and rotor tooth poles is accurately analyzed. The mathematical relationship among the rotor radial eccentricity, the air-gap length between the stator and rotor tooth poles and the mechanical position of stator is derived. The straight flux paths are combined with the elliptical fringing flux paths to calculate the air-gap permeances.
     Based on the calculated air-gap permeances the windings inductances of the motor and the stored magnetic energy are obtained when the rotor is located at the central point of the stator. Then, the mathematical expressions of radial forces and torque are derived. A sharing suspension windings BSRM prototype is analyzed through using the proposed analytical model and the finite element model (FEM). The proposed mathematical model of the sharing suspension windings BSRM is verified by Finite-element analysis results.
     Analytic modeling of radial forces is proposed for the sharing suspension windings BSRM, where the affection of rotor eccentricity on the air-gap permeances between the stator and rotor tooth poles is taken into account. The radial force model describing the relationship between the radial force, winding currents, rotor position angle, and rotor eccentricity displacement is derived. The FEM results verify the proposed radial force model.
     The control scheme based on inverse-system method was proposed for the serious non-linearization system of the sharing suspension windings BSRM radial suspension force. A synthesize control scheme of easily regulating control parameters according to dynamic performance remands was designed. Dynamic linearization control of radial force was achieved. The rotor radial position simulations results which satisfy the different dynamic performance remands verify the proposed method.
     Finally, the experimental platform of the sharing suspension windings BSRM is built to finish the preliminary static suspension and rotation suspension experiments. The systemic study results show the suspension controllability and excellent performance. The dissertation provides the basis for further research of the sharing suspension windings BSRM.
引文
[1]P. J. Lawrenson, J. M. Stephenson, et al. Variable-speed Switched Reluctance Motors. IEE Proc. [J].1980,127(4):253-265
    [2]T.J.E. Miller. Switched Reluctance Motors and Their Control [M]. Magna Physics Publishing and Clarendon Press, Oxford,1993:1-5
    [3]王宏华.开关型磁阻电动机调速控制技术[M].北京:机械工业出版社,1995:1-20
    [4]刘迪吉等.开关磁阻调速电动机[M].北京:机械工业出版社,1992:1:17
    [5]吴建华.开关磁阻电机设计与应用[M].北京:机械工业出版社,2000:1-11
    [6]R.Krishnan. Switched Reluctance Motors Drives [M]. CRC Press Inc,2001:1-23
    [7]T.J.E. Miller. Electronic Control of Switched Reluctance Machines [M]. Newnes (an imprint of Butterworth-Heinemann Ltd,2001:2-3
    [8]Amirthalingam, Ramya. Speed Control of Switched Reluctance Motor [M]. LAP Lambert Academic Publishing AG & Co KG,2012:1-9
    [9]Sahoo Sanjib Kumar, Dasgupta Souvik, Panda Sanjib Kumar, Xu Jian-Xin. A lyapunov function-based robust direct torque controller for a switched reluctance motor drive system [J]. IEEE Transactions on Power Electronics,2012,27(2):555-564
    [10]Tseng Chwan-Lu, Wang Shun-Yuan, Chien Shao-Chuan, Chang Chaur-Yang. Development of a self-tuning TSK-fuzzy speed control strategy for switched reluctance motor [J]. IEEE Transactions on Power Electronics,2012,27(4):2141-2152
    [11]Kalaivani L, Subburaj P, Willjuice Iruthayarajan M. Speed control of switched reluctance motor with torque ripple reduction using non-dominated sorting genetic algorithm (NSGA-II) [J]. International Journal of Electrical Power and Energy Systems,2013,53(1):69-77
    [12]Takeno Motoki, Chiba Akira, Hoshi Nobukazu, Ogasawara Satoshi, Takemoto Masatsugu, Rahman M, Azizur. Test results and torque improvement of the 50-kw switched reluctance motor designed for hybrid electric vehicles [J]. IEEE Transactions on Industry Applications,2012,48(4):1327-1334
    [13]Arihara, Hiromu, Akatsu, Kan., Basic properties of an axial-type switched reluctance motor [J]. IEEE Transactions on Industry Applications,2013,49(1):59-65
    [14]Vandana R, Nikam S, Fernandes BG. High torque polyphase segmented switched reluctance motor with novel excitation strategy [J]. IET Electric Power Applications, August 2012,6(7): 375-384
    [15]Tomczewski K, Wrobel K. Quasi-three-level converter for switched reluctance motor drives reducing current rising and falling times [J]. IET Power Electronics,2012,5(7):1049-1057
    [16]Hasegawa Yu, Nakamura Kenji, Ichinokura Osamu. A novel switched reluctance motor with the auxiliary windings and permanent magnets [J]. IEEE Transactions on Magnetics,2012, 48(11):3855-3858
    [17]Chiba Akira, Takeno Motoki, Hoshi Nobukazu, Takemoto Masatsugu, Ogasawara Satoshi, Rahman M. Azizur. Consideration of number of series turns in switched-reluctance traction motor competitive to HEV IPMSM [J]. IEEE Transactions on Industry Applications, 2012,48(6):2333-2340
    [18]Vujicic, Vladan P. Minimization of torque ripple and copper losses in switched reluctance drive [J]. IEEE Transactions on Power Electronics,2012,27(1):388-399
    [19]Coombs T.A..Campbell A.M., Cardwell D.A. Development of an active superconducting magnetic bearing[J]. IEEE Transactions on Applied Superconductivity, Jun 1995,5(2):630-633
    [20]Weibacher Christoph.Stelzer Hermann, Hameyer Kay. Application of a tubular linear actuator as an axial magnetic bearing [J]. IEEE/ASME Transactions on Mechatronics,2010,15(4): 615-622
    [21]Bachovchin, Kevin D,Hoburg, James F, Post, Richard F. Stable levitation of a passive magnetic bearing[J]. IEEE Transactions on Magnetics,2013,49(1):609-617
    [22]Komori,Mochimitsu,Matsuoka, Shinya, Fukata, Satoru. Evaluations of a hybrid-type superconducting magnetic bearing system[J]. IEEE Transactions on Applied Superconductivity, 1996,6(4):178-182
    [23]Mukhopadhyay SC,Ohji, Takahisa, Iwahara Masayoshi, Yamada, Sotoshi. Modeling and control of a new horizontal-shaft hybrid-type magnetic bearing [J]. IEEE Transactions on Industrial Electronics,2000,47(1):100-108
    [24]Smith RD, Weldon WF. Nonlinear control of a rigid rotor magnetic bearing system:modeling and simulation with full state feedback [J]. IEEE Transactions on Magnetics,1995,31(2): 973-980
    [25]Rundell A.E, Drakunov S.V, Decarlo R.A. A sliding mode observer and controller for stabilization of rotational motion of a vertical shaft magnetic bearing [J]. IEEE Transactions on Control Systems Technology,1996,4(5):598-608
    [26]Guang Ren Duan, Zhan Yuan Wu, Chris Bingham. Robust magnetic bearing control using stabilizing dynamical compensators [J]. IEEE Transactions on Industry Applications,2000, 36(6):1654-1660
    [27]Jin Tsong Jeng, Tsu Tian Lee. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2000,30(1):85-92
    [28]Chin Teng Lin, Chong Ping Jou. GA-based fuzzy reinforcement learning for control of a magnetic bearing system [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2000,30(2):276-289
    [29]Min Chen, Knospe CR. Feedback linearization of active magnetic bearings:current-mode implementation [J]. IEEE/ASME Transactions on Mechatronics,2005,10(6):632-639
    [30]Matsumura F, Namerikawa T, Hagiwara K, et al. Application of gain scheduled Hoo robust controllers to a magnetic bearing [J]. IEEE Transactions on Control Systems Technology,1996, 4(5):484-493
    [31]Sahinkaya M.N, Abulrub A.H.G., Keogh P.S, et al. Multiple Sliding and Rolling Contact Dynamics for a Flexible Rotor/Magnetic Bearing System [J]. IEEE/ASME Transactions on Mechatronics,2007,12(2):179-189
    [32]Shi Jing Huang, Li Chang Lin. Summary:Fuzzy dynamic output feedback control with adaptive rotor imbalance compensation for magnetic bearing systems [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2004,34(4):1854-1864
    [33]T. Higuchi, H. Kawakatsu, and T. Iwasawa. A study on magnetic suspension of switched reluctance motor [C]. IEE of Japan, Annual Meeting Record 684,1989:(6-122)-(6-123) (in Japanese)
    [34]Mark A, James PF, Eike Richter, and Kiyoung Chung. Integrated magnetic bearing/switched reluctance machine [P].1994, U.S. Patent 5,424,595
    [35]Shimada K, Takemoto M, Chiba A, Fukao T. Radial Forces in Switched Reluctance Type Bearingless Motor [C]. The 9th Symposium on Electromagnetics and Dynamics,1997:547-552 (in Japanese)
    [36]Shimada K, Takemoto M, Chiba A, Fukao T. A stable rotation in switched reluctance type bearingless motors [C]. IEEE Technical Meeting on Linear Drive,1997:97-116 (in Japanese)
    [37]Bichsel J. The bearingless electrical machine [C]. Proceeding of international Symposium on Magnetic Suspension Technology, NASA Langley Research Center, Hampton, VA,1992: 561-573
    [38]Amrhein Wi Silber S, Nenninger K, Trauner G, Reisinger M., Schoeb R. Developments on bearingless drive technology [J]. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing,2003,46(2):343-348
    [39]Takemoto M, Shimada K., Chiba A, and Fukao T. A design and characteristics of switched reluctance type bearingless motors [C]. Proceeding of 4th international Symposium on Magnetic Suspension Technology, NASA/CP-1998-207654,1998:49-63
    [40]Takemoto M, Chiba A, Fukao T. A new control method of bearingless switched reluctance motors using square-wave currents [C]. Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting, Singapore,2000:375-380
    [41]Takemoto M, Chiba A, Fukao T. A feed-forward compensator for vibration reduction considering magnetic attraction force in bearingless switched reluctance motors[C]. Proceedings of the 7th International Symposium on Magnetic Bearings.2000:395-400
    [42]Takemoto M, Chiba A, Fukao T. A method of determining the advanced angle of square-wave currents in a bearingless switched reluctance motor, [J]. IEEE Transactions Industry Application,2001,37(6):1702-1709
    [43]Takemoto M, Suzuki H, Chiba A, et al. Improved analysis of a bearingless switched reluctance motor [J]. IEEE Transactions On Industry Application,2001,37(1):26-34
    [44]Takemoto M, Chiba A, Fukao T. Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation [C]. Industry Application Conference,37th IAS Annual Meeting,2002:35-42
    [45]Takemoto M, Chiba A, Fukao T. Radial Force and Torque of a Bearingless Switched Reluctance Motor Operating in a Region of Magnetic Saturation [J]. IEEE Transactions on Industry Applications,2004,40(1):103-112
    [46]Takemoto M, Chiba A, Fukao T. Torque and suspension force in a bearingless switched reluctance motor [J]. Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi),2006,157(2):72-82
    [47]Lee DH, Wang HJ, Ahn JW. Modeling and Control of Novel Bearingless Switched Reluctance Motor [C]. IEEE Energy Conversion Congress and Exposition, September 20-24,2009, San Jose, CA, United states 2009:276-281
    [48]Wang HJ, Lee DH, Ahn JW. Novel two-phase switched reluctance motor with hybrid rotor structure [C]. IEEE Energy Conversion Congress and Exposition, September 20-24,2009, San Jose, CA, United states 2009:270-275
    [49]Jin-Woo Ahn, DongHee Lee. Characteristics analysis of suspending force for hybrid stator bearingless SRM [J]. Journal of Electrical Engineering & Technology,2011,6(2):208-214
    [50]Guan Zhongyu, Lee DongHee, Ahn Jin Woo, Zhang Fengge. A compensation strategy of suspending force in hybrid type stator pole bearingless switched reluctance motor [C].2011 International Conference on Electrical Machines and Systems, ICEMS 2011, August 20-23, 2011, Beijing, China,2011:1-6
    [51]Peng Wei, Lee DongHee, Zhang Fengge, Ahn JinWoo. Design and characteristic analysis of a novel bearingless SRM with double stator [C].2011 International Conference on Electrical Machines and Systems, ICEMS 2011, August 20-23,2011, Beijing, China,2011:7-10
    [52]DongHee Lee, JinWoo Ahn. Design and Analysis of Hybrid Stator Bearingless SRM [J]. Journal of Electrical Engineering & Technology,2011,6(1):94-103
    [53]Wang HJ, Lee DH, Park TH, Ahn JW. Hybrid stator-pole switched reluctance motor to improve radial force for bearingless application [J]. Energy Conversion and Management,2011, 52(2):1371-1376
    [54]Xu Zhenyao, Lee Dong-Hee, Zhang Fengge, Ahn JinWoo. Hybrid pole type bearingless switched reluctance motor with short flux path [C].2011 International Conference on Electrical Machines and Systems, ICEMS 2011, August 20-23,2011, Beijing, China,2011:11-16
    [55]Zhenyao Xu, Fengge Zhang, JinWoo Ahn. Design and analysis of a novel 12/14 hybrid pole type bearingless switched reluctance motor [C].2012 IEEE International Symposium on Industrial Electronics (ISIE), May 28-31,2012, Hangzhou, China,2012:1922-1927
    [56]Xu Zhenyao, Lee DongHee, Ahn Jin Woo. Comparative analysis of bearingless switched reluctance motors with decoupled suspending force control[C].2012 IEEE Industry Applications Society Annual Meeting, IAS 2012, October 7-11,2012, Las Vegas, NV, United states,2012:608-736
    [57]Xu Zhenyao, Lee DongHee, Ahn Jin Woo. Suspending force control of a novel 12/14 hybrid stator pole type bearingless SRM [C]. Proceedings of 15th International Conference on Electrical Machines and Systems, ICEMS 2012, October 21-24,2012, Sapporo, Japan,2012
    [58]Xu Zhenyao, Zhang Fengge, Lee DongHee, Ahn Jin Woo. Design and analysis of novel 12/14 hybrid pole type bearingless switched reluctance motor with short flux path [J]. Journal of Electrical Engineering and Technology, September 2012,7(5):705-713
    [59]Wei Peng, Fengge Zhang, JinWoo Ahn. Design and control of a novel bearingless SRM with double stator [C].2012 IEEE International Symposium on Industrial Electronics (ISIE), May 28-31,2012, Hangzhou, China,2012:1928-1933
    [60]Zhongyu Guan, Fengge Zhang, Jin Woo Ahn. High speed direct current compensation control for 8/10 bearingless SRM [C].2012 IEEE International Symposium on Industrial Electronics (ISIE), May 28-31,2012, Hangzhou, China,2012:1934-1939
    [61]Wang H, Wang Y, Liu X, Ahn JW. Design of novel bearingless switched reluctance motor [J]. IET Electric Power Applications,2012,6(2):73-81
    [62]Xu Zhenyao, Lee Dong-Hee, Ahn Jin-Woo. Analysis and control of a novel bearingless switched reluctance motor with hybrid stator poles [C]. Proceedings of the IEEE International Conference on Industrial Technology, ICIT 2013, February 25-28,2013, Cape Town, South africa,2013:247-252
    [63]Chen L, Hofman W. Analytically computing winding currents to generate torque and levitation force of a new bearingless switched reluctance motor[C]. Proceeding of 12th International Power Electronics and Motion Control Conference, EPE-PEMC, Portoroz Slovenia, September/Octorber 2006:1058-1063
    [64]Chen L, Hofmann W. Performance characteristics of one novel switched reluctance bearingless motor drive [C].4th Power Conversion Conference-NAGOYA, PCC-NAGOYA 2007, April 2-5,2007, Nagoya, Japan,2007:608-613
    [65]Chen L, Hofmann W. Design procedure of bearingless high-speed switched reluctance motors [C].2010 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa, Italy on June 14-16,2010:1442-1447
    [66]Chen L, Hofmann W. Analysis of radial forces based on rotor eccentricity of bearingless switched reluctance motors [C]. International Conference on Electrical Machines (ICEM), September 6-8,2010, Rome, Italy,2010:6-12
    [67]Chen L, Hofmann W. Modelling and control of one bearingless 8-6 switched reluctance motor with single layer of winding structure [C].14th European Conference on Power Electronics and Applications, Birmingham, ENGLAND, Aug.30-Sep.01,2011:1-9
    [68]Chen L, Hofmann Wilfried. Speed Regulation Technique of One Bearingless 8/6 Switched Reluctance Motor With Simpler Single Winding Structure [J]. IEEE Transactions on Industrial Electronics,2012,59(6):2592-2600
    [69]Zhu Xiangzhen, Pollock C. New design of radial displacement sensor for control of a switched reluctance motor without bearings [C]. IEEE Industry Applications Conference,40th IAS Annual Meeting,2005, (3):2160-2167
    [70]C. R. Morrison. Bearingless Switched Reluctance Motor [P]. U.S. Patent 6,727,618,2004
    [71]C.R.Morrison, M.W. Siebert, and E.J. Ho. Electromagnetic forces in a hybrid magnetic-bearing switched-reluctance motor [J]. IEEE Transactions on Magnetics,2008,44(12):4626-4638
    [72]B.B. Choi, M.W. Siebert. A bearingless switched reluctance motor for high specific power applications[C]. AIAA/ASME/SAE/ASEE 42nd Joint Propulsion Conference and Exhibit, Sacramento, California,2006:4832-4842
    [73]F.C. Lin, S.M. Yang. Instantaneous shaft radial force control with sinusoidal excitations for switched reluctance motors[C].39th IAS Annual Meeting (IEEE Industry Applications Society), Seattle, WA,2004(1):424-430
    [74]W.T. Liu and S.M. Yang. Modeling and control of a self-bearing switched reluctance motor[C]. IEEE IAS Annual Meeting, Hong Kong, Oct.2005:2720-2725
    [75]F.C. Lin, S.M. Yang. Radial force control of a switched reluctance motor with two-phase sinusoidal excitations[C].41th IAS Annual Meeting (IEEE Industry Applications Society), 2006(3):1171-1177
    [76]F.C. Lin, S.M. Yang. An approach to producing controlled radial force in a switched reluctance motor [J]. IEEE Transactions on Industrial Electronics,2007,54(4):2137-2146
    [77]F.C. Lin, S.M. Yang. Self-bearing control of a switched reluctance motor using sinusoidal currents [J]. IEEE Transactions on Power Electronics,2007,22(6):2518-2526
    [78]F.C. Lin, S.M. Yang. Instantaneous shaft radial force control with sinusoidal excitations for switched reluctance motors [J]. IEEE Transactions on Energy Conversion,2007,22(3):629-636
    [79]刘国海,孙玉坤,张浩等.磁悬浮开关磁阻电机径向力的动态解耦控制[J].东南大学学报,2004,34(11):63-67
    [80]刘国海,孙玉坤,张浩等.基于神经网络逆系统的磁悬浮开关磁阻电机的解耦控制[J].电工技术学报,2005,20(9):39-43
    [81]Liu Guohai, Sun Yukun, Shen Yue, et al. Dynamic decoupling control of bearingless switched reluctance motors based on neural network inverse system[C]. Proceedings of the Eighth International Conference Electrical Machines and Systems,2005:1811-1815
    [82]张亮,孙玉坤.基于微分几何的磁悬浮开关磁阻电机径向力的变结构控制[J].中国电机工程学报,2006,26(19):121-126
    [83]Wu Jianbin,Sun Yukun,Liu Xianfei.et al. Decoupling control of radial force in bearingless switched reluctance motors based on inverse system[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation,Dalian,China,2006:1100-1104
    [84]孙玉坤,吴建兵,项倩雯.基于有限元法的磁悬浮开关磁阻电机数学模型[J].中国电机工程学报.2007.27(12):33-40
    [85]孙玉坤,刘羡飞,王德明.基于有限元分析的磁悬浮开关磁阻电机数学模型的全角度拓展[J].电工技术学报,2007,22(9):34-39
    [86]刘羡飞,孙玉坤,王德明,郭晓丽.磁悬浮开关磁阻电机径向位置解耦及仿真研究[J].系统仿真学报,2007,19(7):1527-1530
    [87]孙玉坤,任元,黄永红.磁悬浮开关磁阻电机悬浮力与旋转力的神经网络逆解耦控制[J].中国电机工程学报,2008,28(9):81-85
    [88]项倩雯,孙玉坤,张新华.磁悬浮开关磁阻电机建模与参数优化设计[J].电机与控制工程学报,2011,15(4):74-79
    [89]孙玉坤,周云红,嵇小辅.磁悬浮开关磁阻电机的神经网络逆解耦控制[J].中国电机工程学报,2011,31(30):117-123
    [90]朱志莹,孙玉坤,黄永红.磁悬浮开关磁阻电机逆动力学建模与控制[J].电机与控制工程学报,2011,15(3):74-85
    [91]周云红,孙玉坤,朱志莹,孙雪蕾.磁悬浮开关磁阻电机的一体化数学模型[J].江苏大学学报(自然科学版),2011,32(1):79-83
    [92]刘杰,孙玉坤,朱志莹.磁悬浮开关磁阻电机解耦新方法仿真研究[J].微电机,2011,44(3):42-45
    [93]项倩雯,孙玉坤,嵇小辅.一种减小磁悬浮开关磁阻电机损耗的新方法[J].江苏大学学报(自然科学版),2012,33(6):684-689
    [94]项倩雯,嵇小辅,孙玉坤等.单绕组磁悬浮开关磁阻电机的原理与解耦控制[J].电机与控制工程学报,2012,16(11):22-28
    [95]朱志莹,孙玉坤,嵇小辅,黄永红.磁悬浮开关磁阻电机转子位移/位置观测器设计[J].中国电机工程学报,2012,32(12):83-89
    [96]徐青松,孙玉坤,周应旺,徐高红.新型磁悬浮开关磁阻电机的有限元分析[J].微电机,2012,45(1):12-15
    [97]周云红,孙玉坤,嵇小辅等.磁悬浮开关磁阻电机径向位移自检测[J].中国电机工程学报,2012,32(6):150-155
    [98]周云红,孙玉坤,黄永红.磁悬浮开关磁阻电机的支持向量机逆全解耦控制[J].江苏大学学报,2012,33(1):60-64
    [99]周云红,孙玉坤,嵇小辅,黄永红.一种新型的磁悬浮开关磁阻发电机[J].中国电机工程学报,2012,32(15):107-113
    [100]邓智泉,杨钢,张媛等.一种新型无轴承开关磁阻电机数学模型[J].中国电机工程学报,2005,25(9):139-146
    [101]张媛,邓智泉.无轴承开关磁阻电机控制系统的设计与实现,航空学报[J].电机与控制学报,2006,27(1):77-81
    [102]曹鑫,邓智泉,杨钢,王晓琳.新型无轴承开关磁阻电机双相导通数学模型[J].电工技术学报,2006,21(4):50-56
    [103]杨钢,邓智泉,张媛等.无轴承开关磁阻电机实验平台的设计与实现[J].中国电机工程学报,2006,26(22):97-103
    [104]范冬,杨艳,邓智泉,王晓琳.无轴承高速开关磁阻电机设计中的关键问题[J].电机与控制学报,2006,10(6):547-552
    [105]范冬,邓智泉,杨钢,曹鑫,王晓琳.无轴承开关磁阻电机的功率变换器研究[J].微特电机,2007(5):10-12
    [106]王世山,刘泽远,邓智泉,周爱民.无轴承开关磁阻电机动、静态电感耦合的数学拟合([J].电工技术学报,2007,22(12):22-28
    [107]杨钢,邓智泉,曹鑫,罗建震,王晓琳.适用于无轴承开关磁阻电机的功率变换器设计[J].航空学报,2008,29(1):110-116
    [108]曹鑫,邓智泉,杨钢,王晓琳.一种无轴承开关磁阻电机独立控制策略[J].中国电机工程学报,2008,28(24):94-100
    [109]杨钢,邓智泉,曹鑫,刘泽远,罗建震,王晓琳.基于三相半桥功率变换器的无轴承开关磁阻电机绕组结构分析[J].中国电机工程学报,2008,28(27):95-103
    [110]Yang G, Deng Z.Q., Cao X., and Wang X.L. Optimal winding arrangements of a bearingless switched reluctance motor [J]. IEEE Transactions on Power Electronics, Nov.2008, 23(6):3056-3066
    [111]Cao Xin,Deng Zhiquan. Yang Gang. et al. Independent control of average torque and radial force in bearing less switched reluctance motors with hybrid excitations [J]. IEEE Transactions on Power Electronics.2009,24(5):1376-1385
    [112]王世山,刘泽远,邓智泉.增强能量增量法求解无轴承开关磁阻电机电感[J].南京航空航天大学学报,2009,41(1):85-90
    [113]杨钢,邓智泉,曹鑫,罗建震,王晓琳.无轴承开关磁阻电机绕组电流超前角计算方法[J].南京航空航天大学学报,2009,41(2):159-164
    [114]刘泽远,王世山,邓智泉.稳定悬浮状态下无轴承开关磁阻电机电感特性[J].南京航空航天大学学报,2009,41(2):165-170
    [115]邓智泉,曹鑫,杨钢,王晓琳.无轴承开关磁阻电机径向电磁力模型[J].电机与控制学报2009,13(3):377-382
    [116]曹鑫,邓智泉,杨钢,杨艳,王晓琳.无轴承开关磁阻电机麦克斯韦应力法数学模刑[J].中国电机工程学报,2009,29(3):78-83
    [117]杨艳,邓智泉,曹鑫,杨钢,王晓琳.无轴承开关磁阻电机径向电磁力模型[J].电机与控制学报,2009,13(3):377-388
    [118]杨艳,邓智泉,曹鑫,刘泽远,王晓琳.12/8极无轴承开关磁阻电机定子振动特性分析[J].南京航空航天大学学报,2010,42(4):494-500
    [119]杨艳,邓智泉,张倩影,刘泽远,曹鑫.控制策略对无轴承开关磁阻电机定子振动的影响[J].航空学报,2010,31(10):2010-2017
    [120]Yang Yan Deng Zhiquan, Yang Gang, et al. A control strategy for bearingless switched reluctance motors [J]. IEEE Transactions on Power Electronics,2010,25(11):2807-2819
    [121]Yang Yan, Deng Zhiquan, Zhang Qianying, Wang Xiaolin, Stator. Vibration Analysis of Bearingless Switched Reluctance Motors [C].2010 International Conference on Electrical and Control Engineering (ICECE),2010:1993-1996
    [122]张倩影,邓智泉,杨艳.无轴承开关磁阻电机转子质量偏心补偿控制[J].中国电机工程学报,2011,31(6):128-134
    [123]赵旭升,邓智泉,汪波.一种磁悬浮开关磁阻电机用轴向径向磁轴承[J].北京航空航天大学学报,2011,37(8):973-978
    [124]刘泽远,邓智泉,曹鑫,王世山.全周期无轴承开关磁阻发电机的设计[J].中国电机工程学报,2011,31(12):77-83
    [125]庄铮,邓智泉,曹鑫,赵丽丹.无轴承开关磁阻全周期发电机输出功率的建模与优化控制[J].中国电机工程学报,2012,27(7):41-48
    [126]王晓琳,贺鹏.无轴承扰动补偿悬浮系统的稳定性分析与验证[J].控制理论与应用,2012,29(5):665-672
    [127]王晓琳,任新宇,邓智泉,廖启新.短路容错控制在多相无轴承永磁同步电机中的可行性分析[J].电工技术学报,2012,27(3):73-78
    [128]王秋蓉,葛宝明.无轴承开关磁阻电机的转矩与径向力特性分析[J].北京交通大学学报,2007,31(2):107-110
    [129]王秋蓉,葛宝明.无轴承开关磁阻电机磁场及力特性分析[J].电机与控制学报,2007,11(3):217-226
    [130]王秋蓉.无轴承开关磁阻电机的分析与设计[D].北京:北京交通大学,2007:35-46
    [131]伍峰.基于双DSP的无轴承开关磁阻电机控制器设计[D].北京:北京交通大学,2007:27-46
    [132]赵楠.磁浮开关磁阻电机悬浮控制技术研究[D].北京:北京交通大学,2007:8-16
    [133]赵楠,葛宝明.基于双DSP的磁浮开关磁阻电机全数字控制器[J].电力自动化设备,2007,27(12):65-69
    [134]王秋蓉,葛宝明.无轴承开关磁阻电机磁饱和特性的电磁场分析[J].防爆电机,2007,42(1):19-25
    [135]李倬,葛宝明.一种改进的无轴承开关磁阻电机数学模型[J].电机与控制学报,2009,13(6):850-856
    [136]李倬.无轴承开关磁阻电机控制策略研究[D].北京:北京交通大学,2009:18-27
    [137]Zhang JT, Wang XL. Radial Suspension Control of Magnetic Suspending Switched Reluctance Motor Based on the ITAE Optimal Control[C]. The 15th International Conference on Electrical Machines and Systems, ICEMS2012, Japan, Oct 21-24,2012
    [138]王喜莲.“一种磁悬浮开关磁阻电机”[P].,中国专利中请,200910078022.9,Feb.10,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700