延性金属动态拉伸断裂及其临界损伤度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
延性金属动态拉伸断裂过程是一个多尺度的科学问题,大体上涉及三个物理层次——原子层次、细观层次和宏观层次。早期学者们通常把实验测量的宏观物理量——层裂强度(最大拉伸强度)作为描述延性金属动态拉伸断裂的特征物理量,但是大量的实验结果表明,层裂强度与加载应力、拉伸应变率相关,因而它不是一个材料物性常数。后来,Curran等人(Physics Reports,147(5&6),253-388,1987)通过对回收样品的金相分析,在细观(介观)层次上认识到延性金属动态拉伸断裂是一个微损伤随时间不断累积而诱发灾变断裂的过程。最近,Strachan等人(Phys.Rev.B,63,060103,2001)和Sepp(?)l(?)等人(Phys.Rev.Lett.,93,245503,2004 and Phys.Rev.B,71,064112,2005)在原子层次上的分子动力学模拟结果表明了延性金属动态拉伸断裂具有某种临界行为。本文在Curran等人(Physics Reports,147(5&6),253-388,1987)的实验研究和封加波等人提出的损伤度函数模型(J.Appl.Phys.,81(6),2575-8,1997)基础上,探讨采用特征物理量——临界损伤度来表征延性金属动态拉伸断裂特性;并基于Strachan等人(Phys.Rev.B,63,060103,2001)的分子动力学研究成果和逾渗理论,提出了一个新的逾渗软化函数,用于描述损伤演化后期到断裂灾变之前由于微孔洞聚集而导致的材料快速软化过程。本文以20~#钢和纯铝为主要模型材料,通过实验和数值模拟方法,对爆炸与冲击作用下延性金属动态拉伸断裂的一般特性进行了比较系统的研究。研究结果表明:在一维应变平面冲击加载条件下,断裂临界损伤度对加载应力和拉伸应变率变化不敏感,并在预测金属柱壳动态拉伸断裂中也具有适用性,从而初步证实了断裂临界损伤度是一个材料物性常数,可以用于复杂应力环境下表征延性金属动态拉伸断裂性质。本文的主要工作和创新点简要归纳如下:
     1.采用一级轻气炮加载,通过激光速度干涉测速系统(VISAR)测量平板样品自由面速度剖面,对20~#钢的层裂特性进行了比较系统的实验研究。通过改变飞片和样品的厚度及飞片速度调整拉伸应变率与加载应力,拉伸应变率变化范围为10~4~10~6s~(-1),加载应力5~10 GPa。实验结果显示:20~#钢的层裂强度随拉伸应变率的增高而增大,10~6s~(-1)条件下层裂强度比10~4s~(-1)时提高近60%;但在5~10 GPa加载应力范围内和拉伸应变率基本不变的条件下,层裂强度基本不变。文中还对强激光辐照加载条件下纯铝的损伤演化行为和层裂特性开展了类似的实验研究,发现纯铝的层裂强度也随着拉伸应变率增加而增大,特别在拉伸应变率超过10~6s~(-1)以后,层裂强度随着拉伸应变率的提高更加显著。
     2.对微孔洞演化过程中的聚集行为进行了分析与讨论。文中借鉴Strachan等人(Phys.Rev.B,63,060103,2001)的分子动力学研究成果和逾渗理论,提出了逾渗软
The dynamic tensile fracture process in the ductile metals is of multiple scales, including microscopie, mesoscopic and macroscopic scales. Usually, spall strength proposed by early investigators is regarded as a characteristic physical parameter for describing the dynamic tensile fracture. However, extensive experiments indicate that spall strength depends on both of the impact stress and the tensile strain rate, which is not a material constant. Later, mesoscopic studies from metallographic observations of the shocked samples by Curran et al. (Physics Reports, 147(5&6), 253-388, 1987) showed clearly that the dynamic tensile fracture is resulted from that an accumulation of microdamages which triggers the catastrophic fracture. Recently, by means of molecular dynamic simulation, it was revealed by Strachan et al. (Phys. Rev. B, 63, 060103, 2001) and Seppala et al. (Phys. Rev. Lett., 93,245503, 2004 and Phys. Rev. B, 71, 064112, 2005) that there is a critical behavior in the dynamic tensile fracture of ductile metals at the microscopic atomic level. In this paper, based on experimental studies performed by Curran et al. (Physics Reports, 147(5&6), 253-388, 1987) and the damage function model proposed by Feng Jiapo et al. (J. Appl. Phys., 81(6), 2575-8, 1997), a critical damage parameter is introduced to describe the intrinsic characteristic of the dynamic tensile fracture in the ductile metals. On the basis of the molecular dynamic simulation performed by Strachan et al. (Phys. Rev. B, 63, 060103, 2001) and the percolation theory, a Percolation-Softening (P-S) function is proposed to describe the material's rapid softening during the void-coalescence process. The universal characteristic for dynamic tensile fracture of ductile metals under the explosion and shock wave loading has been evaluated by experiments and numerical simulation. Results indicate that the critical damage parameter is independent on the impact stress and the tensile strain rate, and it is applicable to predicting the dynamic tensile fracture behavior in metal cylinders, therefore may be regarded as a material constant to identify the intrinsic characteristic of the dynamic tensile fracture in explosion and shock wave events. The main and / or innovative points of the thesis are summarized as follows:
    1. Firstly, using a gas gun, a set of plate impact experiments were performed for 20 steel by measuring the rear free-surface velocity profiles with a Velocity Interferometer System for Any Reflector (VISAR). Experiments were arranged in two variations: i) by adjusting the flyer velocity to change impact stress, and ii) by adjusting the thicknesses of flyer and sample to change the tensile strain rate, in order to investigate the effects of loading stress and tensile strain rate on the spall strength. The measured results show that the impact stress has less influence on the spall strength in the range of 5-10 GPa, but an apparent increase of spall strength with tensile strain rate is evidenced, and 60% increase of spall strength is determined in the present tensile strain rate range of 10~4~10~6s~(-1). Secondly, the dynamic tensile spallation of pure aluminium subjected to intense laser shock has been studied experimentally. Spall strength calculated from the measured free surface velocity is characterized as a function of
引文
1 M. Ortiz. State and future perspectives in computational mechanics of materials and structures. www.solids.caltech.edu/~ortiz/.
    2 D. E. Grady. The spall strength of condensed matter [J]. J. Mech. Phys., Solids, 36(3), 353(1988).
    3 D. R. Curran, L. Seaman, D. A. Shockey. Dynamic failure of solids [J]. Phys. Rep., 147(5&6), 253(1987).
    4 J. N. Johnson, F. L. Addession. Tensile plasticity and ductile fracture [J]. J. Appl. Phys., 64, 6699(1988).
    5 J. S. Rinehart. Some quantitive data bearing on the scabbing of metals under explosive attack [J]. J. Appl. Phys., 22, 555(1951).
    6 M. A. Meyers, C. T. Aimone. Dynamic fracture of metals [J]. Prog. Mater. Sci., 28, 1(1983).
    7 L. Davison, D. E. Grady, M. Shahinpoor. High Pressure shock compression of solids Ⅱ: Dynamic fracture and fragmentation [M]. New York: Springer, 1996.
    8 T. H. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, A. V. Utkin. Spall Fracture[M]. New York: Springer, 2003.
    9 D. L. Tonks., A. K. Zurek, W. R. Thissell. Modeling incipient spallation m commercially pure tantalum [A]. in: Proceedings of International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena(EXPLOMET 2000)[C], edited by K. P. Staudhammer, L. E. Murr, M. A. Meyers, Albuquerque, USA, Elsevier, (517)2001.
    10 A. K. Zurek. Dynamic ductile damage evolution and tensile fracture: new experimental insights for models evaluation [A]. in: Proceedings of International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena(EXPLOMET 2000)[C], edited by K. P. Staudhammer, L. E. Murr, M. A. Meyers, Albuquerque, USA, Elsevier, (125)2001.
    11 P. Chevrier, J. R. Klepaczko. Fracture model for spalling of hard metallic materials based on the mesoscale approach [A]. in: Proceedings of International Conference on Fundamental Issues and Applications of Shock-Wave and High-Swam-Rate Phenomena(EXPLOMET 2000)[C], edited by K. P. Staudhammer, L. E. Murr, M. A. Meyers, Albuquerque, USA, Elsevier, (99)2001.
    12 W. R. Thissell, A. K. Zurek et al. The effect of cleanliness in the quantitative evolution of dynamic Damage in 10100 Cu [A]. in: Proceedings of International Conference on Fundamental Issues and Applications of Shock-Wave and High-swain-Rate Phenomena(EXPLOMET 2000)[C], edited by K. P. Staudhammer, L. E. Murr, M. A. Meyers, Albuquerque, USA, Elsevier, (68)2001.
    13 G T. Gray Ⅲ, K. S. Vecchio. Influence of microstructural anisotropy on the quasi-static and dynamic fracture of 1080 eutectoid steel [A]. in: Proceedings of International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena(EXPLOMET 2000)[C], edited by K. P. Staudhammer, L. E. Murr, M. A. Meyers, Albuquerque, USA, Elsevier, (157)2001.
    14 X. Chen, J. R. Asay, S. K. Dwivedi. Spall behavior of aluminium with varying microstructure [J]. J. Appl. Phys., 99, 023528(2006).
    15 G. I. Kanel, K. Baumung, J. Singer, S. V. Razorenov. Dynamic strength of aluminium single crystals at melting [J]. Appl. Phys. Lett., 76(22), 3230(2000).
    16 G. I. Kanel, S. V. Razorenov. Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature [J]. Int. J. Impact Engng., 20, 467 (1997).
    17 G. I. Kanel, S. V. Razorenov. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point [J]. J. Appl. Phys., 90, 136(2001).
    18 K. Baumung, H. Bluhm. Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures [J]. Int. J. Impact Engng., 25,631(2001).
    19 R. L. Martineau, C. A. Aderson. An explicit model of expanding cylindrical shells subjected to high explosive detonations. Los Alamos National Laboratory, CONF-990504, 1999.
    20 R. L. Martineau, C. A. Aderson. Expansion of cylinder shells subjected to internal explosive detonations [J]. Exp. Mech., 40(2), 219(2000).
    21 陈大年,王德生.层裂判据与过程模拟[J].爆炸与冲击,4,50(1982).
    22 陈大年,王德生,马松合等.两类动态断裂[J].爆炸与冲击,7(1),27(1987).
    23 胡八一,董庆东,韩长生等.内部爆轰加载下的钢管膨胀断裂研究[J].爆炸与冲击,13(1),49(1993).
    24 封加波,经福谦,苏林祥,韩均万.对薄层圆管爆炸膨胀断裂过程的研究[J].高压物理学报,2,97(1988).
    25 董玉斌,苏林祥,陈大年,经福谦等.滑移爆轰作用下内爆柱形钢壳层裂的数值研究[J].高压物理学报,3,1(1989).
    26 G. I. Taylor. Fragmentation of tubular bombs, Science Papers of Sir G. I. Taylor, Vol.3, No. 44, London: Cambridge University Fress, 1963.
    27 C. Hoggatt, and R. Recht. Fracture behavior of tubular bombs [J]. J. Appl. Fhys., 39, 1856(1968).
    28 高重阳,施惠基,姚振汉,白春华.薄壁圆管在内部爆炸载荷下膨胀断裂的研究[J].爆炸与冲击,20,160(2000).
    29 谭成文,王富耻,李树奎,王鲁.内爆炸加载条件下圆管的膨胀、破裂规律研究[J].爆炸与冲击,23(4),305(2003).
    30 汤铁钢,胡海波,李庆中等.外部爆轰加载过程中金属圆管断裂实验研究[J].爆炸与冲击,22(4),333(2002).
    31 汤铁钢,谷岩,李庆忠,华劲松,孙学林.爆轰加载下金属柱壳膨胀破裂过程研究[J].爆炸与冲击,23(6),529(2002).
    32 李雪梅.内爆加载下钢圆管的变形、损伤及层裂研究.硕士学位论文.合肥:中国科学技术大学,2003.
    33 李雪梅,金孝刚.李大红.钢圆管在内爆加载下的层裂特性研究[J].爆炸与冲击,25(2),107(2005).
    34 E. Moshe, E. Dekel, Z. Henis, S. Eliezer. Development of an optically recording velocity mterferometer system for laser induced shock waves measurements [J]. Appl. Phys. Lett., 69, 1379(1996).
    35 A. T. Tamura, T. Kohama, K. Kondo, M. Yoshida. Femtosecond-laser-induced spallation in aluminium [J]. J. Appl. Phys., 89, 3520 (2001).
    36 F. Vidal, T. W. Johnston, J. C. Kieffer, F. Martin. Spallation induced by ultrashort laser pulses at critical tension [J]. Phys. Rev. B., 70, 184125 (2004).
    37 A. Dekel, S. Eliezer, Z. Henis, E. Moshe, A. Ludmirsky and I. B. Goldberg. Spall model for the high strain rotes range [J]. J. Appl. Phys., 84, 4851 (1998).
    38 L. Tollier, R. Fabbro, E. Bartnicki. Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. Ⅰ. Laser-shock characterization [J]. J. Appl. Phys. 83, 1231 (1998).
    39 王永刚,M.Boustie,贺红亮,王礼立,经福谦.强激光辐照下纯铝的力学响应和层裂的实验测量与分析[J].强激光与粒子束,17(7),966(2005).
    40 D. B. Holtkamp, D. A. Clark, E.N. Ferm, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography [A]. in: Shock Compression of Condensed Matter[C], edited by M. D. Furnish, Y. M. Gupta, and J. W. Forbes, Portland: American Institute of Physics, 477(2003).
    41 R. Becker, How metals fail, UCRL-52000-02-7/8, 2002.
    42 A. K. Zurek, W. R. Thissell, C. P. Trujillo, et al. Damage evolution in ductile metals. Los Alamos Science, 28, 111(2003).
    43 P. Whiteman. Atomic Weapons Research Establishment Report, UNDEX 445, 1962.
    44 R. B. Breed, C. L. Nader, D. Venable. Technique for determination of dynamic tensile strength characteristics [J]. J. Appl. Phys., 38(8), 138(1967).
    45 F. R. Tuler, B. M. Butcher. A criterion for the time dependence of dynamic fracture [J]. Int. J. Fract. Mech., 4(4), 431(1968).
    46 L. Davision, A. L. Stevens. Continuum measures of spall damage [J]. J. Appl. Phys. 43,(1972)
    47 M. M. Carroll, A. C. Holt. Static and dynamic pore collapse relations for ductile porous materials [J]. J. Appl. Phys., 43(4), 1626(1972).
    48 J. N. Johnson. Dynamic fracture and spallation in ductile solids [J]. J. Appl. Phys., 52(4), 2812 (1981):
    49 J. N. Johnson, F. L. Addessio. Tensile plasticity and ductile fracture [J]. J. Appl. Phys., 64(12), 6699(1988).
    50 P. Perzyna. Internal state variable description of dynamic fracture of ductile solids [J]. Int. J. Solids and Structures, 22(7), 797(1986).
    51 王泽平,郑坚,安钢,恽寿榕.延性介质动态损伤模型[J].爆炸与冲击,12,136(1992).
    52 Jian Zheng, Ze-ping Wang. Spall damage in aluminum Alloy [J]. Int. J. Solids and Structures, 32, 1135(1995).
    53 L. Seaman, D. R. Curran, D. A. Shockey. Computational models for ductile and brittle fracture. J. Appl. Phys., 47(11), 4814(1976).
    54 白以龙,汪海英,夏蒙棼,柯孚久.统计细观损伤力学和跨尺度耦合的特征表征,见:材料的宏微观力学与强韧化设计,黄克智,王自强主编,清华大学出版社,2003.
    55 Y. L. Bai, M. F. Xia, F. J. Ke, H. L. Li. Statistical microdamage mechanics and damage field evolution[J]. Theor. Appl. Fract. Mech., 37, 1(2001).
    56 Y. L. Bai, J. Bai, H. L. Li. Damage evolution, localization and failure of solids subjected to impact loading [J]. Int. J. Impact Engng., 24, 685(2000).
    57 封加波.金属动态延性破坏的损伤度函数模型[D].博士学位论文.北京:北京理工大学,1992.
    58 Jiapo Feng, Fuqian Jing, Guanren Zhang. Dynamic ductile fragmentation and the damage function model [J]. J. Appl. Phys., 81(6), 2575(1997).
    59 J. R. Kleaczko, P. Chewier. A meso-model of spalling with thermal coupling for hard metallic materials [J]. Eng. Fract. Mech., 70, 2543(2003).
    60 J. Eftis, C. Carrasco, R. A. Osegueda. A constitutive-microdamage model to simulate hypervelocity projectile-target impact, material damage and fracture [J]. Int. J. Plasticity, 19, 1321(2003).
    61 Zhang Lin, Cai Lingcang, Li Yinglei, Peng Jianxiang, Jing Fuqian, Chen Dongquan. Simplified model for prediction of dynamic damage and fracture of ductile materials [J]. Int. J. of Solids and Structures, 41, 7063(2004).
    62 A. Molinari, T. W. Wright. A physical model for nucleation and early growth of voids in ductile materials under dynamic loading [J]. J. Mech. Phys. Solids, 53, 1476(2005).
    63 L. Campagne, L. Daridon, S. Ahzi. A physically based model for dynamic failure in ductile metals [J]. Mech. Mater., 2006(in Press)
    64 J. D. Clayton. Modeling dynamic plasticity and spall fracture in density polycrystalline alloys [J]. Int. J. of Solids and Structures, 42, 4612(2005).
    65 Chen Danian, Tan Hua, Yu Yuying, et al. A void coalescence-based spall model [J]. Int. J. Impact Engng., 2006(in Press)
    66 T. Hiroe, H. Matsuo, K. Fujiawara et al. Dynamic behavior of materials induced by explosive loadings initiated using wire explosion techniques [J]. J. Mater. Prog. Tech., 85, 56(1999).
    67 S. Hanim, J. R. Klepazcko. Numerical study of spalling in aluminium alloy 7020-T6 [J]. Int. J. Impact Engng., 22, 649(1999).
    68 E. T. Seppala, J. Belak, R. E. Rudd. Onset of void coalescence during dynamic fracture of ductile metals [J]. Phys. Rev. Lett., 93, 245503(2004).
    69 E. T. Seppala, J. Belak, R. E. Rudd. Effect of stress triaxiality on void growth in dynamic fracture of metals: a molecular dynamic study [J]. Phys. Rev. B, 69, 134101(2004).
    70 J. Marian, J. Knap, M. Ortiz. Nanovoid cavitation by dislocation emission in aluminium [J]. Phys. Rev. Lett., 93, 165503(2004).
    71 A. Strachan, T. Cagin, W. A. Goddard Ⅲ. Critical behavior in spallation failure of metals [J]. Phys. Rev. B, 63, 060103(2001).
    72 V. V. Dremov, P. A. Sapozhnikov, M. A. Smirnova. Molecular dynamic simulation of the initial stage of spallation in monocrystalline and polycrystallme materials [J]. in: Proceedings of China-Russia workshop on shock wave and detonation physics[C]. MianYan, China. 12 (2005).
    73 J. Belak. On the nucleation and growth of void at high strain-rotes [J]. J. Comp. Aided Mater. Design, 5, 193(1998).
    74 J. Belak. Multi-scale applications of high strain rotes dynamic fracture [J]. J. Comp. Aided Mater. Design, 9, 165(2002).
    75 R. E. Rudd. Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: an atomistic simulation [J]. Comp. Mater. Sci., 24, 148(2002).
    76 A. M. Krivtsov, Y. I. Mescheryakov. Molecular dynamic investigation of spall fracture [J]. Proceedings of SPIE, 3687, 205(1999).
    77 E. Leveugle, D. S. Ivanov, L. V. Zhigilei. Photomechanical spallation of molecular and metal targets: molecular dynamic study [J]. Appl. Phys. A, A79, 1643(2004).
    78 罗晋,祝文军,林理彬,贺红亮,经福谦.单晶铜在动态加载下空洞增长的分子动力研究[J].物理学报,54(6),2791(2005).
    79 陈湘涛,李茂生,陈栋泉.一种实用的弹塑性流体状态方程[J].高压物理学报,2(1),42(1988).
    80 M. F. Horstemeyer, M. M. Matalanis, A. M. Sieber, M. L. Botos. Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence. Int. J. Plasticity, 16, 979(2000).
    1 胡绍楼.《激光干涉测速技术》[M].北京:国防工业出版社,2001.
    2 经福谦.《实验物态方程导论》[M].第二版,北京:科学出版社,1999.
    3 张林,蔡灵苍,王悟等.钽在冲击载荷下的动态力学特性[J].高压物理学报,15(4),265(2001).
    4 王永刚,M.Boustie,贺红亮,王礼立,经福谦.强激光辐照下纯铝的力学响应和层裂的实验测量与分析[J].强激光与粒子束,17(7),966(2005).
    5 S. A. Novikov. Spall strength of materials under shock load [J]. J. Appl. Mech.Tech. Phys., 3, 109(1967) (in Russian).
    6 G. V. Stepanov, V. I. Romanchenko, V. V. Astanin. Experimental determination of failure stresses under spallation in elastic-plastic waves [J]. Probl. Strength, 8, 96 (1977) (in Russian).
    7 V. I. Romanchenko, G. V. Stepanov. The dependence of critical stress upon the time parameters of load at spalling in Copper, Aluminum, and steel [J]. J. Appl. Mech. Tech. Phys., 21(4), 141(1980).
    8 G. I. Kanel. Dynamic strength of materials [J]. Fatigue Frac. Engng. Mater. Struct., 22, 1011 (1999).
    9 G. R. Gathers. Determination of spall strength from surface motion studies [J]. J. Appl. Phys., 67, 4090(1990).
    10 E. Moshe, E. Dekel, Z. Heins, S. Eliezer. Development of an optically recording velocity interferometer system for laser induced shock waves measurements [J]. Appl. Phys. Lett, 69, 1379(1996).
    11 A. T. Tamura, T. Kohama, K. Kondo, and M. Yoshida. Femtosecond-laser-induced spallation in aluminium[J]. J. Appl. Phys., 89, 3520 (2001).
    12 F. Vidal, T. W. Johnston, J. C. Kieffer, F. Martin. Spallation induced by ultrashort laser pulses at critical tension [J]. Phys. Rev. B, 70, 184125 (2004).
    13 A. Dekel, S.Eliezer, Z. Heins, E. Moshe, A. Ludmirsky and I.B. Goldberg. Spall model for the high strain rates range [J]. J. Appl. Phys., 84, 4851 (1998).
    14 S. Eliezer, I. Gilath, and T. Bar-Noy. Laser-induced spall in metals: Experiment and simulation [J]. J. Appl. Phys., 67, 715 (1990).
    15 F. Cottet, M .Boustie. Spallation studies in aluminum targets using shock waves induced by laser irradiation at various pulse durations[J]. J. Appl. Phys., 66, 4067(1989).
    16 L. Tollier, R. Fabbro, E. Bartnicki. Study of the laser-driven spallation process by the velocity mterferometer system for any reflector interferometry technique. Ⅱ. Experiment and simulation of the spallation process [J]. J. Appl. Phys., 83, 1231 (1998).
    17 H. L. He. T. Kobayashi, T. Sekine. Accurate measurement of the velocity history of a laser-driven foil plate with a push-pull-type VISAR [J]. Appl. Optics, 40(3), 6327(2001).
    18 H. L. He. T. Kobayashi, T. Sekine. Time-resolved measurement on ablative acceleration of foil plate driven by pulsed laser beam[J]. Rev. Sci. Instrum, 72(4), 2032(2001).
    
    19 L. Tollier, R. Fabbro, E. Bartnicki. Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization [J]. J. Appl.Phys., 83, 1224(1998).
    
    20 X. Chen, J. R. Asay, S. K. Dwivedi. Spall behavior of aluminium with varying microstructure [J]. J. Appl. Phys., 99, 023528(2006).
    
    21 V. E. Fortov, V. V. Kostin, S. Eliezer. Spallation of metals under laser irradiation [J]. J Appl Phys., 70(8), 4524(1991).
    
    22 L. Tollier, R. Fabbro, E. Bartnicki. Study of the laser-driven spallation process by the VISAR interferometry technique. II. experiment and simulation of the spallation process[J]. J Appl Phys., 83(3), 1231(1998).
    
    23 C. M. Robinson. Modelling of laser spall experiments on aluminum [A], in: Shock Compression of Condensed Matter[C], edited by M. D. Furnish, N. N. Thadhani, Y. Horie, Atlanta : American Institute of Physics, 1359(2001).
    1 封加波.金属动态延性破坏的损伤度函数模型[D].博士学位论文.北京:北京理工大学,1992.
    2 Jiapo Feng, Fuqian Jing, Guanren Zhang. Dynamic ductile fragmentation and the damage function model [J]. J. Appl. Phys., 81(6), 2575(1997).
    3 Y. L. Bai, F. J. Ke, M. F. Xia. Formulation of statistical evolution of microcracks in solids [J]. Acta Mechanica Smica, 7, 59(1991).
    4 D. R. Curran, L. Seaman, D. A. Shockey. Dynamic failure of solids [J]. Phys. Rep., 147(5&6), 253 (1987).
    5 Chen Danian, Tan Hua, Yu Yuying, et al. A void coalescence-based spall model [J]. Int. J. Impact Engng. 2005(in press).
    6 R. G. Le, J. D. Embury, G. Edward, M. F. Ashby. Acta Metall., 29, 1509(1981).
    7 M. Gologanu, J. B. Leblond, J. Devaux. Theoretical models for void coalescence in porous ductile solids. Ⅱ. Coalescence "in columns" [J]. Int. J. Solids and Structures, 38, 5595(2001).
    8 A. A. Benzerga. Micromecharties of coalescence in ductile fracture [J]. J. Mech. Phys. Solids, 50, 1331(2002).
    9 J. P. Bandstra, D. A. Koss. A simulation of growth and coalescence of voids during ductile fracture[J]. Mater. Sci. Eng., A387-403, 399(2004).
    10 J. P. Bandstra, D. A. Koss, and A. Geltmacher et al. Modeling void coalescence during ductile fracture of a steel [J]. Mater. Sci. Eng., A366, 269(2004).
    11 G. P. Potirniche, J. L. Hearndon, and M. F. Horstemeyer et al. Lattice orientation effects on void growth and coalescence in fcc single crystals [J]. Int. J. Plasticity, 2005(in press)
    12 E. T. Seppala, J. Belak, and R. E. Rudd.Three-dimensional molecular dynamic simulation of void coalescence during dynamic fracture of ductile metals [J]. Phys. Rev. B, 71, 064112(2005).
    13 G. P. Potimiche, M. F. Horstemeyer, and G. J. Wagner et al. A molecular dynamic study of void growth and coalescence m single crystals nickel [J], Int. J. Plasticity, 22, 257(2006).
    14 L. M. Brown, J. D, Embury. The Initiation and Growth of Voids at Second Phase Particles [A]. in: Proceedings 3rd International Conference on Strength of Metals and Alloys, London: Institute of Metals, 164(1973).
    15 E. T. Seppala, J. Belak, R. E. Rudd. Onset of void coalescence during dynamic fracture of ductile metals [J]. Phys. Rev. Lett., 93, 245503(2004).
    16 M. F. Horstemeyer, M. M. Matalanis, A. M. Sieber et al. Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence [J]. Int. J. Plasticity, 16, 979 (2000).
    17 A. L. Gurson. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction [D]. Ph. D. Thesis, Brown University, 1975.
    18 V. Tvergaard, A. Needleman. Analysis of the cup-cone fracture in a round tensile test bar [J]. Acta Metall. 32, 157(1984).
    19 S. Cochran, D. Banner. Spall studies in uranium [J]. J. Appl. Phys., 48, 2729(1977).
    20 D. Stauffer, A. Aharony. Introduction to the Percolation Theory [M]. London: Taylor and Francis, 1992. 2nd ed.
    21 A. K. Zurek, W. R. Thissell, J. N. Johnson et al. Micromechanics of spall and damage in tantalum [J]. J. Mater. Proc. Tech., 60, 261(1996).
    
    22 D. L. Tonks, A. K. Zurek, W. R. Thissell. Void coalescence model for ductile damage [A], in: Shock Compression of Condensed Matter-2001[C], edited by M. D. Furnish, N.N. Thadhani, Y. Horie, Atlanta: American Institute of Physics, 611(2001).
    
    23 D. L. Tonks, A. K. Zurek, W. R. Thissell. Ductile damage modeling based on void coalescence and percolation theories [A]. in: Mettallurgical and Materials Application of Shock-Wave and High-Strain Rate Phenomena[C], edited by D. E. Murr, K. P. Staudhammer, and M. A. Meyers, Elsevier, 171(1995).
    
    24 A. Strachan, T. Cagin, W. A. Goddard II. Critical behavior in spallation failure of metals [J]. Phys. Rev. B, 63,060103(2001).
    
    25 J. N. Johnson. Dynamic fracture and spallation in ductile solids [J]. J. Appl. Phys., 52(4), 2812 (1981).
    
    26 R. Hill. The Mathematical Theory of Plasticity [M]. Oxford: Oxford science publications, 1989.
    
    27 Xiaoyi Wu. The dynamic growth of voids in viscoplastic materials [D]. Ph. D. Thesis, Johns Hopkins University, 2002.
    1 封加波.金属动态延性破坏的损伤度函数模型[D].博士学位论文.北京:北京理工大学,1992.
    2 D. R. Curran, L. Seaman, and D. A. Shockey. Dynamic failure of solids [J]. Phys. Rep., 147(5&6), 253 (1987).
    3 J. N. Johnson. Dynamic fracture and spallation in ductile solids [J]. J. Appl. Phys., 52(4), 2812(1981).
    4 J. N. Johnson and F. L. Addession. Tensile plasticity and ductile fracture [J]. J. Appl. Phys., 64, 6699(1988).
    5 张林.延性材料冲击响应:动态损伤与断裂、结构相变的新模型[D].博士学位论文,绵阳:中国工程物理研究院,2005.
    6 李茂生,陈栋泉.高温高压下材料的本构模型[J].高压物理学报,15(1),24(2001).
    7 Jiapo Feng, Fuqian Jing, and Guanren Zhang. Dynamic ductile fragmentation and the damage function model [J]. J. Appl. Phys., 81(6), 2575(1997).
    8 A. Strachan, T. Cagin, and W. A. Goddard Ⅲ. Critical behavior in spallation failure of metals [J]. Phys. Rev. B, 63, 060103(2001).
    9 L. Tollier, R. Fabbro, and E. Bartnieki. Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. Ⅰ. Laser-shock characterization [J]. J. Appl. Phys., 83, 1231(1998).
    10 李雪梅.内爆加载下钢圆管的变形、损伤及层裂研究[D].硕士学位论文.合肥:中国科学技术大学.2003.
    11 戴诚达.私人通讯.
    12 陈湘涛,李茂生,陈栋泉.一种实用的弹塑性流体状态方程(Ⅰ)[J].高压物理学报,2(1),42(1988).
    13 G. I. Kanel, S. V. Razorenov. Simulation of spall fracture of aluminum and Magnesium over a wide range of load duration and temperature [J]. Int. J. Impact Engng., 20, 467 (1997)
    14 T. de Resseguier, H. He, P. Berterretche. Use of laser-accelerated foils for impact study of dynamic material behaviour [J]. Int. J. Impact Engng., 31, 945(2005).
    15 T. Antoun, L. Seaman, D. D. Curran, G. I. Kanel, S. V. Razorenov, Al. V. Utkin. Spall Fracure[M]. New York: Springer (2003).
    16 R. Becker, J. U. Cazamias, D.H. Kalantar, M.M. LeBlanc, and H.K. Springer. Modeling and characterization of recompressed damaged materials. UCRL-TR-202345, 2004.
    17 J. P. Bandstra, D. A. Koss, A. Geltmacher, P.Matic, R.K. Everett. Modeling void coalescence during ductile fracture of a steel [J]. Mater. Sci. Eng., A366, 269(2004).
    18 A. K. Zurek. W. R. Thissell, C. P. Trujillo, D. L. Tonks, B. L. Henrie, and R. K. Keinigs. Damage evolution in ductile metals. Los Alamos Science, 111(2003).
    19 白以龙,汪海英,夏蒙棼,柯孚久.统计细观损伤力学和跨尺度耦合的特征表征[A].见:材料的宏微观力学与强韧化设计[C],黄克智、王自强主编,清华大学出版社,2003.
    20 Y.L.Bai, M. F. Xia, F. J. Ke, H. L. Li. Statistical microdamage mechanics and damage field evolution [J]. Theor. Appl. Fract. Mech., 37, 1(2001).
    21 Y. L. Bai, Z. Ling, L. M. Luo, F. J. Ke. Initial development of micro-damage under impact loading [J]. J. Appl. Mech., 59, 622(1992).
    22 Y.L. Bai, J. Bai, H.L. Li. Damage evolution, localization and failure of solids subjected to impact loading [J]. Int. J. Impact Engng., 24, 685(2000).
    23 M. F. Xia, F.J. Ke, Y. L. Bai. Evolution reduced catastrophe in a nonlinear dynamical model of materials failure [J]. Nonlinear Dynam., 22, 205(2000).
    24 Y.L. Bai, M. F. Xia, F. J. Ke, H. L. Li. Closed tram-scale statistical microdamage mechanics. Acta Mech. Sinica, 18, 1(2002).
    25 郑长卿,周利,张克实.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995.
    1 R. L. Martineau, C. A. Aderson. An explicit model of expanding cylindrical shells subjected to high explosive detonations. Los Alamos National Laboratory, CONF-990504, 1999.
    2 R. L. Martineau, C. A. Aderson. Expansion of cylinder shells subjected to internal explosive detonations [J], Exp. Mech,, 40(2), 219(2000).
    3 C. Hoggatt, and R. Recht, Fracture behavior of tubular bombs [J]. J. Appl. Phys., 39, 1856(1968).
    4 陈大年,王德生.层裂判据与过程模拟[J].爆炸与冲击,4,50(1982).
    5 陈大年,王德生,马松合等.两类动态断裂[J].爆炸与冲击,7(1),27(1987).
    6 汤铁钢,胡海波,李庆中等.外部爆轰加载过程中金属柱壳断裂实验研究[J].爆炸与冲击,22(4),333(2002).
    7 胡八一,董庆东,韩长生等.内部爆轰加载下的钢管膨胀断裂研究[J].爆炸与冲击,13(1),49(1993).
    8 封加波,经福谦,苏林祥,韩均万.对薄层柱壳爆炸膨胀断裂过程的研究[J].高压物理学报,2,97(1988).
    9 高重阳,施惠基,姚振汉,白春华.薄壁柱壳在内部爆炸载荷下膨胀断裂的研究[J].爆炸与冲击,20,160(2000).
    10 汤铁钢,谷岩,李庆忠,华劲松,孙学林.爆轰加载下金属柱壳膨胀破裂过程研究[J].爆炸与冲击,23(6),529(2002).
    11 J. O. Hallquist. LS-DYNA Theoretical Manual [M]. 1998.
    12 3, 125(1984).
    13 董玉斌,苏林祥,陈大年,经福谦等.滑移爆轰作用下内爆柱形钢壳层裂的数值研究[J].高压物理学报,3,1(1989).
    14 李雪梅,金孝刚,李大红.钢柱壳在内爆加载下的层裂特性研究[J].爆炸与冲击,25(2),107(2005).
    15 李雪梅.内爆加载下钢柱壳的变形、损伤及层裂研究[M].合肥:中国科学技术大学,2003.
    16 董海山.周芬芬.高能炸药及相关物性[M].北京:科学出版社,1989.
    17 经福谦.实验物态方程导引(第二版)[M].北京:科学出版社,1999.
    18 G. I. Taylor. Fragmentation of tubular bombs, Science Papers of Sir G. I. Taylor, Vol.3, No. 44, Cambridge University Press, London, 1963.
    19 11(1976).
    20 封加波,经福谦,苏林祥,韩钧万.对薄层柱壳爆炸膨胀断裂过程的研究[J].高压物理学报,2(2),97(1988).
    21 封加波.金属动态廷性破坏的损伤度函数模型[D].博士学位论文.北京:北京理工大学,1992.
    22 M. Singh, H. R. Suneja, M. S. Bola, S. Prakash. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. Int. J. Impact Engng., 27, 939(2002).
    23 汤文辉,张若棋.物态方程理论及计算概论[M].长沙:国防科技大学出版社,1999.
    24 汤铁钢,谷岩,李庆忠,华劲松,孙学林.爆轰加载下金属柱壳膨胀破裂过程研究[J].爆炸与冲击,23(6),529(2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700