高精度机械轴承转台摩擦补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、航天技术的迅猛发展,对惯性导航与制导系统的性能及精度的要求不断提高,相应地要求其测试设备——转台的性能及精度也不断提高。角振动台与伺服转台是转台中常见的两类测试设备。众所周知,轴系摩擦力矩是影响高精度机械轴承转台控制系统性能及精度的最主要因素,而摩擦力矩的减小又受到工艺水平及实验经费等条件的限制。这就给转台的整体研制水平提出了新的课题。因此,从控制的角度出发设计能够消除或抑制摩擦影响的控制律,通过适当的控制算法补偿摩擦力矩从而达到高精度控制,对研制结构简单且性能优良的高精度机械轴承转台具有重要的理论意义和实际应用价值。
     本文以机械轴承角振动台控制系统及伺服转台控制系统为研究背景,对轴系摩擦力矩给相应控制系统所带来的不良影响进行了深入的研究。通过将重复控制算法引入到系统的摩擦补偿方案中,较好地提高了控制系统的性能及精度。同时对所提出的控制方案分别进行了计算机仿真,验证了相应控制方案的正确性。
     在对角振动台控制系统中的摩擦补偿问题进行深入研究的基础上,建立了考虑摩擦力矩的控制系统线性传递函数框图,进而建立了简化的控制系统动态方程。针对系统速度转向时产生的波形畸变现象,并为进一步减小角振动台控制系统的波形失真度,将重复控制算法引入到系统的PID控制方案中,进而提出相应的控制方案,为利用重复控制算法解决摩擦补偿问题提供了指导方向。
     针对角振动台控制系统中动态摩擦力矩的影响,为了进一步减小系统的波形失真度,将重复控制算法分别引入到两种情况下系统的摩擦补偿方法中,进而提出了一种重复自适应摩擦补偿控制方案。第一种情况是考虑动态摩擦力矩参数随温度等发生一致性变化并假设系统参数已知;第二种情况是考虑动态摩擦力矩参数随温度等发生非一致性变化并假设系统参数已知。两种情况下,均通过基于Lyapunov的方法证明了摩擦参数估计的收敛性和闭环系统的渐近稳定性。
     考虑到摩擦模型的不确定性,针对角振动台控制系统中带有不确定性项摩擦力矩的影响,同时为进一步减小系统的波形失真度,基于分解控制的思想并分别考虑可参数化摩擦模型不确定性项未知但是为常数和可参数化摩擦模型不确定性项为变量的情况,进而提出了一种改进的摩擦补偿控制方案。两种情况下,均通过基于Lyapunov的方法证明了闭环系统的渐进稳定性。
     针对伺服转台控制系统中摩擦力矩引起的低速爬行问题,理论分析了摩擦力矩给系统带来的不良影响,同时给出了相应的改善办法。提出了重复自适应摩擦补偿控制方法和基于分解控制的改进摩擦补偿控制方法对伺服转台控制系统分别进行分析研究。
With the rapid progress of aeronautic and astronautic techniques, the performance and accuracy of inertial navigation and guidance system need to be further improved. As testing equipment of inertial navigation and guidance system, it corresponds to improve the performance and accuracy of the turntable. The angular vibration table and the servo turntable are two familiar testing devices.
     As we all know, the shafting friction torque is the uppermost factor that influence the high precise machinery bearing turntable control system’s performance and accuracy. And the decrease of friction torque is limited by technological level and experimental funds. It just presents a new topic for holistic study manufacture level of the turntable. Therefore, designing control laws to eliminate or restrain friction influence from the viewpoint of control and thereby achieving high precision control by designing logical control algorithm are of great theoretical significance and important application value to develop a high precise machinery bearing turntable with simple structure and high performance.
     The thesis applies the machinery bearing angular vibration table control system and servo turntable control system as the thesis’s study background, and it has a deep study on the bad influence of the shafting friction torque to the corresponding control system. Futhermore, it better improves the performance and precision of the control system by inducing the repetitive control algorithm into the friction compensation method of the system. Meanwhile, it has a computer simulation on the presented control method respectively and validates the correctness of the corresponding control method.
     The thesis has a basis of the deep study on friction compensation problem in angular vibration table control system, and it sets up the block diagram of the linear transfer function to control system with friction torque; furthermore, it sets up simplified dynamic equation of control system. Against abnormal variety phenomena of the wave happens when the velocity direction of system changes; furthermore, in order to reduce the THD of angular vibration table control system it presents the corresponding control method. And it supplies the guidance for using repetitive control method to settle with friction compensation problem.
     Against the influence of the dynamic friction torque in the angular vibration table control system, the thesis induces repetitive control algorithm into the friction compensation methods of the control system in two cases respectively. In order to reduce the THD of the system; furthermore, it presents a repetitive adaptive control method. The first case is that considering the dynamic friction torque parameters change non-uniformly. And the second case is that considering the dynamic friction torque parameters change uniformly. In each case, the convergence of friction parameters estimate and global asymptotic stability of the closed-loop system were proved via a Lyapunov-like argument.
     Against the influence of the friction torque with uncertainty term in the angular vibration table control system considering the uncertainty in friction model, in order to reduce the THD of the system, the thesis considers two cases. The first case is that considering the parameterize friction model’s uncertainty term is unknown but constant. And the second case is that considering the parameterize friction model’s uncertainty term is variable. Furthermore, it presents a modified friction control method based on decomposition control idea. In each case, the global asymptotic stability of the closed-loop system is proved via a Lyapunov-like argument.
     Against the low velocity creeping problem made by the friction torque in servo turntable control system, the thesis theoretically analyzes the bad influence of the friction torque to servo system; meanwhile, it supplies corresponding ameliorative measures. Furthermore, the thesis presents repetitive adaptive friction compensation control method and modified friction compensation control method based on decomposition control to analyse and study servo turntable control system respectively.
引文
1陈娟,乔彦峰.伺服系统低速摩擦力矩特性及补偿研究概况.光机电信息. 2002, (11):30~34
    2朗兴华,张伟,林亨.三轴惯性陀螺测试转台控制系统的研制.电子技术应用. 2003, (9):31~33
    3金涛,刘樾.对发展我国惯性测试技术的几点思考.航空精密制造技术. 2006, 42(5):6~9
    4刘金香,刘树荣,黄庆根. CGC伺服设计的一些考虑.美国惯导测试设备测试技术的现状及趋势.中国惯性技术学会,中国航空精密机械研究所. 1987:94~120
    5彭志宽.三轴精密角振动台控制问题探讨.中国惯性技术学报. 1998, 6(1):46~58
    6陈艳威.单轴速率摇摆台的研制.哈尔滨工业大学硕士学位论文. 2006:1
    7姜玉宪.伺服系统低速跳动问题.自动化学报. 1982, 8(2):136~144
    8王中华.运动控制中的几种摩擦补偿策略研究.东南大学博士学位论文. 2002:1~3
    9 D. P. Hess and A. Soom. Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities. Journal of Tribology. 1990, 112:147-152
    10 B. Armstrong-Helouvry, P. Dupont, and C. C. de Wit. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction. Automatica. 1994, 30(7): 1083~1138
    11 H. Olsson, K. Astrom, C. Canudas de Wit, M. Gafvert, and P. Lischinsky. Friction Models and Friction Compensation. European Journal of Control. 1998, 4: 176~195
    12刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述.系统工程与电子技术. 2002, 24(11): 45~51
    13 B. Armstrong-Helouvry. Control of Machines with Friction. Kluwer Academic Publishers, Boston. 1991
    14 D. Karnopp. Computer Simulation of Slip-stick Friction in Mechanical Dynamic Systems. Journal of Dynamic Systems, Measurement, and Control. 1985, 107(1):100~103
    15 P. Dahl. A Solid Friction Model. Aerospace Corp., El Segundo, CA, Tech. Rep. TOR-01. 1968, 58(1): 3107~3118
    16 C. Canudas de Wit, H. Olsson, K. Astrom, P. Lischinsky. A New Model for Control of Systems with Friction. IEEE Trans. on Automatic Control. 1995, 40(3):419~425
    17 Jan Swevers, Farid Al-Bender, Chris G. Ganseman and Tutuko Prajogo. An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation. IEEE Transactions on Automatic Control. 2000, 45(4):675~686
    18 Vincent Lampaert, Jan Swevers and Farid Al-Bender. Modification of the Leuven Integrated Friction Model Structure. IEEE Transactions on Automatic Control. 2002, 47(4):683~687
    19 Farid Al-Bender, Vincent Lampaert and Jan Swevers. The Generalized Maxwell-Slip Model: A Novel Model for Friction Simulation and Compensation. IEEE Transactions on Automatic Control. 2005, 50(11):1883~1887
    20 Sebastien Thiery, Marc Kunze, Alireza Karimi, Alain Curnier and Roland Longchamp. Friction Modeling of a High-Precision Positioning System. Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota, USA. 2006:1863~1867
    21 Zhang Tao, Lu Changhou, Xi Zhuyan. Modeling and Simulation of Nonlinear Friction in XY AC Servo Table. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation. Luoyang, China. 2006:618~622
    22 C. Makkar, W. E. Dixon, W. G. Sawyer and G. Hu. Lyapunov-Based Tracking Control in the Presence of Uncertain Nonlinear Parameterizable Friction. Proceedings of the 2005 American Control Conference. Portland, OR, USA. 2005:1975~1980
    23 C. Makkar, G. Hu, W. G. Sawyer and W. E. Dixon. Lyapunov-Based Tracking Control in the Presence of Uncertain Nonlinear Parameterizable Friction. IEEE Transactions on Automatic Control. 2007, 52(10):1988~1994
    24 P. E. Dupont. Avoiding Stick-Slip through PD Control. IEEE Trans. on Automatic Control. 1994, 39(5):1094~1097
    25魏立新. X-Y数控平台运动摩擦补偿及边缘跟踪力控制研究.燕山大学博士学位论文. 2005:5~8
    26 C. N. Shen, H. Wang. Nonlinear Compensation of a Second- and Third-order System with Dry Friction. IEEE Trans. on Applications and Industry. 1964, 83(71):128~136
    27 G. Brandenburg, U. Schafer. Stability Analysis and Optimization of a Position-controlled Elastic Two-mass-system with Backlash and Coulomb Friction. Proc.12th IMACS World Congress, IMACS, Paris, 1988:220~223
    28 G. Brandenburg, U. Schafer. Influence and Compensation of Coulomb Friction in Industrial Pointing and Tracking Systems. Proc. of the Indus. App. Soc. Annual Meeting, IEEE, Dearborn, MI, 1991:1407~1413
    29 B. Armstrong. Stick-Slip Arising from Stribeck Friction. Proceedings of the 1990 IEEE International Conference on Robotics and Automation. 1990, 2:1377~1382
    30 B. Armstrong. Stick Slip and Control in Low-Speed Motion. IEEE Trans. on Automatic Control. 1993, 38(10):1483~1496
    31 H. Olsson. Describing Function Analysis of a System with Friction. Proceedings of the 4th IEEE Conference on Control Applications. 1995:310~315
    32 B. Armstrong, D. Neevel, T. Kusik. New Results in NPID Control: Tracking, Integral control, Friction Compensation and Experimental Results. IEEE Trans. on Control Systems Technology. 2001, 9(2):399~406
    33 Horowitz L, Oidak S, Shapiro A. Extensions of Dithered Feedback Systems. International Journal of Control. 1991, 54(1):83~109
    34 S. Lee, S. M. Tomizuka. Generalized Dither. IEEE Trans. on Information Theory. 1991, 37(1):50~56
    35 A. Hansson, P. Gruber, D. Todtli. Fuzzy Anti-reset Windup for PID Controllers. Proc. World Congress on Automatic Control, IFAC, Sidney, Australia. 1993:103~110
    36 J. A. C. Martins, J. T. Oden, F. M. F. Simoes. A Study of Static and Kinetic Friction. Int. J. Engineering Science. 1990, 28(1):29~92
    37 Yang S, Tomizuka M. Adaptive Pulse Width Control for Precise Positioning under Influence of Stiction and Coulomb Friction. ASME Journal of Dynamic Systems, Measurement, and Control. 1988, 110(3):221~227
    38 Ro P I, Shim W, Jeong S. Robust Friction Compensation for Submicrometer Positioning and Tracking for a Ball-Screw-Driven Slide System. Precision Engineering. 2000, 24:160~173
    39 Luh J Y S, Fisher W D, Paul R P C. Joint Torque Control by a Direct Feedback for Industrial Robots. IEEE Trans. on Automatic Control. 1983, 28(2):153~161
    40 Morel G, Iagnemma K, Dubowsky S. The Precise Control of Manipulators with High Joint-Friction Using Base Force/Torque Sensing. Automatica. 2000, 36:931~941
    41 M. Iwasaki, T. Shibata, N. Matsui. Disturbance-Observer-Based Nonlinear Friction Compensation in Table Drive System. IEEE/ASME Trans. onMechatronics. 1999, 4(1):3~8
    42 Tesfaye A, Lee H S, Tomizuka M. A Sensitivity Optimization Approach to Design of a Disturbance Observer in Digital Motion Control Systems. IEEE/ASME Trans. on Mechatronics. 2000, 5(1):32~38
    43 W. H. Chen, D. J. Balance, P. J. Gawthrop, J. O’Reilly. A Nonlinear Disturbance Observer for Robotic Manipulators. IEEE Trans. on Industrial Electronics. 2000, 47(4):932~938
    44 Young K. K. A Variable Structure Control Approach to Friction Force Compensation. Proceedings of the American Control Conference. 1998:3138~3142
    45 Sivakumar S, Farshad K. Friction Compensation via Variable Structure Control: Regulation and Low-Velocity. Proceedings of the 1997 IEEE International Conference on Control Applications. 1997:645~650
    46 Sivakumar S, Farshad K. Model Independent Friction Compensation. Proceedings of the American Control Conference. 1998:463~466
    47 Q. P. Ha, A. Bonchis, D. C. Rye, H. F. Durrant-Whyte. Variable Structure Systems Approach to Friction Estimation and Compensation. Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, 2000:3543~3545
    48 P. Korondi, D. Young, H. Hashimoto. Sliding mode Based Disturbance Observer for Motion Control. Proceedings of the 37th IEEE Conference on Decision and Control. Florida, USA, 1998:1926-1927
    49 P. Korondi, P. T. Szemes, H. Hasimoto. Sliding Mode Friction Compensation for a 20 DOF Sensor Glove. Journal of Dynamic Systems, Measurement, and Control. 2000, 122:611~615
    50 E. Papadopoulos, G. Chasparis. Analysis and Model-based Control of Servomechanisms with Friction. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and System. 2002, 3:2109~2114
    51 J. Moreno, R. Kelly, R. Campa. Manipulator Velocity Control Using Friction Compensation. IEE Proceedings– Control Theory Application. 2003, 150(2): 119~126
    52 D. Kostic, B. de Jager, M. Steinbuch, R. Hensen. Modeling and Identification for High-performance Robot Control: An RRR-robotic Arm Case Study. IEEE Trans. on Control Systems Technology. 2004, 12(6): 904~919
    53 D. Putra, L. Moreau, H. Nijmeijer. Observer-Based Compensation of Discontinuous Friction. 43rd IEEE Conference on Decision and Control. 2004:4940~4945
    54 N. Mallon, N. V.D. Wouw, D. Putra, H. Nijmeijer. Friction Compensation in a Controlled One-Link Robot Using a Reduced-Order Observer. IEEE Trans. on Control Systems Technology. 2006, 14(2):374~383
    55 E. Papadopoulos, G. Chasparis. Analysis and Model-Based Control of Servomechanisms with Friction. Journal of Dynamic Systems, Measurement, and Control. 2004, 126:911~915
    56 J. Moreno, R. Kelly. Pose Regulation of Robot Manipulators with Dynamic Friction Compensation. Proceedings of the 44th IEEE Conference on Decision and Control. 2005:4368~4372
    57 A. Shiriaev, A. Robertsson, R. Johansson. Friction Compensation for Passive Systems Based on the LuGre Model. Proceedings of the 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, 2003:183~188
    58 A. Shiriaev, A. Robertsson, R. Johansson. Friction Compensation for Nonlinear Systems Based on the LuGre Model. Proceedings of the 6th IFAC-Symposium on Nonlinear Control Systems. 2005:1223~1229
    59 S. Southward, C. Radcliffe, C. MacCluer. Robust Nonlinear Stick-slip Friction Compensation. ASME Journal of Dynamic Systems, Measurement, and Control. 1991, 113(4): 639~645
    60 M. S. Kang. Robust Digital Friction Compensation. Control Engineering Practice. 1998, 6:359~367
    61 M. S. Kang, W. G. Song, C. J. Kim, S. K. Lee. Robust Digital Friction Compensation. Proceedings of the 36th Conference on Decision and Control, 1997:363~364
    62 Z. Q. Mei, Y. C. Xue, G. L. Zhang, T. X. Mao. The Nonlinear Friction Compensation in the Trajectory Tracking of Robot. Proceedings of the Second International Conference on Machine Learning and Cybernetics, 2003:2457~2462
    63 J. W. Gilbart and G. C. Winston. Adaptive Compensation for an Optical Tracking Telescope. Automatica. 1974,10(2):125~131
    64 B. Friedland and Y. J. Park. On Adaptive Friction Compensation. IEEE Transactions on Automatic Control. 1992,37(10):1609~1612
    65 A. Yazdizadeh, K. Khorasani. Adaptive Friction Compensation Based on the Lyapunov Scheme. Proceedings of the 1996 International Conference on Control Applications, Dearborn, 1996:1060~1065
    66 T. Liao, T. Chien. An Exponentially Stable Adaptive Friction Compensator. IEEE Trans. on Automatic Control. 2000, 45(5):977~980
    67 J. T. Huang. An Adaptive Compensator for a Servo system with Coulomb andViscous Friction. Proceedings of the 2001 International Conference on Control Applications, Mexico City, 2001:196~199
    68 C. Canudas de Wit, P. Lischinsky. Adaptive Friction Compensation with Partially Known Dynamic Friction Model. Int. J. of Adaptive Control and Signal Processing. 1997, 11:65~85
    69 P. Vedagarbha, D. Dawson, M. Feemster. Tracking Control of Mechanical Systems in the Presence of Nonlinear Dynamic Friction Effects. IEEE Trans. on Control System Technology. 1999, 7(4):446~456
    70 Y. Tan, I. Kanellakopoulos. Adaptive Nonlinear Friction Compensation with Parametric Uncertainties. Proc. of the American Control Conference. California, 1999: 2511~2515
    71 M. Feemster, P. Vedagarbha, D. Dawson et al. Adaptive Control Techniques for Friction Compensation. Mechatronics. 1999, 9:125~145
    72 N. Hung, H. Tuan, T. Narikiyo et al. Adaptive Controls for Nonlinearly Parameterized Uncertainties in Robot Manipulators. Proc. of 41st IEEE Conf. on Decision and Control. 2002, 2:1727~1732
    73 A. Visioli, R. Adamini, G. Legnani. Adaptive Friction Compensation for Industrial Robot Control. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings. Como, Italy, 2001:577~582
    74 K.K. Tan, S.N. Huang, T.H. Lee. Adaptive Friction Compensation with Time-Delay Friction Model. Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China, 2001:969~973
    75 J.J. Choi, S.I. Han, J.S. Kim. Development of a Novel Dynamic Friction Model and Precise Tracking Control Using Adaptive Back-stepping Sliding Mode Controller. Mechatronics. 2006, (16):97~104
    76 S. S. Ge, T. H. Lee, S. X. Ren. Adaptive Friction Compensation of Servo Mechanisms. International Journal of Systems Science. 2001, 32(4):523~532
    77 X. Qian, Y. Y. Wang. Motion Control of a Linear Brushless DC Motor Drive System with Nonlinear Friction Compensation. 2004 International Conference on Power System Technology, Singapore, 2004:1276~1281
    78 M.K. Ciliz, M. Tomizuka. Neural Network Based Friction Compensation in Motion Control. Electronics Letters. 2004, 40(12):752~753
    79 Rastko R S, Frank L L. Neural Network Approximation of Piecewise Continuous Functions: Application to Friction Compensation. Proceedings of the 12th IEEE International Symposium on Intelligent Control. 1997:227~232
    80 Rastko R S, Frank L L. Dead zone Compensation in Motion Control Systems Using Neural Networks. IEEE Trans. on Automatic Control. 2000,45(4):602~613
    81 R. R. Selmic, F. L. Lewis. Neural-Network Approximation of Piecewise Continuous Functions: Application to Friction Compensation. IEEE Trans. on Neural Networks. 2002, 13(3):745~751
    82 Larsen GA, Cetinkunt S, Donmez A. CMAC Neural Network Control for High Precision Motion Control in the Presence of Large Friction. ASME Journal of Dynamic Systems, Measurement, and Control. 1995, 117:415~420
    83 Lee S I, Kim J H. CMAC Network-Based Robust Controller for Systems with Friction. Proceedings of the 34th Conference on Decision and Control, 1995:2938~2939
    84黄进,叶尚辉.基于CMAC网络的摩擦补偿研究.中国机械工程. 1999, 10(3):269~272
    85 Y. H. Kim, F. L. Lewis. Reinforcement Adaptive Learning Neural-Net-Based Friction Compensation Control for High Speed and Precision. IEEE Trans. On Control Systems Technology. 2000, 8(1):118~126
    86 S. M. Song, Z. Y. Song, B. T. Zhang, G. R. Duan. Adaptive Wavelet Network Friction Compensation of Inter-Satellite Optical Communication Coarse Pointing Subsystem. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006:2768~2772
    87 C. Canudas de Wit, S.S. Ge. Adaptive Friction Compensation for Systems with Generalized Velocity/Position Friction Dependency. Proceedings of the 36th Conference on Decision & Control, California, 1997: 2465~2470
    88 S. S. Ge, T.H. Lee, J. Wang. Adaptive NN Control of Dynamic Systems with Unknown Dynamic Friction. Proceedings of the 39th IEEE Conference on Decision & Control, Sydney, Australia, 2000:1760~1765
    89 Teeter J T, Chow M Y, Jame J. A Novel Fuzzy Friction Compensation Approach to Improve the Performance of a DC Motor Control System. IEEE Trans. on Industrial Electronics. 1996, 43(1):113~120
    90 Tzes A, Peng P Y, Guthy J. Genetic-Based Fuzzy Clustering for DC-Motor Friction Identification and Compensation. IEEE Trans. on Control Systems Technology. 1998, 6(1):462~472
    91黄进,叶尚辉,陈其昌.基于自调整量化因子模糊控制器的摩擦补偿研究.机械设计与研究, 1999(1):27~29
    92 S. Suraneni, I.N. Kar, R.K.P. Bhatt. Adaptive Stick-slip Friction Compensation Using Dynamic Fuzzy Logic System. Proceedings of the 2003 Conference on Convergent Technologies for Asia-Pacific Region, 2003, 4:1470~1474
    93 S. Suraneni, I. N. Kar, O. V. Ramana Murthy, R.K.P. Bhatt. Adaptive Stick-slipFriction and Backlash Compensation Using Dynamic Fuzzy Logic System. Applied Soft Computing. 2005, (6):26~37
    94 Y. F. Wang, T. Y. Chai. Compensating Modeling and Control for Friction Using Adaptive Fuzzy System. 43rd IEEE Conference on Decision and Control. Bahamas, 2004:5117~5121
    95 X. Gao, Z.J. Feng. Design Study of an Adaptive Fuzzy-PD Controller for Pneumatic Servo System. Control Engineering Practice. 2005, (13):55~65
    96 J. Lin, C. H. Chen. A Novel Fuzzy Friction Compensation Approach for Tracking of a Linear Motion Stage. Proceedings of the 2006 American Control Conference. Minnesota, USA, 2006:3188~3193
    97 B. A. Francis and W. M. Wonham. The internal model principle for linear multivariable regulators. Appl. Math. Opt., 1975, 2(2):170-194
    98 T. Inoue, S. Iwai and M. Nakano. High accuracy control of a proton synchrotron magnet power supply. Proceedings of the 8th IFAC World Congress, Oxford, Pergamon Press, 1981:3137-3142
    99 T. Inoue, M. Nakano and S. Iwai. High Accuracy Control of Servomechanism for Repeated Contouring. Proc. Of the 10th Annual Symposium on Incremental Motion, Control System and Devices, 1981:285-292
    100 H. Hikita, S. Kyotoku. A Repetitive Control System of a Model Following Type. Proc. Of the 28th Conference on Decision and Control, 1989:757-760
    101 N. Sadegh. Synthesis and Stability Analysis of Repetitive Controllers. Proc. Of the American Control Conference, 1991:2634-2639
    102 E. D. Tung, G. Anwar and M. Tomizuka. Low Velocity Friction Compensation and Feedforward Solution Based on Repetitive Control. ASME Journal of Dynamic Systems, Mesurement and Control. 1993, 115(2A):279-284
    103 M. Tomizuka. On the compensation of friction moments in precision motion control. IEEE Proc. of the Asia-Pacific Workshop on Advances in Precision Motion Control, 1993
    104 J. S. Liu. Joint stick-slip friction compensation for robotic manipulators by iterative learning. IEEE Intelligent Robots and Systems. 1994
    105 Weiqing Huang, et al. Adaptive repetitive output feedback control for friction and backlash compensation of a positioning table. IEEE Conference on Decision & Control, 1998:1250-1251
    106郎需英,李亚军.惯性器件动态性能测试方法及其设备.航空精密制造技术. 1989, 1:5~10
    107彭军,何群,薛景锋,孙浩.低频标准角振动台. 2005, 25(6):46~49
    108周纪琨,刘红梅.高频角振动台中某些特殊问题的研究.航空精密制造技术.2001, 37(2):36~39
    109薛慧,杨仁刚.基于FFT的高精度谐波检测算法.中国电机工程学报, 2002, 22(12):106~110
    110马有奇.角振动台的理论分析及干扰补偿的探讨.航空精密制造技术. 1989, 4:16~21
    111彭志宽.三轴精密转台角振动数据分析.航空精密制造技术. 1995, 31(2):40~44
    112吴继轩,刘向东.高频角振动测试转台的迭代学习控制.计算机仿真. 2005, 22(11):307~310
    113陈振,刘向东,张宇河,修春波.双重复控制器在单轴角振动台中的应用.中国电机工程学报. 2005, 25(2):130~134
    114栗晋昇,刘向东.基于傅里叶神经网络的角振动台摩擦补偿. 2004中国控制与决策学术年会论文集. 2004:497~499
    115陈振,刘向东,张宇河.数字化单轴角振动转台的设计与实现.冶金自动化. 2004:417~421
    116张元生,杨一栋,马智周,彭志宽.南京航空航天大学学报, 2004, 36(5): 619-622
    117李书训.转台伺服系统摩擦分析及补偿研究.哈尔滨工业大学博士论文. 1999: 8-20
    118张东纯.重复控制及其应用研究.哈尔滨工业大学博士论文. 2004: 17-22
    119 Wang Zhongshan, Wang Yi and Su Baoku. Observer/Filter Structure Based Adaptive Friction Compensation for High Precision Turntable. Transactions of Nanjing University of Aeronautics & Astronautics. 2008, 25(2):113-120
    120 Cong Shuang. An innovative repetitive control system. Proc of 1997 IEEE International Conference on Intelligent Processing Systems (ICIPS’97), Beijing, China, 1997:640-644
    121刘金琨,尔联洁.飞行模拟转台高精度数字重复控制器的设计.航空学报, 2004, 25(1):59-61
    122 Abdelhamid Tayebi and Chiang-Ju Chien. An Adaptive Iterative Learning Control Framework for a Class of Uncertain Nonlinear Systems. Proceedings of the 45th IEEE Conference on Decision & Control. Manchester Grand Hyatt Hotel. San Diego, CA, USA. 2006:5054-5059
    123 Abdelhamid Tayebi and Chiang-Ju Chien. A Unified Adaptive Iterative Learning Control Framework for Uncertain Nonlinear Systems. IEEE Transactions on automatic control. 2007, 52(10):1907-1013
    124 Mingxuan Sun and Shuzhi Sam Ge. Adaptive Repetitive Control for a Class ofNonlinearly Parameterized Systems. IEEE Transaction on automatic control. 2006, 51(10):1684-1688
    125 Sumito Nakada and Tomohide Naniwa. A Hybrid Controller of Adaptive and Learning Control for Geometrically Constrained Robot Manipulators. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing. China. 2006:4515-4520
    126 J.S. Reed, P.A. Ioannou. Instability Analysis and Robust Adaptive Control of Robotic Manipulators. IEEE Trans. on Robotics and Automation. 1989, 5(3)
    127 L. Xu, B. Yao. Adaptive Robust Control of Mechanical Systems with Nonlinear Dynamic Friction Compensation. Proc. of the American Control Conference, 2000:2595~2599
    128 K.K. Tan, S.N. Huang, T.H. Lee. Robust Adaptive Numerical Compensation for Friction and Force Ripple in Permanent-Magnet Linear Motors. IEEE Trans. on Magnetics. 2002, 38(1):221~228
    129 P. Tomei. Robust Adaptive Friction Compensation for Tracking Control of Robot Manipulators. IEEE Trans. on Automatic Control. 2000, 45(6):2164~2169
    130 G. Liu. Decomposition-based Friction Compensation Using a Parameter Linearization Approach. IEEE International Conference on Robotics and Automation, 2001:1155-1160
    131袁新武,王洪飞.液压伺服系统低速爬行的最优控制. 2007, 24(4):82~85
    132袁东,马晓军,魏巍,赵玉慧.坦克炮控系统摩擦非线性与系统低速性能研究.装甲兵工程学院学报. 2007, 21(4):57~61
    133周金柱,段宝岩,黄进. LuGre摩擦模型对伺服系统的影响研究.控制理论与应用. 2008, 25(6):990~994
    134曹健,李尚义,赵克定.仿真转台用新型连续回转液压伺服马达摩擦特性研究.宇航学报. 2003, 24(4):374~377
    135苗中华,王旭永,刘成良,陶建峰.基于滑模变结构控制的液压伺服系统超低速轨迹跟踪.上海交通大学学报. 2008, 42(7):1182~1186
    136徐国柱,刘樾,孟凡军.利用加速度反馈改善转台低速性能.中国惯性技术学报. 2008, 16(4):502~504

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700