基于摩擦力矩的航天轴承制造缺陷诊断与软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陀螺仪框架灵敏轴承属于航天设备轴承中摩擦力矩性能要求最高的一类轴承,其摩擦力矩的大小和稳定性往往影响着陀螺仪表的指示精度和指示稳定性,因此它在使用的过程中不允许出现摩擦力矩的大点和阻塞现象以及过大的波动。对于航天轴承来说,套圈圆度、粗糙度等加工质量以及表面划伤是造成摩擦力矩的大点和波动性的重要因素,因此有必要对这些因素造成的轴承缺陷进行监测诊断,以保证轴承的质量,减少关键应用中的经济损失,并为改进灵敏轴承提供理论依据。
     本文以陀螺仪框架灵敏轴承为研究对象,就制造加工质量(如套圈沟道圆度,粗糙度)对于陀螺仪框架灵敏轴承动态摩擦力矩的影响进行了研究。通过低速动态摩擦力矩测试仪采集了试验数据,从振动信号的诊断特征上得到启发,运用统计学、频域分析以及小波变换等手段对轴承的摩擦力矩信号进行了分析与讨论,得出了若干有效的时域特征参数和频域特征参数,为这两类质量缺陷的灵敏轴承的诊断提供了特征依据,同时推导了圆度和表面划伤缺陷的特征频率。根据得出的研究结果初步开发出了灵敏轴承低速动态摩擦力矩分析软件,并进行了试验验证。
     由于影响轴承摩擦力矩的因素很多,灵敏轴承摩擦力矩变化的随机性很强,对其进行研究是一项复杂而艰巨的工作。本文为航天轴承的摩擦力矩的诊断研究做了一个前期的探索,为以后深入的研究工作打下了基础。
Gyroscope frame-sensitive bearing is one of the highest performance requirements of friction torque in aerospace bearings, whose value and stability of the friction torque often influence the accuracy and stability of gyroscope instruments, peak values and blocking phenomena of friction torque are not allowed in the process of usage. As far as aerospace bearings concerned, roundness and roughness of the ring and the surface scratches are the important factors which caused peak values and waveniss of friction torque, so monitoring and diagnosising these defectful bearings which are contributed by those factors are necessary, in order to guarantee the quality of bearings, and to reduce economic loss of crucial application, and to offer a theory foundation for improving sensitive bearings.
     In this paper, gyroscope frame-sensitive bearings were researched, manufacture quality (roundness, roughness of ring) which impact the friction torque of gyroscope frame-sensitive bearings were studied. Test datas were collected from the low speed dynamic friction torque test instrument, the diagnostic features of vibration signals were getted, friction torque signals of bearings were analyzed and discussed by the use of statistics, frequency-domain analysis and wavelet transform means and so on. Several effective time-domain parameters and frequency-domain characteristic parameters were obtained, so characteristic parameters were provided for these two bearings. At the same time roundness and characteristic frequency of surface scratches were derived. According to the characteristic parameters which have been derived, low-speed torque analysis software was developed and the software was carried out by experiments.
     Because there are many factors affect the friction torque, the changes of friction torque of sensitive bearings are very random. The research of friction torque is very complex and difficult. This paper has made a preliminary exploration for the study of diagnosis of aerospace bearings based on friction torque and to lay the foundation for the deeper research.
引文
[1]徐志栋.航天轴承摩擦力矩特性的试验研究[D].河南:河南科技大学,2008.
    [2]查全.微型轴承技术精编[M].上海:上海交通大学出版社,1992,66-69.
    [3]李建华,邓四二,马纯民.陀螺仪框架灵敏轴承摩擦力矩影响因素试验分析[J].轴承, 2006,(7):4-7.
    [4]梅宏斌.滚动轴承振动监测与诊断[M].北京:机械工业出版社,1995.
    [5] M.J.Todd, Stevens K.T. Frictional Torque of Angular Contact Ball Bearings with Different Conformities[R]. National Centre of Tribology, Risley, European Space Tribology Lab. ESA-CR(P)-1221, 1987, 7.
    [6] Gentle C.R., Pasdari M. Measurement of cage and pocket friction in a ball beating for use in a simulation program[J]. ASLE Transactions, 1985, 28(4):536-541.
    [7] Gapta P.K. Friction instabilities in ball bearings[J]. Tribology Transactions, 1988, 31(2):258- 268.
    [8] Rodionov E.M. Moments Originating from Errors in the Form of Rolling Surfaces of a Ball Bearing [R]. Foreign Technology Div Wright-Patterson AFB, Ohio, FTD-HT-66-374, 1966, 12.
    [9] Yokoyama, Kazuhiro; Tohyama, Akira; Suzuki, Takamasa, Evaluation of friction torque of rolling bearing[J]. Journal of Japan Society for Precision Engineering, 1996, 62(2):210-214.
    [10] Kitahara, Tokio, Okamoto, Junzo. Friction Torque of Instrument Ball Bearing under Comined Radial and Thrust Load.Japan Society of Lubrication Engineers[J]. 1984(5):131-136.
    [11]李建华,张葵,卢振伟.表面特性对灵敏轴承摩擦力矩的影响分析[J].轴承,1999, (9):17-19.
    [12] G.H.Jang, S.W.Jeong. Analysis of a Ball Bearing With Waviness Considering the Centrifugal Force and Gyroscopic Moment of the Ball[J]. Journal of Tribology, 2003, 125:487-498.
    [13] G.H.Jang, S.W.Jeong.Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness[J]. Journal of Tribology, 2003, 125:91-101.
    [14] Gunhee Jang, Seong-Weon Jeong. Vibration analysis of a ratating system due to the effect of ball bearing waviness[J]. Journal of Sound and Vibration, 269(2004):709-726.
    [15] G.H.Jang, S.W.Jeong. Nonlinear Excitation Model of Ball Bearing Waviness in a Rigid Rotor Supported by Two or More Ball Bearings Considering Five Degrees of Freedom[J]. Journal of Tribology, 2002, 124:82-90.
    [16] Korby K,L., Mabie H.H. Development of an empirical equuation for determining friction torque of instrument ball bearing at high speed under various radial and axial loads[J]. Lubrication Engineering, 1975, 31(12):625-631.
    [17] Kalin M., Vizintin J. Influence of the lubrication type and the structure of friction torque on total friction in ball bearings[J]. Strojniski Vestnik, 1997, 43(5):231-238.
    [18] Houerpt L. Ball bearing and tapered roller bearing torque: analytical, numerical and experi- menttal results[J]. Tribology Transactions, 2001, 45(3).
    [19] Harris T. A., Barsby R. M., Kotzalas M. N. A method to calculate frictional effects in oil- lubricated ball bearings[J]. Tribology Transactions, 2002, 45(3).
    [20] Gafitanu M., Lorenz P., Taraboanta F. Correlation between friction torque and raceways micro-geometry[C]. 29th International Congress on Noise Control Engineering, NICE, France, 2000, 6:27-31.
    [21] Miyaquchi K., Ninomiya M., Watanabe Y., etcal. A study on the friction torque variation of a ball screw at motion direction change-friction torque variation due to the change in ball contact points[J]. Journal of the Japan Society for Precision Engineering, 2002, 68(6):833.
    [22] Kanatsu M., Ohta H. Running torque of ball bearings with polymer lubricant (running torque foumulas)[J]. Transactions of the Japan Society of Mechanical Engineerings (Part C), 2005, 71(1):272-279.
    [23] Leblanc, Alexandre; Nelias, Daniel. Ball motion and sliding friction on a four-contact point ball bearing[J]. Journal of Tribology, 2007, 129(4):801-808.
    [24] Setsuhara Y., Suzuki T., Makino Y., etcal. Phase variation and properties of (Ti, Al)N films prepared by ion beam assisted deposition[J]. Surface & Coatings Technology, 1997, 97(1-3):254-258.
    [25] Blawert C., Mordike B.L., Huchel U., etc al. Surface treatment of nitriding steel 34CrAlNi7: A comparison between pulsed plasma nitriding and plasma immersion ion implantation[J]. Surface and Coatings Technology, 1998, 98(1-3):1181-1186.
    [26] Wang S. Y., Chu P. K., Tang B. Y., etc al. Improvement of the wear and corrosion resistance of oil pump materials using plasma immersion ion implantation[J]. Surface and Coatings Technology, 1998, 98(1-3):897-900.
    [27] Johnson K L, Gray G G . Development of conmugations on surfaces in rolling contact[J]. Proc Instu Mech Engrs, 1975, 189:45-58.
    [28]郑传统.球轴承摩擦力矩的研究现状与发展[J].轴承,2009,(8):52-56.
    [29]郑传统.基于套圈波纹度的角接触球轴承摩擦力矩波动性研究[D].河南:河南科技大学,2009.
    [30]尹士杰译.精密仪表轴承[M].北京:国防工业出版社,1987.
    [31]朱江红.低速球轴承摩擦力矩的分析研究[J].导弹与航天运载技术,2006,(6):20-25.
    [32]高晓康.微型轴承的摩擦力矩及测量[J].上海计量测试,2003,30(6):13-15.
    [33]马小梅.精密轴承摩擦力矩极其波动性分析[D].河南:河南科技大学,2006.
    [34]赵联春,张重成,曲延敏.球轴承工艺误差激振的力学模型[J].轴承,1997.
    [35]宋延辉,李吉,刘鹏虎,王珍.滚动轴承内圈圆、粗糙、波纹度的综合检测[J].辽宁工程技术大学学报,2005,(24).
    [36]吴云鹏,张文平,孙立红.滚动轴承外圈波纹度引起的振动特性研究[J].煤矿机械, 2004,(6).
    [37]汪久根,王庆九,章维明.表面粗糙度对轴承振动的影响[J].轴承,2007,(1):23-25.
    [38]李刚.沟道表面几何偏差引起轴承振动的功率谱分析(续)[J].轴承,1985,(3):21- 25.
    [39]李刚.沟道表面几何偏差引起轴承振动的功率谱分析(续)[J].轴承,1985,(2):26-29.
    [40]贾群义.滚动轴承的设计原理与应用技术[M].西安:西北工业大学出版社,1988.
    [41]李洪梅.影响深沟球轴承振动与噪声因素的测量与研究[D].哈尔滨:哈尔滨工程大学,2003.
    [42]冈本纯三.球轴承的设计计算[M].北京:机械工业出版社,2003.
    [43] Harris T A. Rolling Bearing Analysis[M].New York:John Wiley&Sons, Inc, 1984.
    [44]李孟源.测试技术基础[M].西安:西安电子科技大学出版社,2006.
    [45]薛年喜.MATLAB在数字信号处理中的应用[M].北京:清华大学出版社,2003.
    [46]胡广书.数字信号处理[M].清华:清华大学出版社,2003.
    [47]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001.
    [48]葛哲学.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [49]钟小滨,马润梅.滚动轴承零件的圆度和波纹度测量标准[J].轴承,2003,(11):43-45.
    [50]高兴.滚动轴承故障的精密诊断技术[J].有色设备,1994.
    [51]赵志宇.基于小波变换的滚动轴承故障诊断系统的研究与开发[D].大连:大连理工大学,2005.
    [52]杨乐平,李海涛,杨磊.LabVIEW程序设计与应用(第2版)[M].北京:电子工业出版社.2005.
    [53]杨乐平,李海涛,赵勇,等.LabVIEW高级程序设计[M].北京:清华大学出版社,2002.
    [54]葛世荣,朱华.摩擦学的分形[M] .北京:机械工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700