轴承表面DLC润滑薄膜的热特性与滚动摩擦效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自润滑陶瓷轴承的润滑剂来源包括自润滑复合材料保持架、滚道表面改性润滑膜和滚动体表面改性润滑膜。随着无保持架满装氮化硅陶瓷球轴承的广泛应用,对滚动体表面的润滑改性的需求日趋强烈。具有高硬度、低摩擦系数、高耐磨性及高化学稳定性的类金刚石碳膜,作为固体润滑剂在航空航天领域得到广泛应用。在高温环境下,陶瓷表面润滑薄膜的承载能力除了与机械变形应力有关外,还与工作过程中的界面热应力关系密切。
     本文利用接触力学、断裂力学以及热力学模型,通过实验、理论分析及软件仿真等方法,从薄膜经历不同温度循环后的的力学性能变化、滚动摩擦效应及高温滑动摩擦磨损性能三方面系统地研究了陶瓷表面DLC膜的热特性,为陶瓷表面改性润滑膜的实际应用提供基础。
     膜基结合力是氮化硅陶瓷表面DLC膜能起到润滑作用的前提条件,而且这种膜基结合力在热作用下要有一定的保持能力。本文通过纳米压痕和划痕试验,对经过不同温度热循环后的陶瓷片和陶瓷球表面DLC膜在正压力、正压力和切向力共同作用下的承载能力、膜基结合力进行研究,分析了DLC膜经过不同温度热循环后的力学性能变化。为氮化硅陶瓷基上DLC膜的实际应用奠定理论基础。
     使用Ansys有限元模型模拟计算了DLC膜的热应力,分析了不同工作温度下薄膜的热应力的大小和分布。利用高温摩擦磨损试验机,通过试验参数选择,分析陶瓷基底表面DLC膜在不同温度以及在高温环境下承受不同载荷和不同滑动速度时的摩擦磨损性能,并分析DLC膜在高温环境中的磨损机制,找到DLC膜在高温环境下工作的最佳温度区域以及在此温度区域内膜承载的临界载荷和速度区域。同时结合利用有限元模型计算的热应力结果,分析了DLC膜的热承载特性,为高温环境下陶瓷基体上DLC膜的实际应用奠定理论基础。
     最后采用经验模型理论计算分析轴承摩擦力矩,利用BRG3000摩擦力矩测试仪测试镀膜陶瓷球轴承的动态摩擦力矩,通过不同润滑方式之间轴承摩擦力矩的比较以及实验参数选择,研究DLC薄膜的滚动摩擦效应,提供DLC薄膜在轴承中的应用和评测手段。
The lubricant sources of self lubricating ceramic bearings include composite cages of self lubricating, the lubricating film of raceway surface modification and rolling surface modification. The widely application of silicon nitride ceramic ball bearing that without cages results in increasing need of lubrication with rolling surface modification. Diamond like carbon film, which was regarded as a solid lubricant with high wear resistance, low friction coefficient, high hardness and high chemical stability, was widely used in aerospace. However, under high temperature working condition, load carrying capacity of ceramic surface lubricating film not only have a great relationship with mechanical stress, but also with the interface thermal stress resulting from working process.
     By constructing contact mechanics, fracture mechanics and thermodynamics models, applying experimental analysis and simulation methods, this dissertation studied thermal characteristics ceramic surface DLC film, which contain the changes in the mechanical properties and effects of rolling friction after experiencing different temperatures cycling, sliding friction and wear properties at high temperature. These studies provide foundation for applications of modification film on the ceramic surface.
     Film adhesion is the bases of the silicon nitride ceramic surface DLC film working as lubricant, and the adhesion must be maintained under the effect of the heat. With nanometer indentation and scratch tests, bearing capacities and adhesion force between DLC film and the base are analyzed. The DLC films on the surface of ceramics plate and ball have experienced thermal cycles at different temperatures under positive pressure and shear force, and analyze the changes in the mechanical properties of the DLC film which were experienced thermal cycles at different temperatures. The dissertation provides theoretical basis for practical application of DLC films on silicon nitride ceramic.
     The model of Ansys finite element was employed to simulate the size and distribution of thermal stress of thin films under different working temperatures. By applying High Temperature Tribometer and selecting peoper experiment parameters, this dissertation studied the DLC film’s tribological behavior under, different temperatures, loads and speeds, analyzed the wear mechanism under different conditions, got optimum temperature ranges in which DLC film can well perform as the lubricant, and obtained the critical load and critical speed at high temperature. Combined with the heat stress results from finite element model, the thermalload characteristics of DLC films was analyzed, which provides the theoretical basis for the DLC film’s application at high temperature.
     Finally, bearing’s friction torque was calculated based on the empirical model, dynamic friction torque of the coated ceramic ball bearing was tested with the tester of BRG3000 Torque, the effect of rolling friction DLC films was studied by comparing the friction torque at different lubrication and experimental parameters, which provides the application and evaluation tools for DLC films’application in bearings.
引文
[1] obertson J.Diamond like amorphous carbon[J].Materials Science and Engineering,2002,37(4~6):129~281.
    [2] Hauert R. An overview on the tribological behavior of diamond like carbon in technical and medical applications[J]. Tribology international,2004,37(11):991~1003.
    [3]张传伟.陶瓷球轴承固体润滑涂层制备与承载特性分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:15 30.
    [4]荆翠妮,古乐,张传伟,唐光泽,王黎钦.氮化硅陶瓷表面DLC膜的制备及摩擦性能研究[J].润滑与密封,2010,35(9):21~25.
    [5]绍恩颖.氮化硅陶瓷材料的研究进展[J].广州化工,2010,20(2):10~15.
    [6] Aisenberg S,Chabot R.Ion–beam deposition of thin films of diamond like carbon[J]. J Appl Phys 1971,(42):2953 2958.
    [7]刘洪喜.PIII技术合成碳化钛和类金刚石薄膜研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2003:1~20.
    [8] Grill A.Diamond like carbon:state of the art[J]. Diamond and related materials,1999,8(2~5)::428~434.
    [9] D R Tallant,J E Panneter,M R Siegal. Thethermal stability of diamond like carbon[J].Diamond and Related Materials,1995,4(3):191~199.
    [10] Hongxuan Li,Chengbing Wang,Jianmin Chen,Huidi Zhou,Huiwen Liu.Annealing effect on the structure,mechanical and tribological properties of hydrogenated diamond like carbon films[J].Thin Solid Films , 2006 ,2153~2160.
    [11] Gonzalez-hernandez.Determination of film substrate microadhesion for crystalllline silicon films by Raman scattering[J].Solid State Commu,1989,69~637.
    [12]程德刚,吕反修,杨让.磁控溅类金刚石的热稳定性[J].湖北汽车工业学院学报,1993,35(1):2~17.
    [13] Zou Y S,Zheng J D.Structure mechanical properties and thermal stability of diamond like carbon films prepared by arc ion plating[J].Acta Metallurgica Sinica,2005, 18(3):331~338.
    [14] Ito Hirotaka,Yamamoto Kenji,Masuko Masabumi.Thermal stability of UBM sputtered DLC coatings with various hydrogen contents[J].Thin Solid Films,2008,517(3):1115~1119.
    [15] Wu wenjin,hon minhsiung. Thermal stability of diamond like carbon films with added silicon[J]. Surface & coatings technology,1999,111(2 3):134~140.
    [16] Friedmann T A,Me Catty K F,Barbour J C.Thermal stability of amorphous
    [17] carbon films grown by Pulsed laser deposition[J].Applied Physics Letters. 1996,113(56):223~229.
    [18] Fu Ricky K Y,Mei Y F ,Fu M Y,Wei C B. Thermal stability of metal containing diamond like carbon thin film fabricated by dual plasma deposition [C]. Proceedings of SPIE The International Society for Optical Engineering,2005,5774(76):330~335.
    [19] Tsai H C,Bogi D B.Characterization of diamond like carbon films and their Application as overcoats on thin film media for magnetic recording [J].Journal of Vacumm Science and Technology A,1987,5(6):3287~3312.
    [20]黎明,温诗铸.纳米压痕技术及其应用[J].中国机械工程,2002,13(16):1437~ 1440.
    [21] Lee Yun Hee, Takashima Kazuki1,Kwon Dongil. Micromechanical analysis on residual stress induced nanoindentation depth shifts in DLC films[J].Scripta Materialia,2004,50(9):1193~1198.
    [22] Bec S,Tonck A, Fontaine J. Nanoindentation and nanofriction on DLC films[J].Philosophical Magazine,2006,86(33~35):5465~5476.
    [23] Zhang T H,Huan Y. Nanoindentation and nanoscratch behaviors of DLC coatings on different steel substrates[J].Composites Science and Technology,2005,65(9):1409~1413.
    [24] H G. Busmann,A Pageler,U Brauneck.Grain boundaries and mechanical properties of nanocrystalline diamond films[J].Materials Science Forum,2000,(343~346):255~260.
    [25] Komvopoulos K,Finite Element Analysis of a layered Elastic Solid in Normal Contact with a Rigid Surface[J].Tribology ,1989,111:477~485.
    [26] Ziebert C,Ulrich S,Stüber M. Depth profiling of mechanical properties on the nanoscale of single lever and stepwlse graded DLC films by nanoindentationand AFM[C]. Materials Research Society Symposium Proceedings,2005,880:53~59.
    [27]赵栋才,任妮,马占吉,邱家稳.掺硅类金刚石膜的制备与力学性能研究[J] .物理学报,2008,57(3):1935~1938.
    [28]张瑞军,马洪涛.掺氮类金刚石薄膜的纳米力学及纳米摩擦性能研究[J].摩擦学报,2005,25(6):529~533.
    [29]李新,唐祯安,徐军.用于微机电系统的DLC膜的制备及表征[J].材料研究学报,2004,18(6):582~586.
    [30] K Enke,H Dimigen,H Hubsch. Frictional properties of diamond like carbon layers[J]. Appl Phys Lett,1980,(36):291~296.
    [31] Erdemir A,Bindal C,Fenske G R. Characterization of transfer layers forming on surfaces sliding against diamond like carbon[J].Surface and coating technology,1996,(86287):692~697.
    [32] E Francis A Kennedy,L David,A Erdemir,J B Woodford[J]. Tribological behavior of hard carbon coatings on steel substrates. Wear,2003,(255):854~858.
    [33] Byung Chul Na,Akihiro Tanaka.Tribological characteristics of diamond like carbon films based on hardness of mating materials[J].ASIATRIB 2002 International Conference,Jeju Island Korea, 2002:147~148.
    [34] Zhang Guang An1,Wang Peng,Chen You Ming. Structure and tribological properties of Al DLC films prepared by medium frequency magnetron sputtering [ J ].Tribology,2008,28(2):118~122.
    [35] Lan Huiqing, Kato Takahisa,Liu Can.Molecular dynamics simulations of atomic scale tribology between amorphous DLC and Si DLC films[J]. Tribology International,2010,43:646~651.
    [36] H Liu,A Tanaka,K Umeda.The tribological characteristics of diamond like carbon films at elevated temperatures[ J ].The Solid Films.1999,346:162~168.
    [37]臧稳通,梁波.卫星飞轮用轴承的设计与应用[ J ].轴承,1999, (7) :4~6.
    [38] palmgren A. Ball and Roller Bearing Engineering[ J ].philadephia,1959,(8):50~80.
    [39]万长森.滚动轴承的分析方法[ M ].北京:机械工业出版社,1985:272~276.
    [40] Gill S. Comparison of the Performance of Solid and Liquid Lubricants in Oscillating Spacecraft Ball Bearings[J]. National Aeronautics and Space Administration, Washington, DC,1994,10(6):60~65.
    [41] Stevens, K T, Todd M J. Experiments on the Torque of Ball Bearings over Small Angles of Movement[J]. National Aeronautics and Space Administration, Washington,DC,1978,2(9):86~90.
    [42] Ohta Hiroyuki,Kanatsu Masayuki.Running torque of ball bearings with polymer lubricant (effect of the enclosure form of polymer lubricant) [J].Tribology Transactions,2005,48(4):484~491.
    [43] Tabor D. Hardness of Metals[ M ].Oxford University Press,1951:100~134.
    [44] Hay J L, Pharr G M. Instrumented Indentation Testing. Kuhn H, Medlin D, eds.ASM Handbook Volume 8, Mechanical Testing and Evaluation (10th edition) [ J ].Ohio ASM International Materials Park, 2000:232~243.
    [45]张泰华.微/纳米力学测试技术及其应用[ M ].北京:机械工业出版社,2004:8~18.
    [46] Sneddon I N.The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile [J].Int J Eng Sci,1965,1(3):47~56.
    [47] Johnson K L.Contact Mechanics[M]. Cambridge University Press,1985:45~110.
    [48]贾俊辉,戚震中.表面膜附着力的压痕法测定[J].机械工程材料.1988,1(6):31~35.
    [49] S J Bull,D S Rickerby,The Use of Scratch Adhesion Testing for the Determination of Interfacial Adhesion:the Importance of Fiction Drag[J].Surf Coat Technol,1988,36:503~517.
    [50]高建明.材料力学性能[M].武汉:武汉工业大学出版社,2004:81~85
    [51] L B Frewund,S Suresh. Thin Film Materials Stress,Defect Formation and Surface Evolution[M].2006(1):77~79.
    [52]戴剑锋,何彦林.超硬纳米类金刚石膜的结构特点及其形成机制的探讨[J].甘肃工业大学学报,2002,20(3):12~18.
    [53]王开阳.球磨法制备钛纳米晶[J].金属学报,1993,10(7):112~116.
    [54]陈迟.含多源损伤的胶接修补结构有限元分析方法[D].上海:上海交通大学硕士学位论文,2007:28~31.
    [55]柳翠.钛离子注入类金刚石碳膜的结构与性能的研究[J].功能材料,2005,25(2):79~85.
    [56]姜绍娜,陈晓明,顾家明.低速灵敏球轴承摩擦力矩分析[J].中国机械工程,2010,21(5):85~90.
    [57] griffith,A. A. The phenomenon of rupture and flow in solids[C].philosophical transactions of the royal society1920 A221,163~198.
    [58] HA IDER J, RAHMANM, CORCORAN B. Simu lation of thermal stress inmagnetron sputtered thin coating by finite element analysis[J]. Journal of Materials Pro cessing Technology, 2005, 168: 36~241.
    [59]北原时雄.合成负荷下仪表球轴承的摩擦力矩[J].国外轴承,1984,(5):120~125.
    [60]朱江红.低速球轴承摩擦力矩的分析研究[J].导弹与航天运载技术,2000,248(6):126~132.
    [61]朱孔敏.成对角接触球轴承摩擦力矩测量仪研制[D].合肥:合肥工业大学硕士学位论文,2004:45~48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700