惯性平台框架摩擦力矩测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性平台是导弹导航系统中的重要组成部件,它是以陀螺仪为敏感元件,以平台框架和台体作为稳定对象的自动调节系统。惯性平台在工作过程中,通过调整各个框架对安装在台体上的加速度计进行稳定。在调整框架的过程中,框架会受到摩擦力矩的作用,其大小和波动值将直接影响惯性平台的稳定性、可靠性和使用寿命。惯性平台框架摩擦力矩是多种因素共同作用的结果,有数值小,易受干扰的特点。目前,国内对惯性平台框架摩擦力矩测试方法及测试设备的研究较少,因此对惯性平台框架摩擦力矩测试系统的研究具有重要意义。
     本文在介绍惯性平台结构与工作原理的基础上,对现有的测试方法进行了研究,设计了一种基于平衡力矩法的测试方案,即力矩电机输出力矩与其克服的框架摩擦力矩相平衡,来对摩擦力矩进行测试。对测试系统的硬件、测试方法和软件进行了设计,搭建了惯性平台框架摩擦力矩测试实验系统,可以对最大静摩擦力矩与动摩擦力矩进行测试。本系统以高性能的工控机和数据采集卡作为系统的控制核心,利用多极旋转变压器对框架姿态角进行测量,通过RDC解调电路实现角度信号的模数转换,便于对力矩电机转动的控制。在传统PID控制的基础上,设计了Bang-Bang+PID的电机控制方法,可以使电机快速、精确地进行角度定位。设计了基于PWM的电机速度控制方法和利用多极旋转变压器精粗机耦合的高精度角度测量方法,提高了整个测试系统的控制精度。另外,本测试系统可以在惯性平台的装配过程中,对主要组成元件(加速度计、坐标分解器、旋转变压器)的输出信号进行采集并显示,便于装配人员对元件安装位置的调节。对数据采集卡的D/A输出和力矩电机的输出力矩进行了标定,得到了相应的标定值。
     最后,利用本摩擦力矩测试实验系统,对惯性平台各框架的最大静摩擦力矩和动摩擦力矩进行测试,对角度定位进行了实验。分析了实验数据,验证了以上的测试方法和控制策略,证明了方案的可行性,可以得到满足一定精度要求的测试结果。
Inertial platform is an important component of missile navigation system. It is an automatic regulating system that takes gyroscope as sensitive element and takes platform frame and body as the object to stabilize. Inertial platform stabilizes the accelerometers that are installed on platform body by adjusting each frame of platform on the course of working. In the process of framework adjusting, the framework will expose to the influence of friction torque, the magnitude and fluctuation value of which will directly affect the stability, reliability and the service life of inertial platform. Inertial platform framework friction torque is the result of many factors and it has the features of small value and vulnerable to interference. At present, there are few studies on inertial platform framework friction torque test methods and test equipment, so inertial platform framework friction torque test has significance.
     This paper is on basis of introducing the structure and the working principle, studying the existing test methods and designs a method that is based on balance torque method. It uses the method that the motor output torque is equal to the friction torque the motor overcame to test friction torque. This paper designs the hardware, test method and software for test system and builds inertial platform framework friction torque experimental system that can test the maximum static friction torque and kinematic friction torque. The system takes the high-performance IPC and data acquisition card as control core and uses multi-pole rotary transformer to measure the attitude angle to facilitate the control of the torque motor’s rotation by RDC demodulation circuit realizing the analog-digital conversion of angle signal. Based on traditional PID control, this paper designs Bang-Bang+PID motor control method to quickly and accurately locate the point of motor. The paper designs motor control method based PWM and high-precision angle test method based on multi-pole rotary transformer precise and crude machine coupled to improve the accuracy of test system control. In addition, the test system can acquire and display the output signal of the main elements (accelerometer, coordinate decomposer, rotary transformer), easy to installation personnel to adjust the mounting position, in the inertial platform assembly process. The data acquisition card’s D/A output and the output torque of torque motor are calibrated to get the corresponding calibration value.
     Finally, this paper tests the maximum static friction torque and kinematic friction torque of each framework of inertial platform and tests the angle locate experiment. Analysis of experimental data to verify the test methods and control strategies above, it demonstrates the feasibility and gets the results that can meet certain requirements.
引文
[1]朱一凡,杨峰,梅珊.导弹武器系统工程[M].北京:国防科技大学出版社,2007:11-13.
    [2]陈永冰,钟斌.惯性导航原理[M].长沙:国防工业出版社,2007:69-85.
    [3]庞佑霞,黄伟九,谭元强,刘厚才.工程摩擦学基础[M].北京:煤炭工业出版社,2004:15-40.
    [4]朱家海.惯性导航[M].北京:国防工业出版社,2008:91-107.
    [5] B.布尚.摩擦学导论[M].北京:机械工业出版社,2007:15-35.
    [6]陈耀东,秦现生,蒋明桔,张双全.舵机传动机构摩擦力矩测试关键技术[J].测控技术,2009,28(7):88-94.
    [7]朱孔敏.成对角接触球轴承摩擦力矩测量仪研制[D].合肥:合肥工业大学,2004:6-10.
    [8]李国斌,高奋武,刘金秀,任丽珍.摩擦力矩测量仪的研发与设计[J].科技纵横,2009,6:158-164.
    [9]郭淑芳,汤永红,马军.转盘轴承摩擦力矩测量仪[J].轴承,2004,11:30-31.
    [10]李兆川,王妮,曲国英,袁迪.转动机构摩擦力矩的测量系统方案设计[J].测控技术,2009,27(增刊):290-324.
    [11]李副来,李济顺,朱孔敏.轴系摩擦力矩测量仪的研制[J].轴承,2008,10:38-40.
    [12]陈延明.摩擦力矩测量及力矩测试仪的应用[J].轴承,1994,10:30-32.
    [13]赖小航. M992摩擦力矩测量仪的改进[J].测试技术,2000,6:25-41.
    [14]蒋明桔,秦现生,沈宏华.舵机传动机构静动摩擦力矩测控系统设计[J].测控技术,2009,28(12):44-51.
    [15]潘欣民,王燕芳.微型计算机控制技术使用教程[M].北京:电子工业出版社,2006:4-17.
    [16] ADVANTECH. PLC-1727U User Manual. 2006:1-40.
    [17]姜燕平.旋转变压器原理及其在自动化控制中的应用[J].自动控制专栏,2005,6:38-40.
    [18]陈隆昌,阎治安,刘新正.控制电机[M].第3版.西安:西安电子科技大学出版社,2003:101-107.
    [19]姜燕平.旋转变压器原理应用[J].电气时代,2005,10:98-99.
    [20]李光友,王建民,孙雨萍.控制电机[M].北京:机械工业出版社,2009:145-157.
    [21]余永权.计算机接口与通信[M].广州:华南理工大学出版社,2004:136-147.
    [22]高国燊,余文烋,彭康拥,陈来好.自动控制原理[M].广州:华南理工大学出版社,2005:33-38.
    [23] Dan Liu,Changliang Xia , Maohua Zhang, Yingfa Wang. Control of Brushless DC Motor Using Fuzzy Set Based Immune Feedback PID Controller [J]. IEEE,2007:1045-1049.
    [24] Shaomian Chen,Jun Zhao,Jixin Qian. A Design Method of Bang-Bang and PID Integrated Controller Based on Rough Set [J]. IEEE,2007.
    [25] Shuhua Ma , Junjie Wang, Jinkuan Wang,Cheng Cui, Yiding Zhao. Research on the LN2 Auto-filling System for Dewar Vessel based on Bang-Bang + PID Control [J]. IEEE,2007:2937-2940.
    [26]赵治龙,祁小野.弹载电液舵机的Bang-Bang+PID双模控制研究[J].技术纵横,2010,10:72-75.
    [27]陈严锋,朱德明,朱广斌,王慧贞.改进PID控制在伺服系统中的应用[J].伺服控制,2008,1:53-55.
    [28]郭绪阳,祁小辉,田李庄.基于积分分离PID控制的交流伺服系统[J].现代电子技术,2007,19:163-164.
    [29]蔡杏山,刘凌云,蔡杏山,刘凌云.零起步轻松学变频技术[M].北京:人民邮电出版社,2009:23-48.
    [30]刘华. Borland C++ Builder程序设计[M].北京:清华大学出版社,2001:1-18.
    [31] Paulraj Ponniah.数据库设计与开发教程[M].北京:清华大学出版社,2005:279-308.
    [32] Pierre Daniel Pfister,Yves Perriard. Torque Measurement Methods for Very High Speed Synchronous Motors [J].IEEE,2008:1-5.
    [33] T.Moix,D. Ilic,B. Fracheboud,H. Bleuler. Design of a Friction Drive Actuator with Integrated Force and Torque Sensors [J].IEEE,2005:1762-1766.
    [34] Aiqing Huo,Yuyao He,Yuelong Wang,Nan Tang,Weibin Cheng. Design of a Friction Drive Actuator with Integrated Force and Torque Sensors[J].IEEE,2005:1762-1766.
    [35]秦永元.惯性导航[M].北京:科学出版社,2006:95-133.
    [36]刘超,唐彬. C++ Builder案例开发集锦[M].北京:电子工业出版社,2005:41-91.
    [37]高冰,张萍.轴承动态摩擦力矩测量的驱动控制[J].轴承,2007,12:39-41.
    [38]曾文.惯性平台结构与精密转位系统的动态设计[D].合肥:重庆大学,2002:1-4.
    [39]贾琳,孟卫锋.惯性平台稳定回路的双闭环控制[J].科学技术与工程,2009,5:1147-1149.
    [40]王静石.陀螺稳定平台伺服控制系统研究[D].哈尔滨:哈尔滨工业大学,2008:3-4.
    [41]吴勃英.数值分析原理[M].北京:科学出版社,2005:101-170.
    [42] VaraPrasad Arikatla,Jaber A. Abu Qahouq. DC-DC Power Converter with Digital PID Controller [J].IEEE,2011:327-330.
    [43] Jenyang Chen,Chuanhsi Liu,Changwei Fan,Hawyun Shin,Maohsu Yen. An Adaptive PID Controller[J].IEEE,2010:886-889.
    [44]周仲荣.摩擦学发展前沿[M].北京:科学出版社. 2006:4-25.
    [45]葛世荣,朱华.摩擦学的分形[M].北京:机械工程出版社. 2005: 108-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700