大跨度钢桥极限承载力计算理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国在大跨度钢桥建设上某些指标已经赶超世界先进水平,但基础理论研究却落后较多,严重滞后于工程实践。随着我国桥梁建设的发展,钢桥跨径不断增大,广泛采用高强钢并向全焊形式发展,桥塔高耸化、箱梁薄壁化,使结构整体和局部的刚度下降,稳定问题显得比以往更为重要,迫切需要对钢桥结构稳定性和极限承载力等关键技术问题进行深入的理论研究和模型试验。20世纪70年代欧洲发生4次大型钢箱梁桥施工坠梁事故是桥梁稳定性问题研究的新起点,也说明应按极限承载力理论来指导设计。分析桥梁结构的极限承载力,不仅可以用于极限状态设计,而且可以了解桥梁结构的破坏形式,准确地知道结构在给定荷载下的安全储备和超载能力,为其安全施工和营运管理提供依据和保障。
     本文在总结和吸取前人对桥梁结构,特别是板钢结构极限承载力研究方面的成果和方法的基础上,采用理论分析和数值计算相结合的方法,对板、板钢结构的极限承载力进行了全面、系统的研究。本文的研究内容如下:
     1.钢桥稳定理论和板钢结构极限承载力研究的总结和评述:在对桥梁稳定理论和板钢结构极限承载力研究的历史与现状进行回顾和总结的基础上,就其基础理论、研究思路、分析方法、目前的研究水平等4方面,系统阐述已取得的成果,同时指出了目前板、板钢结构稳定性和极限承载力研究面临的问题,为大跨度钢桥极限承载力研究提供参考。
     2.板钢结构极限承载力研究:从含初始弯曲的大挠度方程出发,以薄板厚度的折减系数为摄动参数,将残余应力等效为边界荷载,将实用板(带初始弯曲和残余应力的板)比拟为理想板(完善板),得出板的厚度折减系数和板钢结构厚度折减方程。通过与数值方法和已有的试验数据对比分析验证了折减厚度法的正确性,并全面地分析了初始几何弯曲和残余应力对板钢结构极限承载力的影响。
     3.塑性佯谬的研究:回顾了塑性佯谬的研究历史和对可能造成塑性佯谬的原因进行了全面的总结。采用数值方法,对比分析了塑性增量理论和塑性全量理论对受压板塑性屈曲的影响,并对可能造成塑性佯谬的原因进行了分析和对比。根据对塑性屈曲试验的精细分析和理论研究,得出塑性佯谬是解析方法的近似造成的,塑性佯谬在塑性屈曲数值分析中是不存在的。
     4.板钢结构极限承载力统一理论研究:将有效宽度法推广到板钢结构的极限承载力分析,得到板钢结构极限承载力统一公式。通过对受压宽板的极限承载力分析验证了统一公式的适用范围;对简支板在均匀受剪、非均匀荷载和复杂荷载作用下的极限承载力分析,系统的研究了统一公式在板钢结构极限承载力分析中的应用;研究了简支板的弹性边界扭转刚度对承载力的影响,将简支板理论推广到板钢结构;与数值方法的对比验证了统一公式的完备性,并给出了适用于复杂板钢结构极限承载力分析的逐步破坏法。结合折减厚度法,考虑板钢结构抗力的随机性得出板钢结构的极限承载力统一理论。
     5.板钢结构极限承载力理论的应用研究:采用板钢结构极限承载力统一理论,研究工字形钢板梁在局压、受剪和复杂荷载作用下的极限承载力和受压加劲板的极限承载力,得出比已有理论更加优良的极限承载力公式。通过理论分析结果与试验的对比,验证了理论公式的合理性。
     6.基于可靠度理论的板钢结构极限承载力设计方法研究:回顾了我国公路钢桥设计理论的发展和现状,通过国内外主要钢桥设计规范的比较,提出了基于可靠度理论的板钢结构极限承载力设计方法和目标可靠度指标建议值。开发了基于Ansys软件的随机非线性有限元方法,采用该方法分析了板钢结构设计参数随机性对承载力的影响,得出了板钢结构极限承载力概率设计的分项系数。
     7.压杆极限承载力研究:采用统一理论研究钢压杆极限承载力,通过修正Shanly模型重新构建了钢压杆极限承载力公式。系统讨论了初始缺陷对钢压杆承载力的影响;对偏心压杆的控制方程进行解析分析,得出双模量理论解高于试验值的直接原因;对钢压杆极限承载力进行概率分析,得出了钢压杆稳定极限承载力概率设计的分项系数。
     8.试验验证:以珠江黄埔大桥施工稳定性的试验研究为依托,通过扁平钢箱梁节段试验研究了大跨度斜拉桥施工吊装阶段横隔板的稳定性,并通过局部试验研究了桁架式纵隔板的力学性能。通过试验和数值方法的对比分析,对本文提出的板钢结构极限承载力理论进行了验证。
Some indicators of the China's long-span steel bridge constructions had been catching up with the international advanced levels, but lagged behind in basic theoretical researches, which lagged behind engineering practice more seriously. Along with the development of China's bridge constructions, the longer span of steel bridges, the taller height of bridge towers, the thinner plates of box girder, the extensive application of high-strength steels, as well as the development of whole welded in steel bridge fabrications, so that the local and overall structural stiffness declined, which made bridge stability is more important than ever. There is an urgent need for model tests and theoretical study in depth for steel bridges on the key technology, ie. stability and ultimate strength. Crashed of the four large steel box girder bridges during construction in the 1970s in Europe was the new starting point of the bridge stability research. It is also shown that the limit capacity theory should be guidelines to the bridge designings. Analyzed the ultimate strength of steel bridge structure, not only can be used to limit state design, but can understand its destructive forms, accurately know its overloading capacity and safety reserve with the given loads, provide the gist and guarantee for the security construction and operation.
     In this thesis, based on summarizing and learing from the achievements in the pioneer's works on the bridge stability, the limit capacity of plate and steel plated structures. With theoretical and numerical analysis, the limit capacity of plate and steel plated structures had been investigated comprehensively and systematically. The study of this paper as follows:
     1. Summarized and commented the stability theories of steel bridges and the ultimate strength theories of steel plated structures. On the basis of its basic theories, research ideas, analysis methods and current level etc., systematically summarized its study history and current status, commented its achievements, and pointed out the questions on the ultimate capacity of plates and steel plated structures currently, which can give references to research on the ultimate capacity of long-span steel bridges.
     2. Research on the ultimate capacity of steel plated structures. To analyze the ultimate capacity of steel plated structures finally can be idealized as investigated the ultimate capacity of a rectangular plate with arbitrary elastic boundaries loaded in plane. In this paper, considered residual stress as equivalent residual stress loads, researched on the large deflection equations of plates with initial imperfections, applied the thickness discounted quantity of plate as perturbation parameter, assimilated between the applied plate with initial imperfections and the perfect plate, acquired the thickness discounted quantity of perfect plates and the thickness discounted equations of steel plated structures. Validated by the results of nonlinear FEA and experiments, the thickness discounted method (TDM) is practical with good precision. According to nonlinear FEA, had comprehensive investigated the effect by initial imperfections of steel plated structures.
     3. Comprehensive summarized the research history and the possible reasons for the plastic paradox. Though numerical methods, contrasted the effect of plastic buckling by the flow theory and the deformation theory of plasticity, and the other reasons which may causes plastic paradox. According to detail analysis of the pastic buckling experiments and theoretic research, deemed that plastic paradox is not exist in numerical analysis, which was mainly caused by the approximate supposition in theoretic researches.
     4. Researched on the unified ultimate capacity theory(UUCT) for steel plated structures. Promoted the effective width theory to analysis the steel plated structures, gained the unification formula for the post-buckling ultimate strength of steel plated structures and the gradual destruction method to analysis the ultimate strength of complex steel plated structures, and validated the UUCT by nonlinear FEA. Through analyzed the ultimate capacity of simple-supported board plate with pressure loading, validated the application range of the UUCT. Research on the effect of torsion stiffness by elastic boundary, extended the results of simply supported plates to plates with elastic boundaries. Research on limit capacity of the simple-supported plate, loaded uniform shear load, non-uniform load and combination loads, systematically researched on how to apply the UUCT, and validated the reasonable of the UUCT by nonlinear FEA. Therefore, TDM, the unification formula and randomicity research on the limit capacity of steel plated structures be called by a joint name——the unified ultimate capacity theory.
     5. Researched on the application of the UUCT for the steel plated structures. By the unified theory, researched on the limit capacity of I-section steel girders with shear loading, patch loading and combined loading, research on the stiffened plates with pressure loading. Through comparing research between tests result and nonlinear EFA, the new methods are reasonable than the known theoretical formulas.
     6. Reviewed the development of highway steel bridge design theories in China, through contrasted between domestic norms and overseas norms for the steel bridge designing, based on the reliability theories, brought forward the suggest value of reliable indicators and the ultimate capacity design methods for the steel plated structures. Stochastic nonlinear finite element method has been developed base on Ansys software. With it, researched on the effect by the stochastic design parameters of steel plated structures, received the sub-factor for the ultimate strength design.
     7. Researched on the ultimate strength of steel columns by the ultimate capacity theory. Systemically discussed the effect for strut's bearing capacity by initial imperfection, rebuilt the new checking formula by amended Shanly model. By analytic method, research on the dominate equations of simple supported columns with eccentric loading, gained the direct reasons of that results of double-module theory is large than tests. Probability analyzed on the ultimate strength of steel struts, acquired the sub-factor for the ultimate strength design.
     8. Based on the flat steel box girder segment experiments of Huangpu Bridge, over Zhujiang river, studied the construction stability of the long-span cable-stayed bridges during suspender installation, and the mechanical properties of truss diaphragms. Through contrasted between the test and the finite element method, verified the unified ultimate capacity theory of steel plated structures proposed in this paper.
引文
[1]程庆国.我国桥梁工程的成就与展望.中国土木工程学会第八届年会论文集.1998:163-169.
    [2]陈伯蠡.中国焊接钢桥四十年.焊接快讯.2004(2).
    [3]王国凡等.钢结构焊接制造.北京:化学工业出版社.2004.
    [4]史永吉.面向21世纪焊接钢桥的发展.中国铁道科学,2001.10.
    [5]潘际炎.中国钢桥.中国工程科学.2007,9(7):18-26.
    [6]南京长江第三大桥建设指挥部.南京长江第三大桥技术总结.北京:人民交通出版社,2005.
    [7]欧庆宝等.润扬长江公路大桥建设(第四册)斜拉桥.北京:人民交通出版社,2005.
    [8]陈铁云,沈惠申.结构的屈曲.上海:科学技术文献出版社,1993.
    [9]Massonnet, Ch. Recent Research in Western Europe and Developments in the European Codes. Third Int. Coll. Stability of Metal Structure.Toronto,1983.
    [10]Sukhen Chattrjee. The Design of Modern Steel Bridge (Second Edition). London:Blackwell Publishing Company,2003.
    [11]强士中等.南京长江二桥南汊斜拉桥结构验算报告.成都:西南交通大学,1999.
    [12]强士中,邵旭东.桥梁工程(上册).北京:高等教育出版社,2004.
    [13]强士中.桥梁工程(下册).北京:高等教育出版社,2004.
    [14]李立峰.湖南大学博士论文.正交异性钢箱梁局部稳定分析理论及模型试验研究,2005.
    [15]陈骥.钢结构稳定理论与设计.北京:科学出版社,2001.
    [16]Koiter W T. On the stability of elastic equilibrium. Delft: H. J. Paris.1945.
    [17]强士中.动态松弛法和板件承载力.西南交通大学博士学位论文.四川峨眉,1985.
    [18]曲庆璋,章权,季求知,梁兴复.弹性板理论.人民交通出版社,2000.
    [19]章亮炽,余同希,王仁.板壳塑性屈曲中的佯谬及其研究进展.力学进展.1990,20(2):40-45.
    [20]吴连元.板壳稳定理论.武汉:华中理工大学出版社,1996:1-107.
    [21]John L. Dawe, Gilbert Y. Inelastic Buckling of Steel Plates, J. Struct. Eng. 1985,111(1):95-107.
    [22]韩强.弹塑性系统的动力屈曲和分叉.北京:科学出版社,2000.
    [23]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,1995.
    [24]王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社,2003.
    [25]Handelmann G. H. and Prager W., Plastic buckling of rectangular plates under edge thrusts, NASA Tech. Note-1530,1948.
    [26]Bijlarrd P.P., Theory and tests on the plastic stability of plates and shells, J. Aero. Sci.,1949,16:529-541.
    [27]Gerard G, Compressive and torsional buckling of thin wall cylinders in yield region, NACN.TN3728,1956.
    [28]Pearson C. E., Bifurcation criteria and plastic buckling of plates and columns, J. Aeron.,Sci.,1950,17:417-424.
    [29]Haaijer G, Plate buckling in the strain-hardening range, Journal of the Engineering Mech. Division, Proceeding, American Society of Civil Engineering,Vol.83,No.EM2,Apr.,1957.
    [30]Haaijer G, and Thurlimann, B., On inelastic buckling in steel, Journal of the Engineering Mech. Division Proceeding, American Society of Civil Engineering,Vol.84,No.EM2,Apr.,1958.
    [31]Ilyushin A. A., Stability of plates and shells beyond the proportional limit, National advisory Committee on Aeronautics, Technical Notes No.116,1947.
    [32]Lay, M. G, Flange local buckling in wide-flange shapes, Journal of the structure Division, Proceeding, American Society of Civil Engineering, Vol.91, No. ST6,Dec.,1965.
    [33]Stowell E. Z., A unified theory of plastic buckling of columns and plates, National advisory Committee on Aeronautics, Technical Notes No.1556,1948
    [34]Dawe J L, Grondin G Y. Inelastic buckling of steel plates.J. of Struct. Engng. ASCE,1985, 111(1):95-107.
    [35]Rao G V, Venrataramana J, Rajn K K. Stability of moderately thick rectangular plates using a highprecision triangular finite element.Comp.& Struct,1975,5:257-259.
    [36]Srinivas S, Rao A K. Buckling of thick rectangular plates.AIAA J,1969,7: 1645-1646.
    [37]Coan J. M. Large deflection theory for plates with small initial curvature loaded in edge compression. Trans. A.S.M.E:,Vol.73,p.407,1959.
    [38]Yamaki N. Post-buckling behavior of rectangular plates with small initial curvature loaded in edge compression. Jour. of App. Mech. Vol.26,p.407,1959.
    [39]Robert M. Korol, Archibald N. Sherbourne. Strength predictions of plates in uniaxial compression. Journal of the structural division, ASCE 1972.98(9): 1965-1986.
    [40]Archibald N. Sherbourne and Robert M. Korol. Post-buckling of axially compressed plates. Journal of the structural division, ASCE1972,98 (10): 2223-2234.
    [41]沈惠申.正交异性矩形板后屈曲摄动分析.应用数学和力学.1989.4.
    [42]沈惠申.矩形板屈曲和曲后弹塑性分析.应用数学和力学.1990,11(10):871-879.
    [43]戴弘,周祥玉,吴连元.非完善板屈曲路径的有限元增量摄动法.应用力学学报.1991,8(1).
    [44]王明贵,黄义.弹性薄板的后屈曲特性.应用力学学报,1996,13(1):137-142
    [45]高轩能,孙祖龙.槽形截面腹板非均匀受压的屈曲后强度研究.力学与实践,1993,15(5):35-39.
    [46]徐凯宇.具有初始缺陷弹性板的稳定性分析.应用数学与力学.1995,16(10):887-894.
    [47]颜少荣,高轩能,孙祖龙.板的弹-塑性屈曲强度.南昌大学学报(工科版).1996,18(4):5-11.
    [48]朱慈勉,江利仁,陈栋.带有初变形薄板的大位移和后屈曲分析.上海力学,1998,19(4):351-359.
    [49]杨伟军,曾晓明.均匀受压一边支承一边卷边板的后屈曲分析.工程力学,2000,17(1):75-82.
    [50]孟春光,张伟星.无单元法在薄板稳定问题中的应用.力学与实践,2004,26(2):51-54.
    [51]曾晓辉,戴仰山.单向压力作用下有初挠度矩形板的有效宽度和减缩有效宽度.中国造船.1998,8,p57-65.
    [52]熊渊博,龙述尧.薄板的局部Petrov-Galerkin方法.应用数学和力学,25(2):189-196.
    [53]吴香国.不完整结构屈曲及其可靠性评定方法研究.哈尔滨工程大学博士论文.2006.5.
    [54]芦保国.板的稳定性研究进展.山西科技,2006(6):54-56.
    [55]白雪飞,郭日修.近代弹性稳定性理论的几个重要分支.海军工程大学学报.2004,16(3):40-46.
    [56]康孝先.薄板的曲后性能和梁腹板拉力场理论研究.西南交通大学硕士论文.2005.
    [57]Von Karman T、Tsien H S. The buckling of thin cylindrical shells under axial compression. J. Aero. Sci..1941(8):303-312.
    [58]Donnell L H、 Wan C C. Effect of imperfections on buckling of thin cylinders and columns under axial compression. J. Appl. Mech.,1950,17(1):73-83.
    [59]Stein M. The Influence of Pre-buckling Deformations and Stresses on the Buckling of Perfect Cylinders. NASA TRR-190.1964.
    [60]Stein M. Some recent advances in the investigation of shell buckling. AIAA J.1968,6 (12):2339-2345.
    [61]李国豪.桥梁稳定与振动.北京:中国铁道出版社,2003.
    [62]国家标准(JTG D60-2004):公路桥涵设计通用规范.北京:人民交通出版社,2004.
    [63]公路斜拉桥设计规范(试行),(JTJ 027-96),人民交通出版社,2006.
    [64]李铁夫.铁路桥梁可靠度设计.北京:中国铁道出版社,2006.
    [65]孙训芳,方孝淑,陆耀洪.材料力学,北京:高等教育出版社,1965.
    [66]苗家武,肖汝诚,裴岷山,张喜刚.苏通大桥斜拉桥静力稳定分析的综合比较研究.同济大学学报(自然科学版).2006,34(7):869-873.
    [67]西南交通大学.国内外钢桥规范之整体稳定性条文对比分析研究报告.2008.3.
    [68]钱冬生.钱冬生桥梁与教育文选,北京:人民铁道出版社,1980.
    [69]朱绍玮,张宇峰,张健飞.桥梁极限承载力研究现状与发展.现代交通技术.2007,4(1):20-23.
    [70]江峰.薄壁箱梁混合单元及其在斜拉桥双重非线性分析中的应用研究.中南大学博士论文.2004.10.
    [71]赵雷,杨兴旺.南京长江二桥斜拉桥施工过程稳定性分析.公路交通科技.2005.7.
    [72]贺栓海,何福照,张翔.拱桥的几何非线性分析——挠度理论.中国公路学报.1991,4(3):47-54.
    [73]唐茂林,沈锐利,强士中.大跨度悬索桥丝股架设线形计算的精确方法.西 南交通大学学报.2001,36(3):303-307.
    [74]范立础.桥梁工程.北京:人民交通出版社,2001.
    [75]伏魁先,刘学信,黄华彪.斜拉桥面内整体失稳分析.铁道学报,1993,15(4):.74-79.
    [76]颜全胜.大跨度钢斜拉桥极限承载力分析.长沙:长沙铁道学院研究生学位论文,1994.
    [77]杨勇.PC单索面斜拉桥极限承载力分析.上海:同济大学研究生学位论文,1996.
    [78]吴冲.钢桥.同济大学教材.2004.
    [79]李富文,伏魁先,刘学信.钢桥.北京:中国铁道出版社,1992.
    [80]周远棣,徐君兰.钢桥.北京:人民交通出版社,1991.
    [81]J.罗达(著),王飞跃(译).弹性结构的屈曲.杭州:浙江大学出版社,1989.
    [82]R. Szilard陈太平、戈鹤翔、周孝贤译.板的理论和分析经典法和数值法.北京:中国铁道出版社,1984.
    [83]黎绍敏.稳定理论.北京:人民交通出版社,1989.
    [84]陈绍蕃.钢结构设计原理.北京:科学出版社,2005.
    [85]李昆.基于可靠度理论的公路钢桥概率极限状态设计方法研究.同济大学博士论文,2007.
    [86]邹天一.桥梁结构可靠度.北京:人民交通出版社,1991.
    [87]张银龙,王春明,从友良.用响应面法分析装配式公路钢桥的平面结构系统可靠度.公路交通科技,2005,22(1):85-88.
    [88]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(1).建筑结构学报,2002,23(4):2-9.
    [89]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(2).建筑结构学报,2002,23(5):2-10.
    [90]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(3).建筑结构学报,2002,23(6):2-9.
    [91]贡金鑫,赵国藩.国外结构可靠性理论的应用与发展.土木工程学报,2005,38(2):1-7.
    [92]赵国藩,贡金鑫,赵尚传.我国土木工程结构可靠性研究的一些进展.大连理工大学学报,2000,40(3):253-258.
    [93]孙春林.可靠性理论.天津:天津科学技术出版社,2001.
    [94]高社生,张玲霞.可靠性理论与工程应用.北京:国防工业出版社,2002.
    [95]李广慧,刘晨宇,托拉·欧尼弗里奥.响应面方法及其在桥梁体系可靠度分析中的应用.郑州大学学报(工学版),2004,25(1):16-21.
    [96]小西一郎.钢桥.北京:中国铁道出版社,1984.
    [97]Hancock G. J. et al., Cold-Formed Steel Structures to the AISI Specification, Marcel Dekker, New York,2001.
    [98]Von Karman T, Tsien H S. The buckling of thin cylindrical shells under axial compression. J. Aero. Sci.,1941,(8):303-312.
    [99]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [100]M S Cheung, D T Lau, W C Li, Recent developments on computer bridge analysis and design, Prog Struct Engng Mater.2000;2:376-385.
    [101]Mounir E M, Kassim M T. Finite-element analysis of steel girder highway bridges. Journal of Bridge Engineering (ASCE),1997,2 (3):83-87.
    [102]项海帆,姚玲森.高等桥梁结构理论.北京:人民交通出版社,2001.
    [103]博弈创作室Ansys9.0经典产品高级分析技术与实例详解.北京:中国水利水电出版社,2005.
    [104]周宁,郝文化ANSYS-APDL高级工程应用实例分析与二次开发.北京:中国水利水电出版社,2007.
    [105]陈火红,尹伟奇,薛小香MSC.Marc二次开发指南.北京:科学出版社,2004.
    [106]陈火红Marc有限元实例分析教程,北京:机械工业出版社.2003.
    [107]阚前华,常志宇,郝文化MSC.Marc工程应用实例分析与二次开发.北京:中国水利水电出版社,2006.
    [108]陈火红编译.材料非线性分析培训教程MSC.Software中国,2001.6.
    [109]陈火红,于军泉,席源山MSC.Marc/Mentat2003基础与应用实例.北京:科学出版社,2004.
    [110]郭彦林,陈绍蕃.冷弯薄壁槽钢短柱局部屈曲后相关作用的弹塑性分析.土木工程学报,1990,23(3):36-46.
    [111]中华人民共和国国家标准.钢结构工程施工质量验收规范GB50205-2001.中华人民共和国建设部,2002.
    [112]Y. Zheng and P. K. Das. Improved response surface method and its application to stiffened plate reliability analysis Engineering Structures,2000, 22(5):544-551.
    [113]刘宁.可靠度随机有限元法及其工程应用.北京:中国水利水电出版
    社,2001.
    [114]秦权,林道锦,梅刚.结构可靠度随机有限元理论及工程应用.北京:清华大学出版社,2006.
    [115]陈虬,刘先斌.随机有限元及其工程应用.成都:西南交通大学出版社,1993.
    [116]Manabuito, Yozo Fujino, Toshio Miyata, Nobuyuki Narita. Cable-stayed Bridges Recent Developments and their Future. ELSEVIER SCIENCE PUBLISHERS B.V.1991.
    [117]张银龙,王春明,从友良.用响应面法分析装配式公路钢桥的平面结构系统可靠度.公路交通科技.2005(1):85-88.
    [118]何水清,王善.结构可靠性分析与设计,北京:国防工业出版社,1993.
    [119]吴世伟.结构可靠性分析,北京:人民交通出版社,1990.
    [120]张银龙.概率设计及其在Ansys上的实践.智能建筑与城市信息.2003(1):68-70.
    [121]MR Rajashekher, B R Ellingwood. A New Look at the Response Surface Approach for Reliability Analysis. Structural Safety 12,1993.
    [122]Neale, K. W. Effect of imperfections on the plastic buckling of rectangular plates. J. Appl. Mech.,1975,42(1):115-120.
    [123]Stability of metal structures. A world view. Engineering Journal, AISC 1981. 18(3):90-120;1982.19(2):101-138.
    [124]Jin G. T. Buckling of thin shells:recent advances and trends. Appl. Mech. Rev.1996,49(4):263-273.
    [125]林逸汉,陈世平,王禹钦.正交异性板的三维渐近方程.复旦学报(自然科学版).2006.45(2):135-140.
    [126]陈少杰,双远华,赖明道.板壳大位移弹塑性分析的样条有限条法.太原重型机械学院学报.1998,19(2):101-107.
    [127]H. R. Evan等,顾发祥,强士中译,钱冬生校.钢桥设计论文选译.北京:中国铁道出版社,1986,1-98.
    [128]Sadao Komatsu, Toshiyuki Kitada. Statistical Study on Compression Butt-Welded plate. Journal of Structural Engineering,1983,109(2):386-403.
    [129]Herzog. Simplified Design of Unstiffened and Stiffened Plates. Journal of Structural Engineering,1987,113(10):2111-2124.
    [130]Hughes O, Ma M. Elastic tripping analysis of asymmetrical stiffened, Computers & structures,1996,60 (3):369-389.
    [131]Hughes O, Ma M. Inelastic analysis of panel collapse by stiffener buckling, Computer & Structures,1996,61(1):107-117.
    [132]G Y Grondin, A E Elwi, J J R Cheng. Buckling of stiffened steel plates-a parametric study, Journal of Constructional Steel Research,1999,50 (3):151-175.
    [133]Chai H Yoo, Byung H Choi, Elizabeth M, et al. Stiffness Requirements for Longitudinally Stiffened Box-Girder Flanges Journal of Structural Engineering,2001,127(6):705-711.
    [134]康孝先,强士中.初始缺陷对任意边界板极限承载力的影响分析.应用力学学报(己录用).
    [135]康孝先,强士中.初始缺陷对板钢结构极限承载力的影响分析.工程力学(已录用).
    [136]周建新,李栋才,徐宏伟.焊接残余应力数值模拟的研究与发展.金属成形工艺.2003,21(6):62-64.
    [137]Z Cao. Metallo-Thermo-Mechanics application to phase transformation incorporated processes. Proc. Theoretical Prediction in Joining and Welding. Osaka, Japan,2001.
    [138]R. Maquoi, M.Skaloud, Stability of plates and plated structures, General report. J. Constr. Steel Res.55(2000)45-68.
    [139]Leonhardt, Series, Fritz. Residual stresses in a steel box girder bridge aesthetics and design. London Cons Truction Industry Research and Infor.,1982.
    [140]D. Deng, H. Murakawa. FEM prediction of buckling distortion induced by welding in thin plate panel structures. Comput. Mater. Sci.2008,1:1-17.
    [141]张红领,吴连元.开孔对板的屈后强度的影响.上海力学,1991,p74-81.
    [142]Narayanan, R., Plated structures and stability strength. London Applied Science,1983.
    [143]唐家祥.结构稳定理论.北京:中国铁道出版社,1989.
    [144]颜海.大跨度斜拉桥扁平钢箱梁整体-局部相关稳定问题研究.同济大学博士学位论文.2003.
    [145]Schafer B. W., Cold-Formed Steel Design by Direct Strength Method. Bye-Bye Effective Width, Proc.2003 Annual Technical Session SSRC, pp357-377.
    [146]侯和涛.钢结构框架柱极限承载力验算方法研究.同济大学博士学位论文,2005.
    [147]吴炜.钢桥受压加劲板稳定与加劲肋设计方法研究.同济大学硕士学位论文,2006.
    [148]K. Ikeda, T.Kitada, M. Matsumura, et al. Imperfection sensitivity of ultimate buckling strength of elastic-plastic square plates under compression. Inter. J. Non-Linear Mech.42(2007)529-541.
    [149]American Iron and Steel Institute (1996). Specification for the Design of Cold-Formed Steel Structural Members. Washington, D.C.,1996.
    [150]王春刚,张耀春.薄壁短柱轴压承载力的非线性有限元分析与计算.建筑结构.2006,36(8):42-48.
    [151]J. K. Paik, A.K. Thayamballi, D. H. Kim. An analytical method for the ultimate compressive strength and effective plating of stiffened panels. J. Constr. Steel Res.49(1999)43-68.
    [152]J. K. Paik,A.K. Thayamballi. Buckling strength of steel plating with elastically restrained edges. Thin-Walled Struc.37(2000)27-55.
    [153]宋慕兰.西德薄板稳定规范的发展和现状.钢结构.1987.02.
    [154]谭开忍,李小平.船体结构极限强度研究进展.船舶.2006,5:19-25.
    [155]O. F. Hughes, M. Ma. Inelastic analysis of panel collapse by stiffener buckling. Computer &Structures,1996,61(1):107-117.
    [156]Dow R S, Hugill R C, et al. Evaluation of ultimate ship hull strength, extreme load response symposium. SNAME Trans 89,1981:133-147.
    [157]Gordo J M and Guedes Soares C. Approximate load shortening curves for stiffened plates under uniaxial compression. Proceeding Integrity of Offshore Structures 5, EMAS,1993:189-211.
    [158]Tetsta Yao. Plastic collapse behavior and strength of stiffened plate under thrust. Proceeding of International Offshore and Polar Eng.1997.
    [159]西南交通大学.广州珠江黄埔大桥北汊斜拉桥施工阶段钢箱梁变形、横隔板及纵隔板稳定性研究报告.2007,10.
    [160]国家标准(GB/T50283-1999):公路工程结构可靠度设计统一标准.北京:中国计划出社,1999.
    [161]国家标准(JTG D62-2004):公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:中国计划出版社,2004.
    [162]雷俊卿.20世纪中国公路钢桥的现状评估与对策.公路.2000.1.
    [163]王锋君.参考国外设计规范试论我国公路桥梁设计荷载.公路,2001,5:5-9.
    [164]叶梅新;陈玉骥.铁路钢板梁的承载力极限状态分析及抗力分项系数的确定.长沙铁道学院学报.1997,15(3):8-14.
    [165](美)美国各州公路和运输工作者协会(AASHTO)制订.美国公路桥梁设计规范:荷载与抗力系数设计法.北京:人民交通出版社,1998.
    [166]American Association of State Highway and Transportation officials (AAS HTO). AASHTO LRFD Bridge Design Specifications.3rd Ed. Washington, D.C.2004.
    [167]Cliarles Minervino, Bala Sivakumar, Fred Moses, ete. New AASHTO Guide Manual for load and resistance factor rating of highway bridges. Journal of Bridge Engineering 2004,9(1):43~54.
    [168]Gregor P. Wollmann, P. E. Steel Girder per AASHTO LRFD Specifications, partl. Journal of Bridge Engineering,2004,9(4):364-374.
    [169]英国标准学会.钢桥、混凝土桥及结合桥(英国标准BS5400).成都:西南交通大学出版社,1987.
    [170]日本道路协舍.道路橘示方书·同解说(Ⅰ共通编Ⅱ钢桥编.Ⅲ同解说Ⅳ下部构造编),1996.
    [171]李亚东.结构可靠性理论及其在铁路桥梁结构中的应用.西南交通大学博士论文,1992.
    [172]卢家森,张其林.基于可靠度的钢结构体系稳定设计方法.同济大学学报(自然科学版).2005,33(1):28-32.
    [173]卢家森.考虑随机参数的钢结构体系稳定设计理论研究.同济大学博士论文2004.9.
    [174]M. Kotelko. Load-capacity estimation and collapse analysis of thin-walled beam and columns-recent advances. Thin-Walled Structures,2004,42:153-175.
    [175]American Association of State Highway and Transportation Officials (AASHTO). Standard specifications for highway bridges,16th Ed. Washington, D.C.1996.
    [176]Gregor P. Wollmann, P.E. Steel Girder Design per AASHTO LRFD Specifications, Part2. Journal of Bridge Engineering,2004, Vol.9(4):375-381.
    [177]Hiroyuki Kameda. Probabilistic seismic hazard and stochastic ground motions. Engineering Structures,1994,16(7),547-557.
    [178]Guoyang Jiao, Torgeir Moan. Methods of reliability model updating through additional events. Structural Safety,1990,9(2):139-153.
    [179]Ditlevsen. Structural reliability codes for probabilistic design-a debate paper based on elementary reliability and decision analysis concepts. Structural Safety,1997,19(3).
    [180]Sadaichi Terada, Toshie Takahashi. Failure-condition reliability index. Journal of Structural Engineering,1988,114(4):943-952.
    [181]国家标准(GB50153-92):工程结构可靠度设计统一标准.北京:中国计划出版社,1992.
    [182]中华人民共和国建设部.建筑结构可靠度设计统一标准(GB50068-2001).中国建筑工业出版社,2001.
    [183]国家标准(GB50216-94):铁路工程结构可靠度设计统一标准.北京:中国计划出版社,1994.
    [184]国家标准(TB10002.2-2005,J461-2005):铁路桥梁钢结构设计规范.北京:中国铁道出版社,2005.
    [185]交通部标准(JTJ025-86):公路桥涵钢结构及木结构设计规范.北京:人民交通出版社,1989.
    [186]刘孝平.桥梁设计的极限状态理论.北京:人民交通出版社,1989.
    [187]American Welding Society. Steel Structure Welding Code. AWS Dl.1/D1.1 M:2002.
    [188]Hitoshi Furuta. Bridge reliability experiences in Japan. Engineering Structures,1998,20(11):972~978.
    [189]Jeom Kee Paik, Recent Advances and Future Trends in Ultimate Limit State Design of Steel-Plated Structures, International Workshop on Recent Advances and Future Trends in Thin-Walled Structures Technology, Loughborough University, Loughborough, U. K.,25th June 2004.
    [190]Faravellil. Response-surface approach for reliability analysis Journal of Structural Engineering,1989,115(12):2763-2781.
    [191]Bucher C G., Bourgund U. A fast and efficient response surface approach for structural reliability problems. Structural Safety,1990,7(1):57-66.
    [192]李茂华,候建国.中外钢结构设计规范安全度设置水平的比较研究.建筑钢结构进展.2005,7(4):59-62.
    [193]Schueller, G.I.,2001. Computational stochastic mechanics-recent advances. Comp. Struct.79 (22-25),2225-2234.
    [194]Hurtado, J.E., Barbat, A.H.,1997. Simulation methods in stochastic mechanics. In:Marczyk, J. (Ed.), Computational Stochastic Mechanics in a Meta-computing Perspective. CIMNE, Barcelona, pp.93-116.
    [195]Lagaros, N.D, Plevris, V., Papadrakakis, M.,2005. Multi-objective design optimization using cascade evolutionary computations. Comput. Meth. Appl. Mech. Eng.194 (30-33),3496-3515.
    [196]Lee, K.-H., Park, G.-J.,2001. Robust optimization considering tolerances of design variables. Comp. Struct.79,77-86.
    [197]Messac, A., Ismail-Yahaya, A.,2002. Multi-objective robust design using physical programming. Struct. Multidisc. Optim.23,357-371.
    [198]Papadrakakis, M., Lagaros, N.D.,2002. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput. Meth. Appl. Mech. Eng.191 (32),3491-3507.
    [199]Qu, X., Haftka, R.T., Venkataraman, S.,2003. Deterministic and reliability-based optimization of composite laminates for cryogenic environments. AIAA J.41 (10),2029-2036.
    [200]Allen, M., Maute, K.,2005. Reliability-based shape optimization of structures undergoing fluid-structure interaction phenomena. Comput. Meth. Appl. Mech. Eng.194 (30-33),3472-3495.
    [201]Vissarion Papadopoulos, Manolis Papadrakakis. The effect of material and thickness variability on the buckling load of shells with random initial imperfectionsComput. Methods Appl. Mech. Engrg.194 (2005) 1405-1426.
    [202]Nikos D. Lagaros, Vissarion Papadopoulos. Optimum design of shell structures with random geometric, material and thickness imperfections International Journal of Solids and Structures,43 (2006) 6948-6964.
    [203]吴连元,沈琳,戴弘.涡型缺陷对薄板屈后强度的影响.上海力学,1992,13(1):22-29.
    [204]长沙市三汊矶湘江大桥钢箱梁制安竣工资料.武船重型工程有限公司.2005.7.
    [205]K. Ikeda, T. Kitada, M. Matasumura, et al. Imperfection sensitivity of ultimate buckling strength of elastic-plastic square plates under compression.
    International Journal of Non-Linear Mechanics,2007,42:529-541.
    [206]中华人民共和国国家标准.桥梁用结构钢(GB/T714-2000).国家质量技术监督局.
    [207]王常青.基于可靠度的钢桥设计方法研究.长安大学硕士论文.2006.
    [208]孙海涛.大跨度钢桁架拱桥关键问题研究,同济大学博士论文,2007.
    [209]童根树,钢结构的平面内稳定,北京:中国建筑工业出版社,2005.
    [210]童根树,钢结构的平面外稳定,北京:中国建筑工业出版社,2007.
    [211]徐秉业,刘信声.结构塑性极限分析.北京:中国建筑工业出版社,1985.
    [212]钱冬生.钢压杆的承载力.北京:中国铁道出版社,1998.
    [213]任伟新,曾庆元.钢压杆稳定极限承载力分析.北京:中国铁道出版社,1994.
    [214]侯和涛.钢结构框架柱极限承载力验算方法研究.同济大学博士论文.2005.5.
    [215]潘际炎.拴焊钢桥的研究.北京:中国铁道出版社,1983,p253—297.
    [216]Jean-Jacques Barrau, Serge Creze and Bruno Castanie. Buckling and post-buckling of beams with flat webs. Thin-Walled Structures, Volume 43, Issue 6, June 2005, Pages 877-894.
    [217]Jindrich J. Melcher, Zoltan Sadovsky', Zdenek Kala, Pavel Na dasky' Ultimate strength and design limit state of compression members in the structural system. Structural Stability Research Council proceedings.Annual .Technical Session & Meeting (1998:Atlanta),pp13-24.
    [218]T. M. Roberts. Patch loading on plate girders. Edited by R. Narayanan, Plated Structures Stability and Strength. London Applied Science,1983:77-102.
    [219]Per Granath. Serviceability limit state of I-shaped steel girders subjected to patch loading. J. Constr. Steel Research,54(2000)387-408.
    [220]T. Ren, G.S. Tong, Elastic buckling of web plates in I-girders underypatch and wheel loading. Engineering Structures,27(2005)1528-1536.
    [221]C. A. Graciano, Ultimate resistance of longitudinally stiffened webs subjected to patch loading. Thin-Walled Structures,41(2003),529-541.
    [222]中华人民共和国建设部,中华人民共和国国家质量监督检验疫总局.钢结构设计规范(GB50017-2003).中国计划出版社,2003.
    [223]Shu H S, Wang Y C. Stability analysis of box-girder cable-stayed. Journal of Bridge Engineering (ASCE),2001,6 (1):63-68.
    [224]Edlund, Bo, Graciano, C.A. Nonlinear FE analysis of longitudinally stiffened girder webs under patch loading.Journal of Constructional Steel Research,2002,58(9):1231-1245.
    [225]Granath, Per. Serviceability limit state of I-shaped steel.girders subjected to patch loading. Journal of Constructional Steel Research,2000,54(3).
    [226]Graciano, Carlos. Strength of longitudinally stiffened Webs subjected to concentrated loading. Journal of Structural Engineering,2005,131(2).
    [227]K.C. Rockey, H.R. Evans, The Design of Steel Bridges. London:Granada, 1981:161-360.
    [228]陈绍蕃.钢结构稳定设计指南.北京:中国建筑工业出版社,2004:250-263.
    [229]康孝先,强士中.工字梁腹板抗剪承载力和修正的拉力场理论.西南交通大学学报(自然科学版).2008,2:77-81.
    [230]BSI.BS5400.Steel, concrete and composite bridges-Part3:Code of practice for design of steel bridges. British Standard. Second edition,2000.10.
    [231]童根树,任涛.工字梁的抗剪极限承载力.土木工程学报.2006,39(8):57-64.
    [232]C. Marsh. Theoretical model for collapse of shear webs Journal of the Engineering Mechanics Division, ASCE, Vol.108, No.EM5,1982.10:819-832.
    [233]刘锡良,任兴华.钢梁横向加劲腹板在纯剪作用下超屈曲强度的试验研究[钢结构研究论文报告选集(第二册),全国钢结构技术委员会].北京:中国建筑工业出版社,1983:120-127.
    [234]丁阳,赵亚新,刘锡良.焊接工字钢梁腹板极限承载力的理论计算和试验.天津大学学报.2004,37(4):288-293.
    [235]H.P. Gunther, U. Kuhlmann. Numerical studies on web breathing of unstiffened and stiffened plate girders. Journal of Constructional Steel Research, Volume 60, Issues 3-5, March-May 2004, Pages 549-559.
    [236]蔺军,顾强,董石麟.梁腹板在弯、剪及局压复合应力作用下的屈曲分析.土木工程学报,2005,138(17):15-26.
    [237]T.M. Roberts, F. Shahabian. Ultimate resistance of slender web panels to combined bending shear and patch loading, Journal of Constructional Steel Research,57 (2001) 779-790).
    [238]F. Shahabian, T.M. Roberts. Buckling of slender web plates subjected to combinations of in-plane loading. J. Constr. Steel Res.51(1999):99-121.
    [239]Porter D.M., Rockey K.C., Evans H.R. The collapse behaviour of plate
    girders loaded in shear. The Struct Eng 1975,53(8):313-325.
    [240]Ajam W, Marsh C. Simple model for shear capacity of webs. J Struct Engng, ASCE1991,114(7):1571-1587.
    [241]Hoglund T. Shear buckling resistance of steel and aluminium plate girders. Thin-Walled Struct.,1998,29(1/4):13-20.
    [242]Lee SC, Yoo CH. Strength of plate girder web panels under pure shear. J Struct Engng, ASCE1998,124(2):184-194.
    [243]Lagerquist O, Johansson B. Resistance of I-girders to concentrated loads. J Construct Steel Res.,1996,39(2):87-119.
    [244]Granath P. Behaviour of slender plate girders subjected to patch loading. J Construct Steel Res.,1997,42(1):1-19.
    [245]Roberts TM, Newark ACB. Strength of webs subjected to compressive edge loading. J Struct Engng, ASCE 1997,132(2):176-183.
    [246]Rockey KC, Evans HR, Porter DM. A design method for predicting the collapse behaviour of plate girders. Proc Inst Civil Engrs, Part 2 1978,65:85-112.
    [247]Shahabian F. The resistance of plate girders to combined shear and patch loading. PhD thesis, University of Wales Cardiff, School of Engineering, 1999.
    [248]Shahabian F, Roberts TM. Combined shear and patch loading of plate girders. J Struct Engng, ASCE2000,126(3):316-321.
    [249]Cooper PB. The ultimate bending moment for plate girders. Proc IABSE Colloquium, London,1971.p.291-297.
    [250]Evans HR. Longitudinally and transversely reinforced plate girders. In: Narayanan R, editor. Plated structures stability and strength. London: Elsevier Applied Science Publishers,1983.
    [251]C.A. Graciano, Bo Edlund. Nonlinear FE analysis of longitudinally stiffened girder webs under patch loading. J. Constr. Steel Res.58(2002),1231-1245.
    [252]Shahabian, F., Haji-Kazemi, H. A proposed method to evaluate ultimate resistance of plate girders subjected to shear and patch loading. International Journal of Engineering, Transactions A:Basics, v 17, n 4, November,2004, p 347-356.
    [253]M.R. Home, R. Narayanan. Ultimate capacity of longitudinally stiffened
    plates used in box girders.Proc. Instn. Civ. Engrs, Part2,1976,61(6):253-280.
    [254]Chou C.C., Uang C.M.,F. Seible, Experimental evaluation of compressive behavior of orthotropic steel plates for the New San Francisco-Oakland Bay bridge. J. Bridge Engineering,2006,11(2):140-150.
    [255]C.C. Chou, C.M. Uang, F.Seible. Experimental evaluation of compressive behavior of orthotropic steel plates for the New San Francisco-Oakland Bay Bridge. Journal of Bridge Engineering, ASCE,2006,11(2):140-150.
    [256]邵旭东,张欣,李立峰.开口加劲板稳定极限承载力分析.公路.2007(7):1-4.
    [257]M.R. Home, P. Montague, R. Narayanan, Influence on strength of compression panels of stiffened section, spacing and welded connection. Proc. Instn. Civ. Engrs, Part2,1977,63,Mar.,1-20.
    [258]Ozgiir Ozguc, Purendu K.Das, Nigel Barltrop. The new simple design equations for the ultimate compressive strength of imperfect stiffened plates. Ocean Engin.34(2007) 970-986.
    [259]I.A. Sheikh, A.E. Elwi, G.Y. Grondin, Stiffened steel plates under combined compression and bending. J. Constr. Steel Res.59(2003)911-930.
    [260]I.A. Sheikh, G..Y. Grondin, A.E. Elwi, Stiffened steel plates under uniaxial compression. J. Constr. Steel Res.58(2002)1061-1080.
    [261]K. Ghavami and M. R. Khedmati. Numerical and experimental investigations on the compression behaviour of stiffened plates. Journal of Constructional Steel Research,2006,62(11):1087-1100.
    [262]M. Xie, J. C. Chapman. Design of web stiffeners:local panel bending effects, Journal of Constructional Steel Research,2004,60(10):1425-1452.
    [263]I. A. Sheikh, A. E. Elwi and G Y. Grondin. Stiffened steel plates under combined compression and bending, Journal of Constructional Steel Research,2003,59(7):911-930.
    [264]Masahiko Fujikubo and Patrick Kaeding. New simplified approach to collapse analysis of stiffened plates. Marine Structures,2002,15(3):251-283.
    [265]T.Usami, Y.Zheng, H.B.Ge. Recent research developments in stability and ductility of steel bridge structures. General Report Journal of constructional steel research,55(2000) 183-209.
    [266]王应良.大跨度斜拉桥考虑几何非线性的静、动力分析和钢箱梁的第二体系应力研究.西南交通大学博士论文.2000,5.
    [267]郝超.大跨度钢斜拉桥施工阶段非线性结构行为研究.西南交通大学博士学位论文.2001.
    [268]中交公路规划设计院,西南交通大学.南京长江第二公路大桥南汊桥施工设计钢箱梁主体结构计算.1998.7.
    [269]苏庆田,吴冲,董冰.斜拉桥扁平钢箱梁的有限混合单元法分析.同济大学学报(自然科学版).2005(6).
    [270]EN 1993, Eurocode3:Design of steel structures. European Committee for Standardisation,2002.
    [271]Specification for Structural Steel Buildings. ANSI/AISC360-05, American Institute of Steel Construction, INC.,2005.
    [272]Canadian highway bridge design code, CHBDC 2000.Ontario Ministry of Transportation and Communications, Downsview, Ontario, Canada.
    [273]Sheng-Jin Chen, Kuo-Chen Yang, Inelastic behavior of orthotropic steel deck stiffened by U-shaped stiffeners, Thin-Walled Structures,2002,40: 537-553.
    [274]Bernt Johansson, Rene'Maquoi, Gerhard Sedlacek, New design rules for plated structures in Eurocode 3 Constructional Steel Research,2001,57:279-311.
    [275]中国船级社桥梁钢检验指南(GD03-2005).北京:人民交通出版社,2005.
    [276]Nam-Hoi Park, Nam-Hyoung Lim, Young-Jong Kang. A consideration on intermediate diaphragm spacing in steel box girder bridges with a doubly symmetric section. Engineering Structures,2003,25:1665-1674.
    [277]American Iron and Steel Institute (2007a). North American Specification for the Design of Cold-Formed Steel Structural Members. Washington, D.C., 2007.
    [278]徐伟,李智,张肖宁.子模型法在大跨径斜拉桥桥面结构分析中的应用.土木工程学报.2004(6):30-34.
    [279]丁幼亮,李爱群,赵大亮.润扬大桥北汊斜拉桥钢箱梁的局部应力测试与分析研究.工程力学.2006.12.
    [280]铁路钢桥制造规范.TB10212-98,北京:中国铁道出版社,1998.
    [281]中交公路规划设计院.公路悬索桥设计规范(报批稿)(JTJ XXX-2002).北京:人民交通出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700