时滞电力系统稳定性分析与网络预测控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联电力系统规模和复杂度的不断增加,基于就地反馈信号的控制器越来越难以保证互联电力系统的稳定性。信息处理和网络通信技术的迅猛发展和在电力系统的应用,尤其是同步相量技术和广域测量系统的应用,给电力系统的监控提供了使用全局信息的可能。而在广域测量系统中,广域信息是通过通信网络传输的,这将不可避免地存在信息的通信延迟问题。通信延迟使得电力系统成为时滞电力系统,它的存在降低了电力系统的稳定性甚至使其变得不稳定。本文针对时滞电力系统的稳定性和控制进行了相应的分析研究。
     论文在回顾时滞电力系统的时滞产生原因以及其稳定分析和控制研究现状的基础上,指出了时滞电力系统稳定分析和控制的主要难点。针对时滞电力系统的特点,采用时变时滞相关稳定性判据对时滞电力系统进行稳定分析,并将可以补偿网络延迟的网络预测控制应用于时滞电力系统的控制。全文由以下几个部分组成:
     首先分别介绍了基于自由权矩阵的保守性小的线性单时变时滞系统和线性多时滞系统的稳定性判据,并给出了采用线性矩阵不等式求解线性时滞系统时滞稳定裕度的两种方法。简要给出了网络预测控制系统的基本结构,分别给出了基于受控自回归滑动平均模型和基于受控自回归积分滑动平均模型的两种网络预测控制算法。该方法在改进的广义预测控制的基础上,增加了网络延迟补偿器来补偿通信延迟。与传统的广义预测控制只利用一步控制信号相比,该网络预测控制不仅利用了全部的预测控制信息,还同时能够补偿固定和随机通信延迟。
     其次,研究了含有一个广域阻尼控制器的电力系统时变时滞相关稳定性问题。利用单时变时滞稳定判据计算了含有广域阻尼控制器的电力系统的时滞稳定裕度。计算表明,时滞稳定裕度可以用来整定广域阻尼控制器的参数,以保证系统在有足够大时滞稳定裕度的同时也有较好的阻尼效果。
     再次,分别用单时滞相关和多时滞稳定性判据对采用常规PI控制器的单区域和两区域负荷频率控制系统进行时滞相关稳定性分析。研究了PI控制器增益和时滞稳定裕度之间的关系,并采用时域仿真的方法验证了时滞相关稳定性判据的有效性。
     第四部分,设计了一种基于受控自回归积分滑动平均模型网络预测负荷频率控制的策略,并对三区域负荷频率控制系统进行了仿真研究,在仿真中考虑了发电机组功率速率约束的影响,仿真结果验证了本文所提出的负荷频率控制策略的有效性,且该控制器结构简单,便于在线实现。
     第五部分,提出了一种基于网络预测控制的广域阻尼控制器的设计方法。预测模型采用带变遗忘因子的递归最小二乘法在线辨识获得。四机两区域电力系统的仿真结果表明,基于网络预测控制的广域阻尼控制器能够有效地补偿固定和随机通信延迟的影响。此外,该广域阻尼控制器还具有算法和结构简单、易于在线实现的优点。
     最后,以含有静态无功补偿器(SVC)的新英格兰电力系统为例,通过对系统线性模型的可控/可观度分析,选择SVC的常规附加阻尼控制器的广域输入信号,采用留数法计算得出其参数。在此基础上,用时滞相关稳定性判据分析了含有SVC的常规附加阻尼控制器电力系统的时滞稳定性,根据分析结果设计了考虑时滞影响的SVC附加阻尼控制器。仿真结果表明,考虑时滞影响的SVC附加阻尼控制器不仅能够有效地阻尼系统区域间低频振荡而且可以增强系统的时滞鲁棒性。
With the increasing of scale and complexity of the interconnected power system, the local controllers, in which the local measurements are employed as the feedback signals, are increasingly difficult to maintain the stability of the interconnected power system. The rapid development of the synchronized phasor technology and wide-area measurement system (WAMS) provides an opportunity to apply global signals to monitor and control the power system. The signals transmit from WAMS via communication networks will inevitably introduce time delays into the control loop. Those time delays will degrade the dynamic performance of the power system and may even cause the instability of the whole power systems.
     The main objective of this thesis is to investigate the the delay-dependent stability analysis and control of the power systems with time delays. Power system exsiting communication delays, and the current research backgrounds and results in the field of time-delay power system stability analysis and control are presented. Then, the main difficulties of the stability analysis and control the time-delay power system have been identified. Two time-varying delay-dependent stability criterions and the networked predictive control (NPC) have been applied for the stability analysis, compensation the network communication delays and control of the time-delay power system, respectively. The structure of the whole thesis is listed as follows:
     Firstly, two novel free-weighting matrices based stability criterions with small conservative for the single time-varying delays and multiple time delays linear systems are recalled, two methods, which use the linear matrix inequalities (LMI) to calculate the delay margin of the linear time-delay system, are proposed. After giving the basic principle and structure of the NPC system, two NPC control strategies, based on the controlled auto-regressive moving average (CARMA) model and the controlled auto-regressive integrated moving average (CARIMA) model, are stated, respectively. These NPC methods, based on the modified generalized predictive control (MGPC), increase networked delay compensator (NDC) to compensate the communication delays. Compared with the traditional GPC, which is only use one step predictive control signal, the NPC uses all of the predictive control sequence to compensate the communication delays.
     Secondly, the delay-dependent stability of the power systems with a wide-area damping controller (WADC) embedded is analyzed. The stability criterion of the linear system with single time-varying delay is applied to calculate its delay margin. Calculated results show the delay margin can be used to tune the parameters of the WADC to ensure the power system have both large enough delay margin and good damping performances.
     Thirdly, the delay-dependent stability criterions with single and multiple delays are employed to analyze one-area and two-area load frequency control (LFC) system with the conventional PI controllers. The relationships between the delay margin and the PI controller parameters are studied. Moreover, time-domain simulation method is used to verify the effectiveness of calculated delay margin.
     Fourthly, a decentralized LFC controller is designed based on NPC considering the communication delays. Then, this decentralized LFC controller is applied in three-area LFC system for the case study. The generation rate constraints are considered in the simulation. The simulation results validate the effectiveness of the proposed decentralized LFC controller. Furthermore, this proposed controller is relatively simple and easy to implement online.
     Fifthly, a WADC based on NPC is designed. CARMA model is used as predictive model is identified online by using the recursive least-squares (RLS) with a variable forgetting factor algorithm. The design of the proposed WADC is carried out and verified based on the two-area four-machine benchmark power system. The simulation results show that the proposed WADC can improve the damping performances of the inter-area oscillation and effectively compensate both the constant and random communication delays. In addition, the structure and algorithm of the proposed WADC are simple and easy for online implementation.
     Finally, the conventional wide-area supplementary damping controller (WSDC) of static Var compensator (SVC) has been investigated. The New England test power system (NETPS) equipped with a SVC is used as the test system. At first, the input wide-area signal of the WSDC is selected by analyzing the controllability/observability of linear model of the NETPS. Then, the residue method is used to determine the parameters of the conventional WSDC. The delay-dependent stability of the closed-loop power system is analyzed. The gain of the conventional WSDC is determined by using the analysis results. Simulation results are presented to show that the designed conventional WSDC of the SVC can improve the damping performances and handle a relative large communication delays.
引文
[1]何诗丝.“十一五”期间我国电网建设发展概况[J].电器工业,2006,(5):11-16.
    [2]徐征雄,姚国灿,郭剑波,等.“十五”末我国电网发展的展望[J].国际电力,2001,3:7-10.
    [3]朱方,赵红光,刘增煌,等.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(1):1-7.
    [4]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14”大停电的警示[J].电力系统自动化,2003,27(18):1-6.
    [5]鲁顺,高立群,王坷,等.莫斯科大停电分析及启示[J].继电器,2006,34(16):27-31.
    [6]高翔,庄侃沁,孙勇.西欧电网“11.4”大停电事故的启示[J].电网技术,2007,31(1): 25-31.
    [7]Bradley Brooks. Brazil Blackout:Two Largest Cities Hit By Massive Power Outages. http://www.huffingtonpost.com/2009/11/10/brazil-blackout-largest-cn 353217.html.
    [8]J. S. Thorp, A. Abur, M. Beqovic. Gaining a wider perspective [J]. IEEE Power and Energy Magazine,2008,6(5),43-51.
    [9]A. G. Phadke, R. M. de Moraes. The wide world of wide-area measurement [J]. IEEE Power and Energy Magazine,2008,6(5):52-65.
    [10]K. E. Martin, J. R. Carroll. Phasing in the technology [J]. IEEE Power and Energy Magazine,2008,6(5),24-33.
    [11]罗建裕,王小英,鲁庭瑞,等.基于广域测量技术的电网实时动态监测系统应用[J].电力系统自动化,2003,27(24):78-80.
    [12]许树楷,谢小荣,辛耀中.基于同步相量测量技术的广域测量系统应用现状及发展前景[J].电网技术,2005,29(2):44-49.
    [13]谢小荣,李红军,吴京涛,等.同步相量技术应用于电力系统暂态稳定性控制的可行性分析[J].电网技术,2004,28(1):10-14.
    [14]常乃超,兰洲,甘德强,等.广域测量系统在电力系统分析及控制中的应用综述[J].电网技术,2005,29(10):46-52.
    [15]M. Zima, M. Larsson, P. Korba. Design aspects for wide-area monitoring and control system [J]. Proceedings of the IEEE,2005,93(5):980-996.
    [16]K. E. Holbert, G. T. Heydt, H. Ni. Use of satellite technologies for power system measurement, command, and control [J]. Proceedings of the IEEE,2005,93(5), 947-955.
    [17]辛建波.基于以太网的变电站自动化系统时延不确定性研究[D].博士学位论文,武汉:华中科技大学,2005.
    [18]江全元,邹振宇,曹一家,等.考虑时滞影响的电力系统稳定分析和广域控制研究进展[J].电力系统自动化,2005,29(3):1-7.
    [19]李丹,韩福坤,肖晋宇,等.华北电网广域实时监测系统[J].电网技术,2004,28(23):52-56.
    [20]徐兴伟,穆钢,王文,等.东北电网广域动态测量系统[J].电网技术,2006,30(17):70-73.
    [21]刘劲风,王述洋.WAMS在电力系统分析和控制中应用的新进展[J].高电压技术,2007,33(7):182-185.
    [22]段献忠,何飞跃,辛建波,等.基于信息网络综合传输的电力系统运行与控制[J].电网技术,2004,28(9):38-41.
    [23]B. Naduvathuparambil, M. C. Valenti, A. Feliachi. Communication delays in wide area measurement systems[C]. Proceedings of the 34th Southeastern Symposium on System Theory,2002:118-122.
    [24]鞠平,郑世宇,徐群,等.广域测量系统研究综述[J].电力自动化设备,2004,24(6):37-41.
    [25]严登俊,鞠平,袁洪.网络通信模式下电网相量的广域测量与实时传输系统[J].电网技术,2004,28(4):15-18.
    [26]Xiaorong Xie, Yaozhong Xin, Jinyu Xiao, et al. WAMS applications in Chinese power systems [J]. IEEE Power and Energy Magazine,2006,4(1):54-63.
    [27]刘兆燕.基于广域测量信号的电力系统暂态稳定预测及时滞稳定域研究[D].博士学位论文,杭州:浙江大学,2008.
    [28]王绍部.基于广域测量系统的电力系统动态稳定分析及控制[D].博士学位论文,杭州:浙江大学,2008.
    [29]胡志祥,谢小荣,肖晋宇,等.广域测量系统的延迟分析及其测试[J].电力系统自动化,2004,28(15):39-44.
    [30]S. Bhowmik, K. Tomsovic, A. Bose. Communication models for third party load frequency control [J]. IEEE Transactions on Power Systems,2004,19(1):543-548.
    [31]H. J. Jia, X. D. Yu. A simple method for power system stability analysis with multiple time delays[C]. Proceedings of IEEE Power and Energy Society General Meeting, Jul.20-24,2008.
    [32]刘兆燕,江全元,徐立中,等.基于特征根聚类的电力系统时滞稳定域研究[J].浙江大学学报(工学版),2009,43(8):1473-1479.
    [33]Z. Y. Liu, C. Z. Zhu, Q. Y. Jiang. Stability analysis of time delayed power system based on cluster treatment of characteristic roots method[C]. Proceedings of IEEE Power and Energy Society General Meeting, Jul.20-24,2008.
    [34]刘梅招,辛焕海,甘德强.计及广域阻尼控制的PSS均匀通信时滞极限计算[J].电力系统自动化,2007,31(22):16-20.
    [35]刘梅招,杨莉,甘德强,等.存在均匀通信时滞的AGC稳定极限计算[J].电力系统自动化,2006,30(19):7-12.
    [36]刘兆燕,戚军,苗轶群,等.单时滞电力系统时滞稳定裕度的简便求解方法[J].电力系统自动化,2008,32(18):8-13.
    [37]贾宏杰,宋婷婷,余晓丹.一种电力系统实用时滞稳定裕度曲线追踪方法[J].电力系统自动化,2009,33(4):1-5.
    [38]贾宏杰,尚蕊,张宝贵.电力系统时滞稳定裕度求解方法[J].电力系统自动化,2007,31(2):5-11.
    [39]贾宏杰,谢星星,余晓丹.考虑时滞影响的电力系统小扰动稳定域[J].电力系统自动化,2006,30(21):1-5.
    [40]贾宏杰,陈建华,余晓丹.时滞环节对电力系统小扰动稳定性的影响[J].电力系统自动化,2006,30(5):5-8.
    [41]J. W. Stahlhut, T. J. Browne, G. T. Heydt, et al. Latency viewed as a stochastic process and its impact on wide area power system control signals [J]. IEEE Transaction on Power Systems,2008,23(1):84-91.
    [42]H. X. Wu, K. S. Tsakalis, G T. Heydt. Evaluation of time delay effects to wide-area power system stabilizer design [J]. IEEE Transaction on Power Systems,2004,19(4): 1935-1941.
    [43]贾宏杰,安海云,余晓丹.电力系统改进时滞依赖型稳定判据[J].电力系统自动化,2008,32(19):15-19.
    [44]贾宏杰,安海云,余晓丹.电力系统时滞依赖型鲁棒稳定判据及其应用[J].电力系统自动化,2010,34(3):6-11.
    [45]石颉,刘韬.基于测度理论的广域电力系统反馈信号最大允许时延分析[J].电力系统保护与控制,2008,36(12):8-11.
    [46]L. Rouco, F. L. Pagola. An eigenvalue sensitivity approach to location and controller design of controllable series capacitors for damping power system oscillations [J]. IEEE Transaction on Power Systems,1997,12(4):1660-1666.
    [47]M. M. Farsangi, N. Hossein, Y. H. Song, et al. Placement of SVCs and Selection of Stabilizing Signals in Power Systems [J]. IEEE Transaction on Power Systems,2007, 22(3):1061-1071.
    [48]贺静波,李立涅,陈辉祥,等.基于广域信息的电力系统阻尼控制器反馈信号选择[J].电力系统自动化,2007,31(9):6-10.
    [49]李春艳,孙元章,彭晓涛,等.大型电力系统中广域阻尼控制器的配置和反馈信号选择[J].电力自动化设备,2009,29(2):21-25.
    [50]常勇,徐政.SVC广域辅助控制阻尼区域间低频振荡[J].电工技术学报,2006,21(12):40-46.
    [51]A. Heniche, I. Kamwa. Control loops selection to damp inter-area oscillations of electrical networks [J]. IEEE Transaction on Power Systems,2002,17(2):378-384.
    [52]毛晓明,张尧,管霖.基于广域测量信息的直流调制新方法[J].电力系统自动
    化,2007,31(7):45-49.
    [53]M. E. Aboul-Ela, A. A. Sallam, J. D. Mccalley, et al. Damping controller design for power system oscillations using global signals [J]. IEEE Transaction on Power Systems,1996,11(2):767-773.
    [54]袁野,程林,孙元章.采用广域测量信号的2级PSS控制策略[J].电力系统自动化,2006,30(24):11-16.
    [55]袁野,程林,孙元章,等.基于系统留数矩阵的广域PSS设计[J].电力系统自动化,2007,31(24):1-6.
    [56]陈柔伊,张尧,钟庆,等.抑制区间振荡的自适应模糊广域阻尼控制设计[J].中国电机工程学报,2009,29(31):14-20.
    [57]S. Ray, G. K. Venayagamoorthy. Wide-area signal-based optimal neurocontroller for a UPFC [J]. IEEE Transactions on Power Delivery,2008,23(3):1597-1605.
    [58]S. Ray, G. K. Venayagamoothy, B. Chaudhuri, et al. Comparison of Adaptive Critic-Based and Classical Wide-Area Controllers for Power Systems [J]. IEEE Transaction on Systems, Man, and Cybernetics-Part B:Cybernetics,2008,38(4): 1002-1007.
    [59]G. K. Venayagamoorthy, S. R. Jetti. Dual-Function Neuron-Based External Controller for a Static Var Compensator [J]. IEEE Transactions on Power Delivery, 2008,23(2):997-1006.
    [60]H. Ni, G. T. Heydt, L. Mili. Power system stability agents using robust wide area control [J]. IEEE Transaction on Power Systems,2002,17(4):1123-1131.
    [61]常勇,徐政,王超.基于广域信号的多目标鲁棒HVDC附加控制器设计[J].电力系统及其自动化学报,2007,19(6):1-6.
    [62]Y. Zhang, A. Bose. Design of wide-area damping controllers for interarea oscillations [J]. IEEE Transactions on Power Systems,2008,23(3):1136-1143.
    [63]I. Kamwa, R.Grondin, Y. Hebert. Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach [J]. IEEE Transactions on Power Systems,2001,16(1):136-153.
    [64]李春艳,孙元章,彭晓涛,等.采用广域测量信息反馈的广域PSS参数设计[J].电
    力系统自动化,2009,33(18):6-11.
    [65]S. Mohagheghi, G. K.Venayagamoorthy, R. G. Harley. Optimal Wide Area Controller and State Predictor for a Power System [J]. IEEE Transactions on Power Systems, 2007,22(2):693-705.
    [66]谢小荣,肖晋宇,童陆园.采用广域测量信号的互联电网区间阻尼控制[J].电力系统自动化,2004,28(2):37-40.
    [67]杨晓静,赵书强,马燕峰.基于广域测量信号的互联电网阻尼控制研究[J].华北电力大学学报,2006,33(1):24-28.
    [68]吴小辰,陆超,贺静波,等.直流广域自适应阻尼控制器设计与RTDS实验[J].电力系统自动化,2007,31(15):11-16.
    [69]李鹏,吴小辰,李立涅,等.南方电网广域阻尼控制系统及其运行分析[J].电力系统自动化,2009,33(18):52-56.
    [70]许洪强,于占勋,牟宏,等.山东电网广域阻尼控制系统设计与分析[J].电力系统自动化,2008,32(5):99-103.
    [71]孙元章,肖峰,袁野,等.基于留数的广域阻尼控制协调优化设计[J].电力自动化设备,2009,29(10):1-7.
    [72]李红军,陆超,胡晓光.应用信赖域法的广域阻尼控制器参数协调优化[J].电力自动化设备,2007,27(10):24-29.
    [73]石颉,王成山.考虑广域信息时延影响的H∞阻尼控制器[J].中国电机工程学报,2008,28(1):30-34.
    [74]王成山,石颉.考虑时间延迟影响的电力系统稳定器设计[J].中国电机工程学报,2007,27(10):1-6.
    [75]R. Majumder, B. Chaudhuri, B. C. Pal, et al. A unified Smith predictor approach for power system damping control design using remote signals [J]. IEEE Transaction on Control Systems Technology,2005,13(1):1063-1068.
    [76]B. Chaudhuri, R. Majumder, B. C. Pal. Wide-area measurement based stabilizing control of power system considering signal transmission delay [J]. IEEE Transaction on Power Systems,2004,19(4):1971-1979.
    [77]王绍部,江全元,刘兆燕,等.计及反馈信号多时滞特性的广域阻尼控制[J].电力系统自动化,2008,32(10):18-22.
    [78]吴华仁,吴丹宇,王启,等.基于开关控制的电力系统广域阻尼控制器[J].电网技术,2009,33(19):132-136.
    [79]肖晋宇,谢小荣,胡志祥.基于在线辨识的电力系统广域阻尼控制[J].电力系统自动化,2004,28(23):22-27.
    [80]J. He, C. Lu, X. Wu, et al. Design and experiment of wide area HVDC supplementary damping controller considering time delay in China southern power grid [J]. IET Generation, Transmission & Distribution,2009,3(1):17-25.
    [81]Z. J. Hu, J. V. Milanovic. The effectiveness of WAM based adaptive supervisory controller for global stabilization of power systems[C]. Proceedings of IEEE Power Technology Conference, Jul.1-5,2007:1652-1659.
    [82]L. L. Fan. Synchronized global phasor measurement based inter-area oscillation control considering communication delay[C]. Proceedings of IEEE Power and Energy Society General Meeting, Jul.20-24,2008.
    [83]S. Ray, G. K. Venayagamoorthy. Real-time implementation of a measurement-based adaptive wide-area control system considering communication delays [J]. IET Generation, Transmission & Distribution,2008,2(1):62-70.
    [84]常勇,徐政.考虑广域信号时滞的直流附加控制器设计[J].高电压技术,2006,32(8):66-68.
    [85]常勇,徐政.基于射影控制的直流输电和静态无功补偿器协调控制[J].电网技术,2006,30(16):40-44.
    [86]江全元,白碧蓉,邹振宇,等.计及广域测量系统时滞影响的TCSC控制器设计[J].电力系统自动化,2004,28(20):21-25.
    [87]白碧蓉,江全元,戚军,等.考虑时滞影响的统一潮流控制器的控制设计[J].浙江大学学报(工学版),2005,39(12):1984-1988.
    [88]江全元,张鹏翔,曹一家.计及反馈信号时滞影响的广域FACTS阻尼控制[J].中国电机工程学报,2006,26(7):82-88.
    [89]常勇,徐政.考虑多机系统广域信号时滞影响的直流附加控制器设计[J].电工技术学报,2007,22(5):134-139.
    [90]胡志祥,谢小荣,童陆园.广域阻尼控制延迟特性分析及其多项式拟合补偿[J].电力系统自动化,2005,29(20):29-34.
    [91]袁野,程林,孙元章,等.广域阻尼控制的时滞影响分析及时滞补偿设计[J].电力系统自动化,2006,30(14):6-9.
    [92]袁野,程林,孙元章.考虑时延影响的互联电网区域阻尼控制[J].电力系统自动化,2007,31(8):12-16.
    [93]Daniel Dotta, A. S. e Silva, Ildemar C. Decker. Wide-Area Measurements-Based Two-Level Control Design Considering Signal Transmission Delay [J]. IEEE Transactions on Power Systems,2009,24(1):208-216.
    [94]戚军,江全元,曹一家.采用时滞广域测量信号的区间低频振荡阻尼控制器设计[J].电工技术学报,2009,24(6):154-159.
    [95]石颉,王成山.基于线性矩阵不等式理论的广域电力系统状态反馈控制器设计[J].电网技术,2008,32(6):36-41.
    [96]X. F. Yu, K. Tomsovic. Application of linear matrix inequalities for load frequency control with communication delays [J]. IEEE Transactions on Power Systems,2004, 19(3):1508-1515.
    [97]H. Bevrani, T. Hiyama. A control strategy for LFC design with communication delays [C]. Proceedings of the 7th International Power Engineering Conference (IPEC 2005), Nov.29-Dec.2,2005:1087-1092.
    [98]H. Bevrani, T. Hiyama. Robust decentralised PI based LFC design for time delay power systems [J]. Energy Conversion and Management,2008,49(2):193-204.
    [99]H. Bevrani, Robust Power System Frequency Control [M], New York:Springer, 2009.
    [100]K. Vrdoljak, I. Petrovic, N. Peric. Discrete-Time Sliding Mode Control of Load Frequency in Power Systems with Input Delay[C]. Proceedings of the 12th International Power Electronics and Motion Control Conference,2006:567-572.
    [101]J. H. Zhang, J. H. Hao, G. L. Hou, et al. A control strategy for AGC systems in communication networked environment[C]. Proceedings of the 3th International Conference on Elelctricity Utility Deregulation, Resctructring and Power Technologies, Apr.6-9,2008:2166-2170.
    [102]段献忠,何飞跃.考虑通信延迟的网络化AGC鲁棒控制器设计[J].中国电机工程学报,2006,26(22):35-40.
    [103]Bogdan Marinescu, Henri Bourles. Robust Predictive Control for the Flexible Coordinated Secondary Voltage Control of Large-Scale Power Systems [J]. IEEE Transaction on Power Delivery,1999,11(14):1262-1268.
    [104]陈维莉,罗毅,涂光瑜.基于网络时延在线预估的二级电压紧急控制[J].高电压技术,2006,32(10):109-113.
    [105]盛戈暤,江秀臣,曾奕.考虑网络传输延迟的二级电压控制[J].电力系统自动化,2007,31(15):30-34.
    [106]何飞跃,段献忠.基于结构奇异值的网络水电机组鲁棒控制[J].电网技术,2007,31(16):30-36.
    [107]何飞跃,段献忠.基于广域测量的滑模TCSC控制器设计[J].电网技术,2006,30(23):50-55.
    [108]A. Martin, M. M. Begovic, D. G. Taylor. Transient control of generator excitation on consideration of measurement and control delays [J]. IEEE Transactions on Power Delivery,1995,10(1):135-141.
    [109]T. Zabaiou, F. Okou, L. A. Dessaint, et al. Time-delay compensation of a wide-area measurements-based hierarchical voltage and speed regulator [J]. Canadian Journal of Electrical and Computer Engineering,2008,33(2):77-85.
    [110]于广亮,张保会,谢欢,等.不健全广域信息下时滞非线性鲁棒综合控制器设计[J].中国电机工程学报,2007,27(10):7-13.
    [111]戚军,刘兆燕,江全元.考虑时滞影响的电力系统广域集中励磁控制[J].电网技术,2009,33(7):42-46.
    [112]岳东,彭晨.网络控制系统的分析与综合[M].北京:科学出版社,2007.
    [113]王岩,孙增圻.网络控制系统的分析与设计[M].北京:清华大学出版社,2009.
    [114]李玉清,方华京,朱菲.随机时延网络化控制系统的自适应预测控制[J].华中科技大学学报(自然科学版),2009,37(1):292-295.
    [115]王亚蛟,王文海,王兴平.基于广义预测控制的网络控制系统设计[J].海军航空工程学院学报,2009,24(4):405-409.
    [116]赵辉,邓燕,王红君,等.基于预测控制的网络时延补偿策略研究[J].仪器仪表学报,2008,29(9):1923-1928.
    [117]何飞跃.网络化控制系统在电力系统中的应用研究[D].博士学位论文,武汉:华中科技大学,2006.
    [118]毕贞福,刘从从.网络环境下控制理论在区域电网控制中的应用探讨[J].华东电力,2006,34(2):8-11.
    [119]T. Mori, H. Kokame. Stability of x(t)=Ax(t)+Bx(t-τ)[J]. IEEE Transactions on Auotmatic Control,1989,34(4):460-462.
    [120]N. Olgac, R. Sipahir. The cluster treatment of characteristic roots and the neutral type time-delayed systems. Journal of Dynamic Systems, Measurement and Control,2005, 127(1):88-97.
    [121]N. Olgac, R. Sipahir. An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems [J]. IEEE Transaction on Automatic Control, 2002,47 (5):793-797.
    [122]R. Sipahi, N. Olgac. Direct method implementation for the stability analysis of multiple time delayed systems [J]. Proceedings of IEEE Conference on Control Applications,2003, (2):943-948.
    [123]J. Chen, G. X. Gu, C. N. Nett. A new method for computing delay margins for stability of linear delay systems [J]. Systems & Control Letters,1995,26(2): 107-117.
    [124]董存,余晓丹,贾宏杰.一种电力系统时滞稳定裕度的简便求解方法[J].电力系统自动化,2008,32(1):6-10.
    [125]何勇.基于自由权矩阵的时滞相关鲁棒稳定与镇定[D].博士学位论文,长沙:中南大学,2004.
    [126]M. Wu, Y. He, J. H. She, et al. Delay-dependent criteria for robust stability of time-varying delay systems [J]. Automatica,2004,40(8):1435-1439.
    [127]Y. He, M. Wu, J. H. She. Delay-dependent stability criteria for linear systems with multiple time delays [J]. IEE Proceedings:Control Theory and Applications,2006, 153(4):447-452.
    [128]J. P. Hespanha, P. Naghshtabrizi, Y. G. Xu. A survey of recent results in networked control Systems [J]. Proceedings of the IEEE,2007,95(1):138-162.
    [129]J. Baillieul, P. J. Antsaklis. Control and communication challenges in newroked real-time systems [J]. Proceedings of the IEEE,2007,95(1):9-28.
    [130]G. P. Liu, D. Rees, S. C. Chai. Design and practical implementation of networked predictive control systems[C]. Proceedings of IEEE Networking, Sensing and Control, Mar,19-22,2005:336-341.
    [131]P. L. Tang, C. W. Silva. Compensation for Transmission Delays in an Ethernet-Based Control Network Using Variable-Horizon Predictive Control [J]. IEEE Transactions on Control Systems Technology,2006,14(4):707-718.
    [132]G. P. Liu, Y. Xia, J. Chen, et al. Networked Predictive Control of Systems with Random Network Delays in Both Forward and Feedback Channels [J]. IEEE Transactions on Industrial Electronics,2007,54(3):1282-1297.
    [133]S. C. Chai, G. P. Liu, D. Rees, et al. Design and Practical Implementation of Internet-Based Predictive Control of a Servo System [J]. IEEE Transactions on Control Systems Technology,2008,16(1):158-168.
    [134]W. S. Hu, G. P. Liu, D. Rees. Event-Driven Networked Predictive Control [J]. IEEE Transactions on Industrial Electronics,2007,54(23):1603-1613.
    [135]W. S. Hu, G P. Liu, D. Rees. Networked Predictive Control over the Internet Using Round-Trip Delay Measurement [J]. IEEE Transactions on Instrumentation and Measurement,2008,57(10):2231-2241.
    [136]廖晓听.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000.
    [137]俞立.鲁棒控制——线性矩阵不等式处理方式[M].北京:清华大学出版社,2002.
    [138]P. Gahinet, A. Nemirovski, A. J. Laub, et al. LMI Control Toolbox User's Guide [M]. Natick, MA:The MathWorks, Inc,2000.
    [139]D. W. Clarke, C. Mohtadi, P. S. Tuffs. Generalized predictive control-Part Ⅰ:The
    basic algorithm [J]. Automatica,1987,23(2):137-148.
    [140]D. W. Clarke, C. Mohtadi, P. S. Tuffs. Generalized predictive control-Part II: Extensions and interpretations [J]. Automatica,1987,23(2):149-160.
    [141]王伟.广义预测控制理论及其应用[M].北京:科学出版社,1998.
    [142]G A. Munoz-Hernandez, D. Jones. MIMO Generalized Predictive Control for a Hydroelectric Power Station [J]. IEEE Transactions on Energy Conversion,2006, 21(4):921-929.
    [143]S. C. Chai. Design of the Networked Predictive Control Method for Wired and Wireless Networked Systems [D]. Doctoral Dissertation, Cardiff, UK:The University of Glamorgan,2007.
    [144]T. Coleman, M. A. Branch, A. Grace, Optimization Toolbox User's Guide [M]. Natick, MA:The MathWorks, Inc,2000.
    [145]Q. H. Wu, B. W. Hogg. Robust self-tuning regulator for a synchronous generator [J]. IEE Proceedings-Control Theory and Applications,1988,135(6):463-473.
    [146]J. A. L. Barreiros, A. S. e Silva, A. J. A. Simoes Costa. A self-tuning generalized predictive power system stabilizer [J]. International Journal of Electrical Power & Energy Systems,1998,20(3):213-219.
    [147]S. J. Cheng, Y. S. Chow, O. P. Malik, et al. An adaptive synchronous machine stabilizer [J]. IEEE Transaction on Power Systems,1986,1(3):101-107.
    [148]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
    [149]方思立,朱方.电力系统稳定器的原理及应用[M].北京:中国电力出版社,1996,123-132.
    [150]肖晋宇.基于PMU/WAMS的互联电网广域阻尼控制的研究[D],博士学位论文,北京:清华大学,2004.
    [151]S. Y. Xu, J. Lam. On equivalence and efficiency of certain stability criteria for time-delay systems [J]. IEEE Transactions on Automatic Control,2007,52(1): 95-101.
    [152]J. H. Chow, J. J. Sanchez-Gazca, R. Haoxing, S. Wang. Power system damping controller design using multiple input signals [J]. IEEE Control System Magazine, 2000,20(4):82-90.
    [153]M. G. Safonov, R. Y. Chiang. A Schur method for balanced model reduction [J]. IEEE Transaction on Automatic Control,1989,34(7):729-733.
    [154]Hydro-Quebec. SimPowerSystems User's Guide [M]. Natick, MA:The Math Works, Inc,2008.
    [155]G. Balas, R. Chiang, A. Packard, et al. Robust Control Toolbox User's Guide [M]. Natick, MA:The Math Works, Inc,2005.
    [156]C. Scherer, P. Gahinet, M. Chilali. Multiobjective output-feedback control via LMI optimization [J]. IEEE Transactions on Automatic Control,1997,42(7):896-911.
    [157]T. Sasaki, K. Enomoto, Dynamic analysis of generation control performance standards [J]. IEEE Transaction on Power Systems,2002,17(3):806-811.
    [158]P. Kundur. Power System Stability and Control [M]. NewYork:Mc Graw-Hill,1994.
    [159]F. F. Wu, K. Moslehi, A. Bose. Power system control centers:past, present, and future [J]. Proceedings of the IEEE,2005,93(11):1890-1908.
    [160]K. Tomsovic, D. E. Bakken, V. Venkatasubramanian, et al. Designing the Next Generation of Real-Time Control, Communication, and Computations for Large Power Systems[J]. Proceedings of the IEEE,2005,93(5):965-979.
    [161]D. Rerkpreedapong, A. Hasanovic, A. Feliachi. Robust load frequency control using genetic algorithms and linear matrix inequalities [J]. IEEE Transactions on Power Systems,2003,18(2):855-861.
    [162]T. Hiyama, Dunding Zuo, T. Funabashi. Multi-agent based automatic generation control of isolated stand alone power system[C]. Proceedings of International Conference on Power System Technology, Oct.13-17,2002:139-143.
    [163]N. Atic, A. Feliachi, D. Rerkpreedapong. CPS1 and CPS2 compliant wedge-shaped model predictive load frequency control[C], Proceedings of IEEE Power Engineering Society General Meeting, Jun.6-10,2004:855-860.
    [164]H. Shayeghi, H. A. Shayanfar, A. Jalili. Multi-stage fuzzy PID power system automatic generation controller in deregulated environments [J]. Energy Conversion and Management,2006,47(8):2829-2845.
    [165]A. Ibraheem, P. Kumar, D. P. Kothari. Recent philosophies of automatic generation control strategies in power systems [J]. IEEE Transactions on Power Systems,2005, 20(1):346-357.
    [166]J. Nanda, A. Mangla, S. Suri. Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers [J]. IEEE Transactions on Energy Conversion,2006,21(1):187-184.
    [167]白涛,吴智铭,杨根科.网络化的控制系统[J].控制理论与应用,2004,21(4):584-590.
    [168]F. P. DeMello, C. Corcordia. Concept of synchronous machine stability as affected by excitation control [J]. IEEE Transactions on Power Apparatus and Systems,1969, 88(4):316-329.
    [169]P. Kundur. Application of Power System Stabilizers for Enhancement of Overall System Stability [J]. IEEE Transactions on Power System,1989,4(2):614-626.
    [170]B. Wu, O. P. Malik. Multivariable adaptive control of synchronous machines in a multimachine power system [J]. IEEE Transaction on Power Systems,2006,21(4): 1772-1781.
    [171]B. Wittenmark, K. J. Astrom. Practical issues in the implementation of self-tuning control [J]. Automatica,1984,20(5):595-605.
    [172]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [173]B. Pal, B. Chaudhuri. Robust Control in Power Systems [M]. New York:Springer, 2005.
    [174]X. P. Zhang, C. Rehtanz, B. Pal. Flexible AC Transmission Systems:Modelling and Control [M]. Germany:Springer,2006.
    [175]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [176]刘隽,李兴源,汤广福.SVC电压控制与阻尼调节间的相互作用机理[J].中国电机工程学报,2008,28(1):12-17.
    [177]常勇.基于广域测量系统的电力系统阻尼控制与监视研究[D].博士学位论文,杭州:浙江大学,2008.
    [178]Y. Zhang. Design of wide-area damping control systems for power system low-frequency inter-area oscillations [D]. Doctoral Dissertation, Washington, USA: Washington State University,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700