履带车辆液压机械差速转向性能分析与参数匹配
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于液压机械无级传动原理的履带车辆液压机械差速转向系统能有效改善车辆的转向性能,是具有良好发展前景的一种履带车辆转向型式。本文采用理论分析、仿真计算及试验研究等方法,对液压机械差速转向系统的设计理论及方法、特性建模及仿真、车辆转向性能、转向系统参数匹配等方面进行了系统研究。
     论文在总结履带车辆及其转向系统发展现状及趋势,分析液压机械差速转向系统构成、工作原理、车辆转向性能和国内外研究及应用现状的基础上,提出了该转向系统研究的主要内容和需解决的问题。
     在对输出分流传动和输入分流传动两种基本的液压机械传动特性分析的基础上,根据履带车辆的转向要求,确定了一种新型液压机械差速转向系统传动方案,该方案具有结构简单、降速增扭等优点,适合农用履带车辆使用。设计了方向盘控制的履带车辆液压机械差速转向操纵系统,通过对转向操纵过程的分析表明能满足履带车辆转向性能的要求。
     对液压机械差速转向系统的转速、转矩、功率及效率等静态特性进行了分析,给出了转向系统性能与系统参数的关系,研究了履带车辆不同工况下系统内部的功率传递及系统效率的计算方法。建立了液压机械差速转向系统动态特性的数学模型及仿真模型,仿真研究了系统参数对系统动态特性的影响,仿真结果为履带车辆液压机械差速转向系统设计、参数匹配及性能优化提供了理论依据。
     根据履带车辆转向时接地履带、车辆与地面的相互运动关系,给出了履带滑转(滑移)及转向中心偏移时转向半径和转向角速度的计算关系。采用坐标变换,建立了履带车辆液压机械差速转向运动轨迹模型,通过转向运动轨迹仿真,分析了转向阻力的变化。建立了履带车辆液压机械差速转向动力学模型,根据提出的转向性能评价指标,仿真分析了履带车辆参数对其稳态和瞬态转向性能的影响,为实车应用研究奠定了基础。
     液压机械差速转向系统参数匹配是一个多指标、多变量的非线性优化问题,遗传算法是求解多指标、多变量非线性优化问题的一种有效方法。建立了利用遗传算法进行液压机械差速转向系统参数匹配的数学模型,并给出了参数匹配流程。对农用履带车辆液压机械差速转向系统进行了参数匹配,对匹配结果进行了校核,该匹配方法有助于液压机械差速转向系统开发。
     对不同工况下的液压机械差速转向系统特性及装备该转向系统的履带车辆转向性能进行了试验,通过试验数据分析,验证了理论分析的正确性。
The hydro-mechanic differential turning system is a new-style turning mode using hydro-mechanic continuously variable transmission theory, effectively improves the turning performance of trackle vehicle, possessing widely developing promise well. The designing theory and ways, transmission characteristic model establishment and simulation of turning system, turning performance of vehicle, parameters matching of turning system are finished adopting theory analysis, simulation calculation, test research and etc in this paper.
     The development actuality of tracked vehicle and its turning system are introduced. The structure, working principle, turning performance and application and study actuality of hydro-mechanic differential turning system are emphatically discussed. The study contents and issue being solved are put forward.
     The hydro-mechanic transmission characteristic of output distributing transmission and input distributing transmission are theoretically analyzed. Combine to the turning demand of tracked vehicle, the hydro-mechanic differential turning system transmission scheme is decided, which has the simple structure, speed decrease and torque increase characteristic, adapt to the farm tracked vehicle.The hydro-mechanic differential turning manoeuvre system of certain tracked vehicle is provided. The turning performance of tracked vehicle can be fulfilled.
     The system rotate speed、torque、power and efficiency characteristic are theoretically analyzed. The formula of turning system and its parameters is given. The power transfering rule and efficiency calculation under different working conditions of this system are qualitatively studied. The maths and simulation models of dynamic characteristic of hydro-mechanic differential turning system are established. The system parameters influencing system dynamic characteristic are simulated. The theory base of design, parameters matching and optimization of hydro-mechanic differential turning system of tracked vehicle is provided by these simulation results.
     By analyzing turning kinematics of track vehicle, the calculating formula of turning radius and turning angular velocity considering track slip are educed. The hydro-mechanic differential turning trace model of tracked vehicle is established by coordinates switch. The turning trace simulation results can be used to turning resistance analysis. The hydro-mechanic differential turning dynamic model of tracked vehicle is established. The evaluation indexes of stable and dynamic turning performance are given out. The influence of design parameters and using parameters to stable and dynamic turning performance of tracked vehicle are studied using Newton-Raphson iterative method and simulation. This can help to actural vehicle using research.
     The parameter matching of hydro-mechanic differential turning system of tracked vehicle is induced to multi-goal, multi-parameters, nonlinear optimization question. The genetic algorithm is efficient way to solve this question. The maths models of parameter matching of hydro-mechanic differential turning system are established using genetic algorithm and the matching flow is put forward. The parameters matching of hydro-mechanic differential turning system of DFH1302R farm tracked vehicle is achieved and the matching result is satisified. The matching way can be used to design hydro-mechanic differential turning system.
     On different working conditions, the characteristic of hydro-mechanic differential turning system and turning performance test of tracked vehicle are performed. Basing test data, the theorictial research results meet turning requirment of tracked vehicle.
引文
【1】王世明.推土机工作装置CMAC神经网络控制[J].农业机械学报,2005,Vol.36(2):140~141
    【2】黄强,刘永长.车用柴油机电控燃油喷射系统的现状与发展[J].柴油机设计与制造,2002,9(2):31~37
    【3】何兵,平涛.大功率柴油机的研究发展[J].柴油机,2003,25(1):4~8
    【4】雷雨龙,葛安林,张庆武等.电控机械式稧自动变速车辆起步控制品质的实验研究[J].农业工程学报,1998,14(3):143~147
    【5】刘春朝,王文超,秦贵和等.工程机械变速系统电液控制技术研究[J].液压气动与密封,2006,3:63~66
    【6】张明柱,周志立,徐立友等.农业拖拉机用多段液压机械无级变速器的设计[J].农业工程学报,2003,Vol.19(6):118~121
    【7】徐立友,周志立,张明柱等.拖拉机液压机械无级变速器设计[J].农业机械学报,2006,Vol.37(7):5~8
    【8】周学建,付主木,张文春等.车辆自动变速器换档规律的研究现状与展望[J].农业机械学报,2003,Vol.34(3):139~141
    【9】苑士华,侯国勇,张宝斌.液压机械无级变速器变参数PID控制[J].机械工程学报,2004,Vol.40(7):81~84
    【10】曹付义,周志立,贾鸿社.履带车辆转向机构的研究现状及发展趋势[J].河南科技大学学报,2003,Vol.24(3):89~92
    【11】 ZF.Agricultural Equipment Transmission S-Mate & ZF-Eccom.Available at:www. ZF. com[OL], Accessed 17-11-2002
    【12】 A. Marsili, P. Servadio. Changes of some physical properties of a clay soil following passage of rubber-and metal-tracked tractors. Soil & Tillage Research[J],1998,49:185~199
    【13】张闽鲁,吴清分.90年代以来国外拖拉机产品的技术状况及发展[J].拖拉机与农用运输车,2001,Vol.28(4):42~46
    【14】 Fendt. Fendt 400 Vario Technical Specifications.Available at:www.Fendt.com[OL],Accessed 17-11-2002
    【15】朱士芩,赵剡水.橡胶履带拖拉机的发展与研究(一)[J].拖拉机与农用运输车,2002,29(5):3-8
    【16】朱土芩,赵剡水.橡胶履带拖拉机的发展与研究(二)[J].拖拉机与农用运输车,2002,29(6):3~9
    【17】张涛.高速履带车辆行走系统设计及特性分析:[硕士学位论文][D].洛阳:河南科技大学,2006
    【18】顾银芳.液压机械无级转向机分流及回流工况动态性能的理论与实验研究:[硕士学位论文][D].北京:北京理工大学,2000
    【19】赵然.液压机械无级传动的PID控制研究:[硕士学位论文][D].北京:北京理工大学,2002
    【20】Sergio M, Francesco L.Control System Design on a Power-Split CVT forHigh-Power Agricultural Tractors[J].ASME TRANSACTIONS ON MECHATRONICS,2004,Vol.9(3):569-579
    【21】徐培忠.瑞典CV90步兵战车[J].国外坦克,2000,9:25-30
    【22】梁健.一种履带式车辆正独立式液压转向原理的分析与设计[J].国外坦克,2006,1:14-31
    【23】谢国华.步兵战车的发展概况与特点[J].国外坦克,2003,2:6~11
    【24】马丹慧.英国挑战者主战坦克的发展[J].国外坦克,2001,1:16~21
    【25】马忠旗.现代军用车辆传动装置[M].北京:兵器工业出版社,1998
    【26】刘立明.面向21世纪美国M1系列主战坦克[J].国外坦克,2002,10:4-14
    【27】张国斌.世界装甲装备发展概况[J].国外坦克,2003,5:2-10
    【28】Larkin,Robert Francis. Multi-range with Infinitely Variable Ratio in Each Range Hydromechanical Transmission for Off-road Vehicles[P]. United States Patent, US5830097,1998.
    【29】Hiroyuki Mitsuya, Keiji Otanl, etal.Development of Hydromechanical Transmission(HMT) for Bulldozers[J]. SAE paper,941722,1994
    【30】李兴华,黄宗益.液压机械传动在推土机上的应用[J].:工程机械,1998,Vol.15(4):5~8
    【31】P. A. Simionescu, M.R. Smith, I. Tempea.Synthesis and analysis of the two loop translational input steering mechanism[J]. Mechanism and Machine Theory,2000,35:927~943
    【32】Shinji Nishimura, Tsugiharu Matsunaga. Analysis of response lag in hydraulic power steering system[J], JSAE Review,2000,21:41~46
    【33】#12
    【34】#12
    【35】#12
    【36】K. Dasgupta. Analysis of A Hydrostatic Transmission System Using Low Speed High Torque Motor[J].Mechanism and Machine Theory,2000,35:1481~1499
    【37】黄宗益.履带推土机的一些新结构和新技术[J].工程机械,1997,Vol.28(3):26-29
    【38】田全忠.液压机械传动在大功率履带拖拉机上的应用分析[J].拖拉机与农用运输车,2001,Vol.28(2):31~33
    【39】赵建军.履带车辆差速式转向机构动力学分析与比较[J].工程机械,2002,Vol.33(8):18~21
    【40】林建德.卡特R型履带车辆差速转向机构之运动与力矩分析[J].机械设计与研究,2006,Vol.22(2):53~56
    【41】曹付义,周志立.履带车辆差速式转向机构动力学分析与比较[J].工程机械,2004,Vol.35(2):36~39
    【42】华顺刚,刘修骥.无级变速兼转向的车用液压机械综合传动系理论规律研究[J].兵工学报,1997,Vol.18(1):2~4
    【43】胡纪滨,苑士华.液压机械无级传动的特性研究[J].机械设计,2000,Vol.22(4):28~30
    【44】刘修骥.大幅度减少液压功率的双半径液压转向的研究[J].兵工学报,1997,Vol.18(1):24~28
    【45】 Yuan Shihua, Hu Jibin.The Efficiency of Multi-Range Hydro-Mechanical Stepless Transmission[J]. Journal of Beijing Institute of Technology,1998,7(2):129~133
    【46】张百海,苑士华.联体液压泵-马达系统的效率分析和试验研究[J].北京理工大学学报,1998,Vol.18(2):247~250
    【47】刘修骥.车辆传动系统分析[M].北京:国防工业出版社,1998
    【48】苑士华.多段液压机械双流无级传动的理论与试验研究:[博十学位论文][D].北京:北京理工大学,2000
    【49】胡纪滨.多段液压机械无级传动的动态特性研究:[博士学位论文][D].北京:北京理工大学,2003
    【50】任京.车辆综合传动液压无级转向动态特性研究:[硕士学位论文][D].北京:北京理工大学,2001
    【51】田晋跃,于英.车辆静液压传动特性研究[J].农业机械学报,2002,Vol.33(4):32-34
    【52】郭京波,赖涤泉,高国生.液压机械复合传动的分流比与传动特性分析[J].建筑机械,1997,Vol.37(10):38~47
    【53】郭京波,赖涤泉,高国生.液压机械复合传动基本传动特性分析[J],起重运输机械,1997,Vol.29(12):12~16
    【54】王金武,金英子,迟媛等.履带式稻(麦)联合收割机液压——机械式行走系统的研究[J].农业工程学报,2003,Vol.19(1):117~120
    【55】李文哲,张鸿琼.液压双流转向机构实现转向期间自动无级降速的策略[J].农业工程学报,2005,Vol.21(12):67~70
    【56】杨剑.高效大功率液压机械连续无级转向系统的应用及试验研究:[硕士学位论文][D].长春:吉林工业大学,1998
    【57】易小刚,焦生杰,刘正富等.全液压推土机关键技术参数研究[J].中国公路学报,2004,Vol.17(2):119~123
    【58】徐立友,周志立,张明柱等.拖拉机液压机械无级变速传动系统与发动机的合理匹配[J].农业工程学报,2006,Vol.22(9):109~113
    【59】徐立友,周志立,张明柱等.拖拉机液压机械无级变速传动系统速比匹配策略[J].中国农业大学学报,2006,Vol.11(4):94~98
    【60】贾睿.液压机械无级转向技术研究:[硕士学位论文][D].北京:北京理工大学,2003
    【61】夏海南.液压机械传动在工程机械上应用[J].工程机械,2000,Vol.17(3):17~19
    【62】 Ito N,Kito K,etal. Design Concept of the Grouser Pattern for Reducing Turning Motion Resistance Journal of Terramechanics[J],1993,Vol.30(1):47-57
    【63】 Desrial, Nobutaka ITO.Application of Computer-Based Pivot Turn Control System for the Tracked Vehicle[J].Journal of JSAM,2003,Vol.65(5):35-39
    【64】 Desrial, Nobutaka Ito. Theoretical Model for the Estimation of Turning Motion Resistance for the Tracked Vehicle[J] Journal of JSAM,1999,Vol.61 (6):169~178
    【65】 Kitano M. Lane-change maneuver of high speed tracked vehicles[J]. Journal of Terramechanics, 1988,25(4):91-102
    【66】 Baladi GY, Rohani B. A terrain-vehicle model for analysis of steerbility of tracked vehicles. NTIS[R], ADAO90360,1980
    【67】 Baladi GY, Rohani B.Analysis of steerability of tracked vehicles:theoretical prediction sversus filed measurements.NTIS[R],ADA098777,1981
    【68】史力晨,王良羲,张兵志.履带车辆转向动力学仿真[J].兵工学报,2003,Vol.24(3):289~293
    【69】史力晨,王良羲,张兵志.高速履带车辆在坚实地面转向机理研究[J].装甲兵工程学院学报,2003,Vol.17(1):29~32
    【70】史力晨,王良羲,张兵志等.履带车辆在坚实地面转向瞬态过程模拟计算[J].车辆与动力技术,2003,Vol.11(1):27~33
    【71】毕小平,王普凯,李海军等.履带车辆动态转向过程的仿真模型[J].兵工学报,2003,Vol.24(4):551~554
    【72】 J.G. Hetherington. Tracked vehicle operations on sand-investigations at model scale[J]. Journal of Terramechanics,2005,42:65~70
    【73】 Anh Tuan Le. Estimation of Track-soil Interactions for Autonomous Tracked Vehicles. International Conference on Robotics and Automation[C],IEEE'97, New Mexico,1388~1393
    【74】 Tran Dang Thai, Tatsuro Muro.Numerical analysis to predict turning characteristics of rigid suspendsion tracked vehicle[J]. Journal of Terramechanics,1999,Vol.36(1):183~196
    【75】 Michael. D, Letherwood. Ground vehicle modeling and simulation of military vehicles using high performance computing[J]. Parallel computing,2001,27:109-140
    【76】 D.T.Tran, J.O Brien,T.Muro. An optimal method for the design of a robotic tracked vehicle to operate over fresh concrete under steering motion[J]. Journal of Terramechanics,2002,Vol.39(3):1~22
    【77】 M. Ahmadi. Path Tracking Control of Tracked Vehicles. International Conference on Robotics and Automation[C],IEEE'2000, San Francisco,2938-2943
    【78】 Gianni Ferretti,Girelli R. Modelling and simulation of an agricultural tracked vehicle[J]. Journal of Terramechanics,1999,Vol.36(2):139~158
    【79】王国强,程悦荪,孙海涛等.大型履带机械最佳履带宽度的探讨[J].农业机械学报,1997,Vol.28(2):38~41
    【80】崔亚辉.功率分汇流行星传动的研究:[博士学位论文][D].西安:西安理工大学,1998
    【81】曹付义,王军,周志立等.东方红1302R拖拉机液压机械差速转向机构的功率分析[J].农业工程学报,2005,Vol.21(3):99~102
    【82】曹付义.履带拖拉机差速转向机构性能分析:[硕士学位论文][D].洛阳:河南科技大学,2003
    【83】 SAUER 90 Serial pump and motor technology documentation. SAUER-DANFOSS[R] Co.2004
    【84】 Hydraulic Remote Control E-VLDI-MC001-E.EATON Hydraulics[R] Co.2003
    【85】薛晓虎,杜金凤.柱塞泵效率特性的分析与研究[J].液压与气动,2003,Vol.18(12):43-46
    【86】 Wang Wenbo.Dynamic powertrain system modeling and simulation with applications for diagnostics design and control:[博士学位论文] [D].Wisconsin:University of Wisconsin-Madison,2000
    【87】 KaoM,MoskwaJ.Turbo charged diesel engine modelingfor nonlinear engine control and state estimation[J].Transaction of ASAE,1995,Vol.117(1):20-30
    【88】张明柱,周志立,徐立友等.柴油发动机调速特性时连续性数学模型研究[J].农业工程学报,2004,Vol.20(3):74~77
    【89】董景新,赵长德.控制工程基础[M].北京:清华大学出版社,1992
    【90】张松敏.双功率流履带车辆的转向控制:[硕十学位论文][D].洛阳:河南科技大学,2005
    【91】安杰.履带车辆液压机械差速转向性能的研究:[硕士学位论文][D].洛阳:河南科技大学,2006
    【92】曹付义,周志立,贾鸿社.履带车辆转向性能计算机仿真研究概况[J].农业机械学报,2007,Vol.38(1):184~188
    【93】 Wang.X.L.Ito,Nobutaka.Kito,Koji.Studies on grouser shoe dimension for optimum tractive performance[J].Journal of JSAM,2002,Vol.64(4):55-60
    【94】姚怀新,陈波.工程机械底盘理论[M].北京:人民交通出版社,2002
    【95】 Deb G.k. Transient interaction analysis in tracked vehicle. International Symposium on Electromagnetic Compatibility[C],IEEE'99, AIM,429-433
    【96】张明柱.拖拉机多段液压机械无级变速器控制策略研究:[博士学位论文][D].西安:西安理工大学,2007
    【97】李扬庆,莫致中.非线性方程组解法[M].北京:科学出版社,1992
    【98】曹付义,周志立,贾鸿社.履带车辆液压机械差速转向瞬态过程仿真[J].河南农业大学学报,2007,Vol.41(1):7~11
    【99】 Anders Bodin. Study of the influence of vehicle parameters on tractive performance in deep snow[J].Journal of terramechanics,2001,Vol.38(3):47-59
    【100】 A. Bodin. Development of a tracked vehicle to study the influence of vehicle parameters on tractive performance in soft terrain[J].Journal of terramechanics,1999,Vol.36(4):167~181
    【101】 Quan Zheng. Modeling and control of powertrain with stepped automatic transmissions:[博士学位论文][D]The Ohio State University,1999
    【102】朱正礼.并联混合动力轿车动力系统性能匹配与优化研究:[博士学位论文][D].上海:上海交通大学,2005
    【103】 Ajay Kumar Sharma, K.P. Pandey. Matching tyre size to weight, speed and power available for maximising pulling ability of agricultural tractors[J]. Journal of terramechanics,2001,Vol.38(2):89-97
    【104】 Powell B K, Bailey K E, Cikanek S R. Dynamic modeling and control of hybrid electric vehicle powertrain systems[J]. IEEE Control Systems Magazine,1998,Vol.18(5):17~33
    【105】周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700