单根多楔带附件驱动系统动态特性建模与仿真技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有结构简单、维护方便、布置紧凑,装有维持带张力稳定的张紧器等特点,自20世纪70年代以来,单根多楔带附件驱动系统(Serpentine Belt Accessory Drive System,SBADS)被广泛应用到汽车、手扶电梯、造纸机械的纸带传送等领域。SBADS的动态特性直接影响附件的工作性能,因而有必要对其进行研究。我国在SBADS动态特性设计、开发等方面还处于起步阶段,需对有关的设计理论与技术方面开展更深入、细致地研究。
     论文以SBADS为研究对象,对SBADS的动态特性的建模和仿真技术方面展开了研究。论文主要包含以下内容:
     (1)张紧器和SBADS的动态特性的实验研究。实验测试了张紧器在准静态往复运动时的扭矩、转角;分析研究了两者间的关系。实验测试了在不同的预载荷、激励振幅和激励频率下,张紧器的扭矩、转角和两者间的相位差;分析研究了张紧器预载荷、激励振幅、激励频率的变化对张紧器动刚度、阻尼的影响。实验测试了主动轮加速时,SBADS中张紧轮轮毂径向力、张紧臂摆角、带横向位移和从动轮转速的变化;分析研究了主动轮转速和附件负荷扭矩变化对SBADS振动幅值(包括各轮的旋转振动和带的横向振动幅值、带张力的波动幅值)、带弹性滑移的影响。
     (2)SBADS的动态特性建模和动态特性仿真技术研究。探讨了SBADS动态特性的建模方法(建模时考虑了带阻尼和带在带-轮接触区发生的蠕变对带张力的影响等因素)和模型的数值计算方法;对提出的SBADS建模方法和数值计算方法的可行性进行了实验验证;在计算分析主动轮转速、带阻尼和张紧器预载荷与滑移因子关系的基础上,提出了控制带滑移的方法。该方法在SBADS结构参数确定情况下,通过调整张紧器预载荷和安装角,达到对带滑移的控制。
     (3)SBADS的带横向振动特性和张紧器参数优化设计方法的仿真研究。将带减化为Euler-Bernoulli梁,推导了SBADS梁耦合振动模型;利用该SBADS梁耦合振动模型,仿真研究了稳态时,张紧器设计参数(张紧器刚度、张紧臂长和张紧器安装角)的变化对带横向振动特性的影响;提出了张紧器参数的优化设计方法。该方法以带的最大横向变形最小、张紧器的有效系数最大为目标,达到对张紧器参数的优化设计。
     (4)SBADS的固有频率和固有频率的灵敏度的仿真分析。
     对组成SBADS模型的非线性方程,探讨了其线性化的处理方法;研究了带阻尼、张紧器设计参数对SBADS固有频率的影响;提出了固有频率的调控方法。该方法是在研究固有频率对张紧器参数的灵敏度基础上,找出对固有频率有重要影响的张紧器参数;进而通过调整该参数,达到对固有频率的调控。
Serpentine Belt Accessory Drive Systems (SBADS) are widely used in the automotive industry, escalators and paper tape since 1970s. They provide an efficient means of transmitting power to all accessories by a single multi-ribbed belt. The advantages of SBADS include simple structure, convenient maintenance, compact mounting space, the capability of automatic tension loss compensation, and so on.
     However, SBADS exhibit complex dynamic characteristics, including rotational vibrations of pulleys and tensioner, and transverse vibrations in the various belt spans. Therefore, it is of great interest to find an effective approach for modeling and predicting the dynamic response of SBADS.
     The main contents of the dissertation are summarized as follows.
     Firstly, the dynamic characteristics of tensioner and SBADS are investigated experimentally. The experimented procedures to test the quasi-static and dynamic characteristics of tensioner are proposed. The relation between the tensioner preload, excitation amplitude, excitation frequency and the dynamic stiffness, damping of tensioner are discussed. The effects on the vibration and belt slipping of the driving pulley speed and accessory loads are investigated experimentally.
     Secondly, a modeling method and simulating technologies of the dynamic characteristics for SBADS are presented. A rotational motion model for SBADS is established. In the model, belt damping is incorporated and the effects on belt tensions due to belt“creep”on the contact arc with pulley are considered. Taking a SBADS as a studying example, the dynamic characteristics are calculated and compared with experiment. The numerical simulations for a SBADS are performed to study the effects of the driving pulley speed, belt damping and tensioner preload on the slip factor. It helps effectively control belt slipping to adjust the preload and installed position of the tensioner.
     Thirdly, using the rotational-transverse coupling model for SBADS incorporating belt bending stiffness, the effects on equilibrium deflection in belt spans of the parameters of tensioner are investigated. An optimization method to minimizing the transverse deflections of the belt span and maximizing the tensioner effectiveness is presented for the tensioner. The calculated results show that the optimized tensioner suppresses effectively the transverse deflections of belt spans.
     Finally, a method of linearizing the non-linear equations for SBADS is proposed. The effects of belt damping and parameters of the tensioner on the natural frequencies of SBADS are investigated. The sensitivity analysis is carried out to study the natural frequencies’sensitivities to the parameters of the tensioner. Then, the first order natural frequency is adjusted through changing the tensioner parameter which the first order natural frequency of SBADS is most sensitive to.
引文
[1] Atsuo Fujii, Shougo Yonemoto, Kiyoshi Miyazaki, etc. Analysis of the accessory belt lateral vibration in automotive engines[J]. Society of Automotive Engineers of Japan, 2002, 23: 41-47
    [2] Ulsoy A G, Whitesell J E, Hooven M D. Design of belt-tensioner systems for dynamic stability[J]. ASME Journal of Vibration and Acoustics, 1985, 107(4): 282-290
    [3]罗善明,余以道,郭迎福,等.带传动理论与新型带传动[M].北京:国防工业出版社, 2006
    [4] Beikmann R S. Static and dynamic behavior of serpentine belt drive systems: theory and experiment[D]. Michigan: The University of Michgan, 1992
    [5] Mockensturm E M, Penkins N C, Ulsoy A G. Stability and limit cycles of parametrically excited, axially moving strings[J]. ASME Journal of Vibration and Acoustics, 1996, 118(6): 346-351
    [6] Pellicano F, Fregolent A, Bertuzzi A, et al. Primary and parametric non-linear resonances of a power transmission belt: experimental and theoretical analysis[J]. Journal of Sound and Vibration, 2001, 224(4): 669-684
    [7] Suweken G, Van Horssen W T. On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity[J]. Nonlinear Dynamics, 2003, 31: 197-223
    [8] Francesco Pellicano, Giulia Catellani, Annalisa Fregolent. Parametric instability of belts: theory and experiments[J]. Computers and Structures, 2004, 82: 81-91
    [9] Zhang L, Zu J W. Nonlinear vibration of parametrically excited moving belts, Part I: dynamic response[J]. ASME Journal of Applied Mechanics, 1999,66(2): 396-402
    [10] Zhang L, Zu J W. Nonlinear vibration of parametrically excited moving belts, Part II: stability analysis[J]. ASME Journal of Applied Mechanics, 1999,66(2): 403-409
    [11] Zhang L, Zu J W. Non-linear vibration of viscoelstic moving belts, part I: free vibration analysis[J]. Journal of Sound and Vibration, 1998, 216(1): 75-91
    [12] Zhang L, Zu J W. Non-linear vibration of viscoelstic moving belts, part II: forced vibration analysis[J]. Journal of Sound and Vibration, 1998, 216(1): 93-105
    [13] Hou Z C, Zu J W. Nonlinear free oscillations of moving viscoelastic belts[J]. Mechanismand Machine Theory, 2002, 37(6): 925-940
    [14] Barker C R, Oliver L R, Breig W F. Dynamic analysis of belt drive tension forces during rapid engine acceleration[J]. SAE Conference, Detroit, MI, 1991, 239-254
    [15] Hwang S J, Perkins N C, Ulsoy A G, et al. Rotational response and slip prediction of serpentine belt drives systems[J]. ASME Journal of Vibration and Acoustics, 1994, 116(1): 71-78
    [16] Beikmann R S, Perkins N C, Ulsoy A G. Design and analysis of automotive serpentine belt drive systems for steady state performance[J]. ASME ASME Journal of Mechanical Design, 1997, 119(3): 162-168
    [17] Kraver T C, Fan G W, Shah J J. Complex modal analysis of a flat belt pulley system with belt damping and coulomb-damped tensioner[J]. ASME Journal of Mechanical Design, 1996, 118: 306-311
    [18] Leamy M J. Influence of dry friction in the dynamic response of accessory belt drive system[D]. Michigan: The University of Michigan, 1998
    [19] Leamy M J, Perkins N C. Nonlinear periodic response of engine accessory drives with dry friction tensioners[J]. ASME Journal of Vibration and Acoustics, 1998, 120(5): 909-916
    [20] Cheng G, Zu W J. Nonstick and stick-slip motion of a coulomb-damped belt drive system subjected to multifrequency excitations[J]. ASME Journal of Applied Mechanics, 2003, 70(6): 871-884
    [21] Beikmann R S, Perkins N C, Ulsoy A G. Free vibration of serpentine belt drive systems[J]. ASME Journal of Vibration and Acoustics, 1996, 118(4): 406-413
    [22] Beikmann R S, Perkins N C, Ulsoy A G. Nonlinear coupled vibration response of serpentine belt drive systems[J]. ASME Journal of Vibration and Acoustics, 1996, 118(5): 567-574
    [23] Zhang L, Zu J W. Modal analysis of serpentine belt drive systems[J]. Journal of Sound and Vibration, 1999, 222(2): 259-279
    [24] Zhang L, Zu J W. One-to-one auto-parametric resonance in serpentine belt drive systems[J]. Journal of Sound and Vibration, 2000, 232(4): 783-806
    [25] Zhang L, Zu J W, Hou Z C. Complex modal analysis of non-self-adjoint hybrid serpentine belt drive systems[J]. ASME Journal of Vibration and Acoustics, 2001, 123(2): 150-156
    [26] Parker R G, Lin Y, Oliver L R, et al. Serpentine belt span vibrations caused by dynamic pulley and crankshaft oscillations[J]. SAE Paper, 2000-01-0600
    [27] Parker R G. Efficient eigensolution, dynamic response, and eigensensitivity of serpentine belt drives[J]. Journal of Sound and Vibration, 2004, 270(1): 15-38
    [28] Kong L. Coupled belt-pulley mechanics in serpentine belt drives[D]. Ohio: The Ohio State University, 2003
    [29] Kong L, Parker R G. Equilibrium and belt-pulley vibration coupling in serpentine belt drives[J]. ASME Journal of Applied Mechanics, 2003, 70(5): 739-750
    [30] Kong L, Parker R G. Coupled belt-pulley vibration in serpentine drives with belt bending stiffness[J]. ASME Journal of Applied Mechanics, 2004, 71(1): 109-119
    [31] Kong L, Parker R G. Mechanics of serpentine belt drives with belt bending stiffness[J]. ASME Journal of Applied Mechanics, 2005, 127(5): 957-966
    [32] Zhu Farong, Parker R G. Influence of tensioner dry friction on the vibration of belt drives with belt bending stiffness[J]. ASME Journal of Vibration and Acoustics, 2008, 130(1): 011002-1-9
    [33]陈立群,程昌钧,张能辉.非线性粘弹性大挠度梁的动力学模型及其简化[J].上海力学, 1999, 20(3): 302-305
    [34]陈立群,程昌钧.分数导数型本构关系描述粘弹性梁的振动分析[J].力学季刊, 2001, 22(4): 512-516
    [35] Chen L Q, Zu J W. Simulations of transverse vibrations of an axially moving string: a modified difference approach[J]. Applied Mathematics and Computation, 2005, 166: 596-607
    [36] Chen L Q, Zhao W J. A numerical method for simulating transverse vibration of an axially moving string[J]. Applied Mathematics and Computation, 2005, 160: 411-422
    [37] Zhang W, Chen L Q. Vibration control of an axially moving string system: wave cancellation method[J]. Applied Mathematics and Computation, 2006, 175: 851-863
    [38]陈立群.轴向运动弦线的纵向振动及其控制[J].力学进展, 2001, 31(4): 535-546
    [39] Chen L Q, Yang X D. Nonlinear free transverse vibration of an axially moving beam: comparison of two models[J]. Journal Sound and Vibration, 2007, 299: 248-254
    [40]陈立群,吴俊.轴向运动粘弹性弦线的横向非线性动力学行为[J].工程力学, 2005, 22(4): 48-51
    [41]陈立群.平带驱动系统的振动分析研究进展[J].力学与实践, 2001, 23(4): 8-12
    [42]陈立群,吴哲民.一类平带驱动系统非线性振动的幅频特性[J].工程力学, 2003, 20(1): 149-152
    [43] Chen L Q, Zhang W. Adaptive vibration reduction of an axially moving string via a tensioner[J]. International Journal of Mechanical Sciences, 2006, 48(7): 1409-1415
    [44] Li X J, Chen L Q. Modal analysis of coupled vibration of belt drive systems[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(1): 9-13
    [45]劳耀新,侯之超,吕振华.发动机前端附件带传动系统频率灵敏度分析[J].汽车工程, 2006, 28(5): 477-486
    [46] Hou Zhi-chao, Lao Yao-xin, Lu Qiu-hai. Sensitivity analysis and parameter optimization for vibration reduction of undamped multi-ribbed belt drive systems[J]. Journal of Sound and Vibration, 2008, 317(3): 591-607
    [47]张毅.蛇形带传动系统的动力学研究[D].西安:西北工业大学, 2007
    [48]刘伟,张劲夫.粘弹性传动带的分岔特性和混沌振动分析[J].动力学与控制学报, 2005, 3(3): 36-67
    [49]刘伟,张劲夫.传动带振动稳定性分析[J].机械科学与技术, 2006, 25(2): 192-194
    [50]刘利.发动机多楔带轮系优化的研究及试验台架的开发[D].武汉:武汉理工大学, 2005
    [51]刘承义.发动机附件皮带传动系统设计[J].汽车技术, 1993, 4: 16-22
    [52]王彬. CA488型发动机多楔带轮系的开发[J].汽车技术, 1996, 5: 17-19
    [53]李丰军,刘长波. CA6110系列发动机前端多楔带附件传动系统设计与开发[J].汽车技术, 2002, 11: 1-5
    [54]俞培泳,张敏. TJ376QE发动机多楔带轮系的开发[J].汽车技术, 2004, 2: 14-15
    [55]吴昕.多楔带轮系的布置、计算和寿命分析[J].汽车技术, 1997, 2: 5-11
    [56] Sandhu Jaspal S, Wehrly Mitchel K, Perkins Noel C, et al. Design kit for accessory drives(DKAD): dynamic analysis of serpentine belt drives[J]. SAE Paper, 2003-01-1661
    [57] Sandhu Jaspal S, Antoni Szatkowske, Brad A. Rose, et al. Optimization of accessory drive system of the V6 engine using computer simulation and dynamic measurements[J]. SAE Paper, 2005-01-2458
    [58] Sheng G, Liu K M, Otremba J, et al. A model and experimental investigation of belt noise in automotive accessory belt drive system[J]. International Journal of Vehicle Noise and Vibration, 2004, 1(1/2):68–82
    [59] Sheng G, Brown L, Liu K, et al. Chirp, squeal and dynamic instability of misaligned V-ribbed belts in automotive accessory belt drive systems[J]. International Journal ofVehicle Noise and Vibration, 2007, 3(1): 88–105
    [60] Zhao J, Barker C, Oliver L, et al. Experimental testing and modeling of automotive automatic belt tensioners[J]. SAE Paper, 980839
    [61] Barker C R, Oliver L R, Breig W F. Dynamic analysis of belt drive tension forces during rapid engine acceleration[J]. SAE Paper, 910687
    [62]刘伟.粘弹性传动带横向非线性振动研究[D].西安:西北工业大学, 2006
    [63]孔庆鹏,宋开臣,陈鹰.发动机变速阶段振动信号时频分析阶比跟踪研究[J].振动工程学报, 2005, 18(4)
    [64]张占一,刘杰,应怀樵,等.基于等时间采样的阶比切片图研究与应用[J].东北大学学报(自然科学版), 2008, 29(2): 262-265
    [65]李惠彬.振动理论与工程应用[M].北京:北京理工大学出版社, 2006
    [66]张阿舟,诸德超,姚起杭,等.实用振动工程(2)--振动控制与设计[M].北京:航空工业出版社,1997
    [67]董敬,庄志,常思勤.汽车拖拉机发动机[M].北京:机械工业出版社, 2000
    [68]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社, 2000
    [69]张义民,陈力奋,闻邦椿.振动系统特征值问题的矩阵灵敏度分析[J].振动、测试与诊断, 2002, 22(1): 24-28
    [70]李辉,丁桦.结构动力模型修正方法研究进展[J].力学进展, 2005, 35(2): 170-180
    [71]张军,方向明.反共振频率的灵敏度分析及应用[J].振动工程学报, 1996, 9(1): 9-15
    [72]宋曦,赵荣珍.转子—轴承系统固有频率对设计参数的灵敏度[J].甘肃工业大学学报, 1999, 25(2): 37-40
    [73]刘辉,项昌乐,郑慕侨.车辆动力传动系固有特性灵敏度分析及动力学修改[J].汽车工程, 2003, 25(6): 591-594
    [74]项昌乐,廉晓辉,刘辉.动力传动系统固有特性对实际参数的灵敏度分析[J].汽车技术, 2005, 32(6): 56-58
    [75]刘丹,候之超.动力总成悬置设计中惯性参数的灵敏度分析[J].汽车工程, 2007, 29(10): 884-888
    [76]方同,薛璞.振动理论及应用[M].西安:西北工业大学出版社, 1998
    [77]荣见龙,郑健龙,徐飞鸿.结构动力修改及优化设计[M].北京:人民交通出版社, 2002
    [78]桂冰.结构动力模型修正的数学理论与方法[D].南京:南京航空航天大学, 2005
    [79]胡少伟,苗同臣.结构振动理论及其应用[M].北京:中国建筑工业出版社, 2005
    [80] Michon G, Manin L, Dufour R. Hysteretic behavior of a belt tensioner: modeling and experimental investigation[J]. Journal of Vibration and Control, 2005,11(9): 1147-1158
    [81] Chatelet E, Michon G, Manin L, et al. Stick/slip phenomena in dynamics: choice of contact model, numerical predictions & experiments[J]. Mechanism and Machine Theory, 2007, 11(1)
    [82] Jerome Bastien, Guihem Michon, Lionel Manin, et al. An analysis of the modified Dahl and Masing models: application to a belt tensioner[J]. Journal of Sound and Vibration, 2007, 302(6): 841-864
    [83] Xu J, Antchak J. New technology to improve the performance of front end accessory drive system[J]. SAE Paper, 2004-01-3017
    [84] Raghavan Balaji, Eric M. Mockensturm. Dynamic analysis of a front-end accessory drive with a decoupler/isolator[J]. International Journal of Vehicle Design, 2005, 39(3): 208-231
    [85] Eric M. Mockensturm, Raghavan Balaji. Picec-wise linear dynamic systems wigh one-way clutches[J]. ASME Journal of Vibration and Acoustics, 2005, 127(10): 475-782
    [86] Zhu F, Parker R. Non-linear dynamics of a one-way clutch in belt-pulley systems[J]. Journal of Sound and Vibration, 2005, 279: 285-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700