汽油机燃用乙醇汽油混合燃料的空燃比控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球汽车产量和保有量的逐年增加,能源短缺与环境污染问题日益加剧,而醇类燃料,尤其是掺醇汽油因其污染低、来源广,被认为是最具使用前景的代用燃料,因而受到了广泛关注。与普通汽油机类似,掺醇汽油机中,混合气空燃比仍旧是发动机管理系统核心控制内容之一,直接关系到整机动力性、经济性与排放水平。遗憾的是,由于进气系统充排气效应、燃油“湿壁”效应、空燃比控制回路时延等因素的存在,传统汽油机空燃比控制仍旧不够理想。此外,醇类组分加入引起的掺醇汽油理化特性,尤其是燃油蒸发特性的变化,又给掺醇汽油机空燃比控制带来了困难。
     本文围绕乙醇汽油空燃比控制主题,进行了一系列理论及试验研究,主要包括:
     乙醇汽油油膜蒸发特性研究:在深入分析与准确测定乙醇汽油相关基础物性基础上通过搭建Gilliland实物仿真试验平台,对不同掺混比例乙醇汽油液膜在空气流中的蒸发扩散特性及关键影响因素进行了研究,表明乙醇汽油液膜在进气管内空气流的蒸发扩散过程可用管内强制对流传质试验关联式描述。
     进气管空气动态特性建模:对进气管空气动态特性进行了深入分析,建立了进气管空气动态平均值模型,模型中通过引入转速修正项对节气门处空气质量流量进行了饱和非线性补偿。在此基础上,利用试验与仿真手段对进气管空气动态模型进行了参数辨识与模型验证。
     进气管燃油动态特性建模与分析:对进气管燃油动态及空燃比传输特性进行了深入分析,建立了燃油动态平均值模型。针对传统小偏差摄动法辨识油膜动态参数的不足,通过引入扩展卡尔曼滤波算法,构建了进气道燃油状态观测器,对典型掺混比例乙醇汽油油膜动态参数进行了离线高效估计。根据辨识结果分析了油膜动态参数随关键影响因素,尤其是掺混比例的变化规律,进而结合Gilliland试验结果,构建了油膜蒸发时间常数模型,在减少燃油动态模型辨识参数的同时,有效提高了模型精度。
     基于模型的空燃比控制策略研究:采用基于模型控制策略,给出了完整的乙醇汽油空燃比控制方案。为克服传统基于进气压力或流量传感器的进气流量测量方式不足,通过引入扩展卡尔曼滤波算法,建立了包含进气管空气动态模型的进气状态观测器,实现进气口空气流量的最优滤波估计。为消除进气道“湿壁”油膜对空燃比控制影响,基于已有进气管燃油动态模型设计了离散燃油动态补偿器,补偿器参数由油膜蒸发时间常数等相关模型预测给出。根据典型掺混比例乙醇汽油下喷油器燃油流量特性试验结果,给出了相应喷油器燃油修正策略。
     空燃比控制器实现及台架试验验证:针对吉利MR479Q汽油机设计开发了电控单元ECU及标定系统软硬件,其中ECU软件开发遵循AUTOSAR规范,标定系统主从机通信基于CCP协议。在典型掺混比例乙醇汽油下,对嵌有基于模型空燃比控制策略的电控单元ECU进行了台架试验验证。试验结果表明,所设计空燃比控制策略、算法对不同掺混比例乙醇汽油空燃比均具有较高的控制精度和效果,稳态工况控制偏差不超过化学计量空燃比的±2%,瞬态工况控制偏差稍大,但也基本维持在±4%以内,基本满足空燃比精确控制要求。
     本文通过理论及试验研究构建了准确完整的乙醇汽油机空燃比模型,并基于该模型设计了详细的空燃比控制策略和算法,较好地实现了乙醇汽油机空燃比的精确控制,为高掺混比例乙醇汽油发动机开发与性能预测奠定了理论基础。
As global automobile production and population increase every year, energy shortage and environmental pollution are growing in tensity. Alcohol fuels, especially alcohol-gasoline blends, were considered as the most promising alternative fuels, and have aroused extensive attentions for their low emission level and wide resources. Like ordinary gasoline engines, air-fuel ratio control is still one of the most important parts in engine management systems under different alcohol-gasoline blends, and it directly affects the whole engine power, economy and emission levels. Unfortunately, as existence of intake air-pump effect, fuel wall-wetting effect and air-fuel ratio control loop delay, traditional air-fuel ratio control is still very poor. In addition, special physicochemical properties of alcohol-gasoline blends, especially the evaporation characteristics, make the air-fuel ratio control design of alcohol-gasoline blend engines even more difficult.
     This thesis focused on the subject of air-fuel ratio control with ordinary gasoline engines burning ethanol-gasoline blends, and carried out a series of theoretical and experimental researches, including:
     Research on fuel film evaporation characteristics of ethanol-gasoline blends:Basic physical properties of ethanol-gasoline blends were analyzed and accurately determined at first. Then the Gilliland experimental platform was set up, fuel film evaporation and diffusion characteristics of different ethanol-gasoline blends in air streams were studied, and critical influencing factors were discussed as well. Results showed that the evaporation and diffusion process of ethanol-gasoline blends into intake air streams can be also described by the traditional correlation of forced convective mass transfer inside pipes.
     Modeling of intake manifold air dynamic characteristics:An intake air dynamic mean value model was built. In this model, a speed correction term was introduced to compensate the saturated nonlinear characteristic of throttle air mass flow in large throttle opening areas. Both model parameters identification and model validation were carried out by means of experimental and simulation methods.
     Modeling and analyzing of intake manifold fuel dynamic characteristics:An intake fuel dynamic mean value model was built. Unlike traditional methods of fuel film dynamic parameters identification, Extended Kalman Filter algorithm was introduced to construct an offline intake port fuel dynamic observer which could estimate fuel film dynamic parameters efficiently. According to the identification results, critical influencing factors of fuel film dynamic parameters, especially mixing ratio of ethanol-gasoline blends, were discussed. A fuel film evaporation time constant model based on Gilliland test results was then built to reduce calibration parameters and improve model accuracy simultaneously.
     Strategy research on model-based air-fuel ratio control:A complete model-based air-fuel ratio control solution under different ethanol-gasoline blends was presented. Unlike traditional detecting method of intake air mass flow, Extended Kalman Filter algorithm was introduced to construct a model-based intake air state observer which could estimate intake port air mass flow precisely. To eliminate intake fuel wall-wetting effect, a discrete model-based fuel dynamic compensator was also designed and verified, and its control parameters were always from prediction of fuel film evaporation time constant model. In addition, fuel injector correction strategy under different ethanol-gasoline blends and battery voltages was also designed, according to the results of fuel injector flow characteristic test.
     Designing and verification of air-fuel ration controller:According to the features of MR479Q gasoline engine, an electrical control unit and its corresponding calibration system were developed. ECU software followed AUTOSAR specifications, while calibration system communications based on CCP. Verification tests of ECU embedded model-based air-fuel ratio control strategy were carried out under several different ethanol-gasoline blends. Test results show that under varies of ethanol-gasoline blends good control effectiveness could be always achieved by the model-based air-fuel ratio control strategy and algorithm, the control error is less than 2% under steady conditions, while not exceed 4% under transient conditions.
     The thesis built an accurate air-fuel ratio model of ethanol-gasoline blend engines, designed model-based air-fuel ratio control strategy and algorithm, and achieved perfect air-fuel ratio control effect under varies of ethanol-gasoline blends, made good foundations for the further research on development and performance prediction of ethanol-gasoline blend engines.
引文
[1]慧聪汽车配件网.2009年汽车零部件行业发展现状及展望[R/OL].2009-10-23 [2010-03-28]. http://www.auto-p.hc360.com/.
    [2]北京鸿锐新思管理咨询有限公司.2009年中国汽车产业发展研究报告[R/OL]. 2009-12-22 [2010-03-28]. http://www.sinomind.cn/.
    [3]刘亚飞,谢时勇.醇类燃料车用技术研究[J].科学与研究,2008,(1):37-38.
    [4]王存磊,朱磊,袁银男,等.氢气在内燃机上的应用及特点[J].拖拉机与农用运输车,2007.6,34(3):1-3.
    [5]R. Cipollone, C. Villante. Model-based A/F control for LPG liquid-phase injected SI ICEs [C]. USA:Society of Automotive Engineers,2004-01-2958.
    [6]王欲进.发动机代用燃料的发展探索[J].太原大学学报,2007.6,8(2):125-127.
    [7]Lester B Lave, Heather Maclean. A life cycle comparison of alternative transportation fuels [C]. USA:Society of Automotive Engineers,2000-01-1516.
    [8]李永平.代用燃料及其在发动机中的应用[J].能源与环境,2007,(6):48-50.
    [9]王刚,廖钰靓,廖世勇.醇类燃料的综合性能分析与应用前景展望[J].能源与环境,2008,(5):7-9.
    [10]Liu Shenghua, Eddy R. Cuty Clemente, Hu Tiegang, et al. Study of spark ignition engine fueled with methanol/gasoline fuel blends [J]. Applied Thermal Engineering,2007, (27): 1904-1910.
    [11]吴瑕,顾丽莉,申立中,等.燃料乙醇和车用乙醇汽油的发展动态研究[J].应用化工2009.7,38(7):1059-1063.
    [12]龚为佳,沈卫东,刘训标,等.世界各国汽车排放法规的发展历程[J].重型汽车,2009.3:41-42.
    [13]王召兵,倪成茂.小型通用汽油机美国EPA排放法规介绍[J].小型内燃机与摩托车,2007.12,36(6):78-80.
    [14]高建业,孙明,曹友宝.全球燃料乙醇应用发展趋势[J].煤气与热力,2009.3,29(3):20-22.
    [15]Uwe Kiencke, Lars Nielsen. Automotive control systems for engine, driveline, and vehicle [M]. Germany:Springer-Verlag Berlin Heidelberg,2005.
    [16]Gang Chen, Suresh K. Aggarwal. Unsteady multiphase intake flow in a port-injected gasoline engine [C]. USA:Society of Automotive Engineers,960074.
    [17]J. A. Pumphrey, J. I. Brand, W. A. Scheller. Vapour pressure measurements and predictions for alcohol-gasoline blends [J]. Fuel,2000, (79):1405-1411.
    [18]Z. Nan, Z. Tan. Thermodynamic investigation on properties of gasohol [J]. Energy & Fuels,2004,18(4):1032-1037.
    [19]Roman M. Balabin, Rustem Z. Syunyaev, Sergey A. Karpov. Molar enthalpy of vaporization of ethanol-gasoline mixtures and their colloid state [J]. Fuel,2007, (86): 323-327.
    [20]Kenneth Kar, Tristan Last, Clare Haywood, et al. Measurement of vapor pressures and enthalpies of vaporization of gasoline and ethanol blends and their effects on mixture preparation in an SI engine [C]. USA:Society of Automotive Engineers,2008-01-0317.
    [21]龚冬梅,张翠君,张戟,等.车用乙醇汽油分层问题的研究[J].河南化工,2003,(6):11-13.
    [22]Monica B. Gramajo de Doz, Carlos M. Bonatti, Horacio N. Solimo. Water tolerance and ethanol concentration in ethanol-gasoline fuels at three temperatures [J]. Energy & Fuels, 2004, (18):334-337.
    [23]Raymond French, Patrick Malone. Phase equilibria of ethanol fuel blends [J]. Fluid Phase Equilibria,2005, (228-229):27-40.
    [24]曾东建,杨建军,姚英.不同比例乙醇汽油蒸发性试验研究[J].小型内燃机与摩托车,2008.2,37(1):71-74.
    [25]张宏伟,韩雪梅.车用乙醇汽油挥发性研究[J].化学与黏合,2008,30(4):78-80.
    [26]Koichi Nakata, Shintaro Utsumi. The effect of ethanol fuel on a spark ignition engine [C]. USA:Society of Automotive Engineers,2006-01-3380.
    [27]Takashi Tsunooka, Yohei Hosokawa, Shintaro Utsumi, et al. High concentration ethanol effect on SI engine cold startability [C]. USA:Society of Automotive Engineers, 2007-01-2036.
    [28]M. M. EL-Kassaby. Effect of using differential ethanol-gasoline blends at different compression ratio on SI engine [J]. Alexandria Engng,1993,32(3):135-142.
    [29]A. A. Abdel-Rahman, M. M. Osman. Experimental investigation on varying the compression ratio of SI engine working under different ethanol-gasoline fuel blends [J]. International Journal of Energy Research,1998,21(1):31-40.
    [30]M. Al-Hasan. Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission [J]. Energy Conversion and Management,2003, (44):1547-1561.
    [31]Fikret Yuksel, Bedri Yuksel. The use of ethanol-gasoline blend as a fuel in an SI engine [J]. Renewable Energy,2004, (29):1181-1191.
    [32]Chandra Prakash, Greg Rideout, Morrie Kirschenblatt. Emissions from methanol, ethanol, and diesel powered urban transit buses [C]. USA:Society of Automotive Engineers, 942261.
    [33]How-Ran Chao, Ta-Chang Lin, Mu-Rong Chao, et al. Effect of methanol-containing additive on the emission of carbonyl compounds from a heavy-duty diesel engine [J]. Journal of Hazardous Materials,2000, (B73):39-54.
    [34]Environment Department of Australia. Setting the ethanol limit in petrol [R].2002.
    [35]Environment Department of Australia. A literature review based assessment on the impacts of a 20% ethanol gasoline fuel blend on the Australian vehicle fleet [R].2002.11.
    [36]张瑞,王大鹏.乙醇-汽油-水无剂混合燃料的应用研究[J].小型内燃机与摩托车,2002,31(5):15-17.
    [37]董素荣,宋崇林,赵昌普,等.乙醇-汽油燃料汽油机非常规污染物的排放特性[J].天津大学学报,2006.1,39(1):68-72.
    [38]高俊华,崔正来,高海洋.轿车燃油汽油-醇类混合燃料的试验研究[J].汽车工程,2006,28(6):534-538.
    [39]祁东辉,刘圣华,李晖,等.电喷汽油机燃用醇汽油混合燃料的试验研究[J].内燃机工程,2007.4,28(2):27-30.
    [40]蔡志华,程金东.乙醇汽油对发动机系统的适应性研究[J].内燃机与动力装置,2008,(4):17-19.
    [41]刘晓辉.E0-E40乙醇/汽油混合燃料在汽油发动机中的试验研究[J].燕山大学学报,2008.3,32(2):176-179.
    [42]张海霞.基于模糊评价的汽油机怠速最优掺醇比研究[J].内燃机与动力装置,2008.6,(3):8-9.
    [43]Jose Gc Baeta. Experimental analyses of flexible fuel systems in spark ignition engine [C]. USA:Society of Automotive Engineers,2005-01-2183.
    [44]M. Pontoppidan, S. Bonfiglioli, F. Damasceno, et al. Mixture preparation optimization by CFD of a flex-vehicle (gasoline/ethanol) intake system layout [C]. USA:Society of Automotive Engineers,2004-01-3313.
    [45]D. Bottazzi, F. Franzoni, M. Milani, et al. Injection system control for a multi-fuel SI engine [C]. USA:Society of Automotive Engineers,2008-01-1729.
    [46]M. Pontoppidan, F. Damasceno. The integral flex-vehicle mixture control of alcohol-based bio-fuels [C]. USA:Society of Automotive Engineers,2008-01-0437.
    [47]Mauro Berti Giroldo, William Makant, Edward Werninghaus, et al. Development of 1.6L flex fuel engine for Brazilian market [C]. USA:Society of Automotive Engineers, 2005-01-4130.
    [48]Baeta J. G. C., Valle R. M., Amorim R. J., et al. A new concept of a flex multi-fuel engine [C]. USA:Society of Automotive Engineers,2004-01-3427.
    [49]James W. G. Turner, A. Peck, R. J. Pearson. Flex-fuel vehicle development to promote synthetic alcohols as the basis of a potential negative-CO2 energy economy [C]. USA: Society of Automotive Engineers,2007-01-3618.
    [50]刘志敏.电控喷射乙醇燃料(E100)在火花点燃式发动机的应用研究[D].吉林大学硕士学位论文,2002.
    [51]黄付强.乙醇-汽油灵活比例电控发动机性能研究[D].浙江大学硕士学位论文,2005.
    [52]Peter Haluska, Lino Guzzella. Control-oriented modeling of mixture formation phenomena in multi-port-injection SI gasoline engines [C]. USA:Society of Automotive Engineers,980628.
    [53]Y. Tan, M. Saif. Neural-networks-based nonlinear dynamic modeling for automotive engines [J]. Neurocomputing,2000.1,30(1):129-142.
    [54]Yanhong Zhang, Lifeng Xi, James Liu. Transient air-fuel ratio estimation in spark ignition engine using recurrent neural networks [J]. KES 2007/WIRN 2007, Part Ⅱ, LNAI4693, 2007:240-246.
    [55]Tomas Poloni, Tor Arne Johansen, Boris Rohal-llkiv. Modeling of air-fuel ratio dynamics of gasoline combustion engine with ARX network [J]. Journal of Dynamic Systems, Measurement, and Control,2008.11,130:061009.
    [56]Andrea Balluchi, Luca Benvenuti, Maria Domenica Di Benedetto, et al. Hybrid control of force transients for multi-point injection engines [J]. International Journal of Robust and Nonlinear Control,2001, (11):515-539.
    [57]J. J. Moskwa. Automotive engine modeling for real time control [D]. Ph. D. Dissertation, Department of Mechanical Engineering, Massachusetts Institute of Technology,1988.
    [58]I. Rasmussen. Emissions from cars [D]. Ph. D. Dissertation, The Laboratory for Energetics, The Technical University of Denmark,1971.
    [59]E. Hendricks, T. Vesterholm. The analysis of mean value SI engine models [C]. USA: Society of Automotive Engineers,920682.
    [60]E. Hendricks. Engine modeling for control applications:a critical survey [J]. Meccanica, 1997,32:387-396.
    [61]E. Hendricks. The analysis of mean value engine models [C]. USA:Society of Automotive Engineers,890563.
    [62]C. F. Aquino. Transient A/F control characteristics of the 5 liter central fuel injection engine [C]. USA:Society of Automotive Engineers,810494.
    [63]E. Hendricks, S. C. Sorenson. Mean value modeling of spark ignition engines [C]. USA: Society of Automotive Engineers,900616.
    [64]E. Hendricks, A. Chevalier, M. Jensen, et al. Modeling of the intake manifold filling dynamics [C]. USA:Society of Automotive Engineers,960037.
    [65]M. Mueller, E. Hendricks, S. C. Sorenson. Mean value modeling of turbocharged spark ignition engines [C]. USA:Society of Automotive Engineers,980784.
    [66]Lars Eriksson, Lars Nielsen, Jan Brugard, et al. Modeling of a turbocharged SI engine [J]. Annual Reviews in Control,2002, (26):129-137.
    [67]M. Mueller, M. Fons, C. Viqild, et al. Mean value engine modeling of an SI engine with EGR [C]. USA:Society of Automotive Engineers,1999-01-0909.
    [68]J. D. Russell. On automotive engine intake manifold dynamic modeling, estimation, and control [D]. Ph. D. Dissertation, Ohio State University,2000.
    [69]A. Chevalier, M. Muller, E. Hendricks. On the validity of mean value engine models during transient operation [C]. USA:Society of Automotive Engineers,2000-01-1261.
    [70]J. Deur, D. Hrovat, J. Asgari. Analysis of mean value engine model with emphasis on intake manifold thermal effects [C]. Proceedings of the 2003 IEEE International Conference on Control Applications,2003:161-166.
    [71]E. Hendricks, S. C. Sorenson. Mean value modeling of spark ignition engines [C]. USA: Society of Automotive Engineers,900616.
    [72]P. J. Shayler, Y. C. Teo, A. Scarisbrick. Fuel transport characteristics of spark ignition engines for transient fuel compensation [C]. USA:Society of Automotive Engineers, 950067.
    [73]C. Onder, M. Simons, H. P. Geering. Wall-wetting parameters over the operating region of a sequential fuel-injected SI engine [C]. USA:Society of Automotive Engineers,980792.
    [74]P. J. Maloney. An event-based transient fuel compensator with physically based parameters [C]. USA:Society of Automotive Engineers,1999-01-0553.
    [75]J. C. Zavala, D. Gunther, P. Sanketi, et al. Fuel dynamics model for engine coldstart [C]. ASME 2006 International Mechanical Engineering Congress and Exposition,2006:1-8.
    [76]E. W. Curtis, C. F. Aquino, D. K. Trumpy, et al. A new port and cylinder wall wetting model to predict transient air/fuel excursions in a port fuel injected engine [C]. USA: Society of Automotive Engineers,961186.
    [77]E. Curtis, S. Russ, C. Aquino, et al. The effects of injector targeting and fuel volatility on fuel dynamics in PFI engine during warm-up:part Ⅱ-modeling results [C]. USA:Society of Automotive Engineers,982519.
    [78]S. Russ, C. Aquino, E. Curtis. The effects of injector targeting and fuel volatility on fuel dynamics in PFI engine during warm-up:part Ⅰ-experimental results [C]. USA:Society of Automotive Engineers,982518.
    [79]J. J. Batteh, E. W. Curtis. Modeling transient fuel effects with alternative fuels [C]. USA: Society of Automotive Engineers,2005-01-1127.
    [80]孟铭,倪计民.电控多点喷射汽油机燃油雾化和蒸发特性研究[J].车用发动机,2001.2,(1):1-4.
    [81]邹博文,吴锋,杨志家.电喷汽油机进气管燃油动态模型及补偿的仿真[J].汽车工程,2004,26(4):423-425.
    [82]胡金龙.电喷汽油机进气及燃油动态模型的研究[D].浙江大学硕士学位论文,2006.
    [83]朱航.基于模型的过渡工况空燃比控制的应用研究[D].清华大学博士学位论文,2003.
    [84]邹博文.基于模型的汽油机空燃比控制技术研究[D].浙江大学博士学位论文,2006.
    [85]孙磊,吴昊,黄海燕,等.汽油机平均值模型在硬件在环仿真中的应用[J].车用发动机,2002.8,(4):27-29.
    [86]于镒隆.发动机管理系统开发测试技术与平台研究[D].天津大学博士学位论文,2008.
    [87]E. Hendricks. Towards robust H-infinity control of an SI engines air/fuel ratio [C]. USA: Society of Automotive Engineers,1999-01-0854.
    [88]C. H. Onder, H. P. Geering. Model-based multivariable speed and air-to-fuel ratio control of an SI engine [C]. USA:Society of Automotive Engineers,930859.
    [89]S. Nakagawa, K. Katogi, M. Oosuga. A new air-fuel ratio feedback control for ULEV/SULEV standard [C]. USA:Society of Automotive Engineers,2002-01-0194.
    [90]F. Zhang, K. M. Grigoriadis, M. A. Franchek. Linear parameter-varying lean burn air-fuel ratio control for a spark ignition engine [J]. Journal of Dynamic Systems, Measurement, and Control,2007.7,129(4):404-414.
    [91]J. K. Pieper, R. Mehrotra. Air/fuel ratio control using sliding mode methods [C]. Proceedings of the American Control Conference,1999:1027-1031.
    [92]J. M. Pfeiffer, J. K. Hedrick. Nonlinear algorithms for simultaneous speed tracking and air-fuel ratio control in an automobile engine [C]. USA:Society of Automotive Engineers, 1999-01-0547.
    [93]S. B. Choi, J. K. Hedrick. An observer based controller design method for improving air/fuel characteristics of spark ignition engines [J]. IEEE Transactions on Control Systems Technology,1998,6(3):325-334.
    [94]P. Yoon, M. Sunwoo. An adaptive sliding mode controller for air-fuel ratio control of spark ignition engines [C]. Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering,2001,215:305-315.
    [95]J. S. Souder, J. K. Hedrick. Adaptive sliding mode control of air-fuel ratio in internal combustion engines [J]. International Journal of Robust and Nonlinear Control,2003,00: 1-16.
    [96]L. Mianzo, H. Peng, I. Haskara. Transient air-fuel ratio H∞ preview control of a drive-by-wire internal combustion engine [C]. Proceedings of the American Control Conference,2001:2867-2871.
    [97]P. Bidan, S. Boverie, V. Chaumerliac. Nonlinear control of a spark-ignition engine [J]. IEEE Transactions on Control Systems Technology,1995.3,3(1):4-13.
    [98]A. Ohata, M. Ohashi, M. Nasu, et al. Model based air fuel ratio control for reducing exhaust gas emissions [C]. USA:Society of Automotive Engineers,950075.
    [99]K. R. Muske, J. C. Peyton Jones. A model-based SI engine air fuel ratio controller [C]. Proceedings of the American Control Conference,2006.6:3284-3289.
    [100]I. Arsie, C. Pianese, G. Rizzo, et al. An adaptive estimator of fuel film dynamics in the intake port of a spark ignition engine [J]. Control Engineering Practice,2003, (11): 303-309.
    [101]M. Locatelli, E. Alfieri, C. H. Onder, et al. Identification of the relevant parameters of the wall-wetting system by extended Kalman filtering [J]. Control Engineering Practice,2006, 14(3):235-241.
    [102]M. Jankovic, S. Magner, D. Hagner, et al. Multi-input transient fuel control with auto calibration [C]. Proceedings of the American Control Conference,2007.7.
    [103]D. J. Stroh, M. A. Franchek, J. M. Kerns. Eliminating MAPs from engine fueling control algorithms [C]. USA:Society of Automotive Engineers,2001-01-0259.
    [104]Chen-Fang Chang, N. P. Fekete, A. Amstutz, et al. Air-fuel ratio control in spark-ignition engines using estimation theory [J]. IEEE Transactions on Control Systems Technology, 1995.3,3(1):22-31.
    [105]R. Cipollone, C. Villante. On-line identification of fuel dynamics for a model-based injection control [C]. USA:Society of Automotive Engineers,2005-01-0064.
    [106]X. Shan, J. Burl, M. Jankovic, et al. Transient fuel X-Tau parameter estimation using shot time Fourier transform [C]. USA:Society of Automotive Engineers,2008-01-1305.
    [107]E. Hendricks, T. Vesterholm, S. C. Sorenson. Nonlinear closed loop SI engine control observers [C]. USA:Society of Automotive Engineers,920237.
    [108]E. Hendricks, J. Poulsen, M. B. Olsen, et al. Alternative observers for SI engine air/fuel ratio control [C]. Proceedings of the 35th Conference on Decision and Control, Kobe, Japan,1996.12:2806-2811.
    [109]J. David Powell, N. P. Fekete, Chen-Fang Chang. Observer-based air-fuel ratio control [J]. IEEE Control Systems Magazine,1998:72-83.
    [110]K. S. Al-Olimat, A. A. Ghandakly, M. M. Jamali. Adaptive air-fuel ratio control of an SI engine using fuzzy logic parameters evaluation [C]. USA:Society of Automotive Engineers,2000-01-1246.
    [111]C. Manzie, M. Palaniswami, D. Ralph, et al. Model predictive control of a fuel injection system with a radial basis function network observer [J]. Journal of Dynamic Systems, Measurement, and Control,2002.11,124(4):648-658.
    [112]C. Alippi, C. de Russis, V. Piuri. A neural-network based control solution to air-fuel ratio control for automotive fuel-injection systems [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews,2003.5,33(2):259-268.
    [113]雷群芳.中级化学实验[M].北京:科学出版社,2007.
    [114]张永彦.乙醇汽油混合燃料油膜蒸发特性的基础研究[D].浙江大学硕士学位论文,2010.
    [115]T. R. Aulich, Xinming He, A. A. Grisanti, et al. Gasoline evaporation-ethanol and nonethanol blends [J]. Journal of the Air & Waste Management Association,1994,44(8): 1004-1009.
    [116]利德森.实用工程传质学[M].上海:上海科学技术文献出版社,1987.
    [117]E. R. Gilliland, T. K. Sherwood. Diffusion of vapors into air streams [J]. Industrial and Engineering Chemistry,1934.5,26(5):516-523.
    [118]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2004.
    [119]A. Chevalier, C. W. Vigild, E. Hendricks. Predicting the port air mass flow of SI engines in air/fuel ratio control applications [C]. USA:Society of Automotive Engineers, 2000-01-0260.
    [120]M. Muller. Mean value modeling of turbocharged spark ignition engines [D]. Master Dissertation, The Technical University of Denmark, Institute of Automation and Department of Energy,1997.
    [121]郑俊丽.495电喷汽油机进气过程仿真及试验研究[D].浙江大学硕士学位论文, 2005.
    [122]J. B. Heywood. Internal combustion engine fundamentals [M]. USA:McGraw-Hill,1988.
    [123]周龙保.内燃机学[M].北京:机械工业出版社,2000.
    [124]钱人一.现代汽车发动机电子控制[M].上海:上海交通大学出版社,2004.
    [125]R. E. Kalman. A new approach to linear filtering and prediction problems [J]. Transactions of the ASME-Journal of Basic Engineering,1960,82(Series D):35-45.
    [126]邓自立.卡尔曼滤波与维纳滤波:现代时间序列分析方法[M].黑龙江:哈尔滨工业大学出版社,2001.
    [127]冯培悌.系统辨识[M].浙江:浙江大学出版社,2006.
    [128]姚栋伟,吴锋,朱一峰,等.基于EKF算法的进气道燃油状态观测器研究[J].内燃机学报,已录用,2010.3.
    [129]姚栋伟,吴锋,俞小莉,等.基于状态观测器的电喷汽油机进气流量精确估计[J].内燃机工程,2009.6,30(3):34-38.
    [130]M. Wendeker, J. Czarnigowski. Hybrid air/fuel ratio control using the adaptive estimation and neural network [C]. USA:Society of Automotive Engineers,2000-01-1248.
    [131]J. Cowart, W. Cheng. Intake valve thermal behavior during steady-state and transient engine operation [C]. USA:Society of Automotive Engineers,1999-01-3643.
    [132]A. C. Alkidas. Intake valve temperature histories during S.I. engine warm-up [C]. USA: Society of Automotive Engineers,2001-01-1704.
    [133]M. Locatelli, C. H. Onder, H. P. Geering. An easily tunable wall-wetting model for PFI engines [C]. USA:Society of Automotive Engineers,2004-01-1461.
    [134]朱一峰,吴锋,姚栋伟,等.进气道油膜壁面温度模型研究[J].内燃机工程,已录用,2009.11.
    [135]朱一峰.掺醇汽油的油膜动态特性研究[D].浙江大学硕士学位论文,2010.
    [136]王建辉,顾树生.自动控制原理[M].北京:清华大学出版社,2007.
    [137]严兆大.热能与动力工程测试技术[M].北京:机械工业出版社,2006.
    [138]AUTOSAR Group. Automotive open system architecture specifications release 4.0 (revision 1) [S/OL]. http://www.autosar.org,2009.
    [139]H. Kleinknecht. Can calibration protocol version 2.1 [S]. ASAP Standard,1999.2.
    [140]吴森.汽油机管理系统[M].北京:北京理工大学出版社,2002.
    [141]吴晔,张阳,滕勤.基于HCS12的嵌入式系统设计[M].北京:电子工业出版社,2010.
    [142]邵贝贝.单片机嵌入式应用的在线开发方法[M].北京:清华大学出版社,2004.
    [143]Robert Bosch GmbH. Hot-film mass air flow meter HFM5-4.7 technical customer information [S].2003.11.
    [144]姚栋伟,吴锋,杨志家,等.基于增量式数字PID的汽油机怠速控制研究[J].浙江大学学报工学版,已录用,2009.3.
    [145]姚栋伟,吴锋,周重光,等.基于事件的电喷汽油机喷油点火时序控制策略研究[J].内燃机工程,2009.12,30(6):67-71.
    [146]邹博文,吴锋,俞小莉,等.汽油机分组喷射和点火定时同步控制策略研究[J].内燃机工程,2006.2,27(1):15-22.
    [147]ETAS GmbH. Lambda meter LA4 user's guide [S].2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700