气动高速开关阀关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动高速开关阀因其体积小、成本低、结构简单、抗污染能力强、功率质量比大、切换迅速等优点,在微电子、医药产品粘结、包装装配及农产品色选系统等工业领域中获得了广泛的应用,并成为当今气动技术研究和发展的重要方向之一。同时,伴随数字集成电路技术的发展,气动高速开关阀在工业自动化中正逐步取代价格高昂的气动比例伺服阀,应用领域由传统的简单开环控制系统向伺服控制系统中拓展,用于实现低成本的力、位移、速度伺服控制。掌握高速开关阀所涉及的系列关键技术,研发具有自主知识产权的气动高速开关阀将有助于更好地满足日益提高的市场需求,进而推动我国在气动元件领域研究的发展,为气动自动化和气动伺服控制技术的发展更好地服务。
     本文以气动高速开关阀关键技术为研究对象,采用理论分析、解析计算、数值仿真和试验研究相结合的方法,对开关阀所涉及的关键技术进行了系统、深入的研究。通过磁路分析和磁场有限元仿真,分别阐述了电磁铁结构及外部控制参数的作用机理。通过采用缩小衔铁质量的策略,在传统E型电磁铁基础上,提出了ε型电磁铁新结构。仿真与试验结果表明,ε型电磁铁在高速开关阀典型气隙长度范围内电磁力输出能力基本不变(40-60N),而在各种工况下电磁铁的开启速度均有超过10%的性能提升。采用其设计的开关阀开关延时时间分别为0.8ms和0.8ms,气源压力为表压5Bar时流量最高可达70L/min。在此基础上,为进一步缩小电磁铁结构尺寸以满足工业自动化应用中对开关阀结构紧凑性的要求,设计了输出能力在20-30N,结构尺寸为24mm*12mm*3mm的C型紧凑型电磁铁结构。试验结果表明采用其设计的开关阀开关延时时间分别为0.8ms和0.8ms,气源压力为表压4Bar时流量在45L/min左右。最后将所设计开发高速开关阀成功应用于简易光学色选系统,对开关阀的分选能力进行了试验验证。现将各章内容分述如下:
     第一章主要探讨了电液、气动高速开关阀用电磁铁关键技术的研究进展,分析总结了气动高速开关阀在结构特征、工作状态及应用需求方面所独有的特点及其发展趋势;介绍了开关阀驱动方案、开关阀伺服控制技术和光学色选设备、磁性材料等相关技术进展;
     第二章从高速开关阀静态流量特性、动态响应特性、及其温度特性与稳定性、寿命特性等几个方面出发,系统论述了气动高速开关阀的静态性能、动态性能及其影响因素,提出了相应设计要点。阐述了磁性材料特性对开关电磁性能的影响,为电磁铁材料选型提供了理论依据。最后,分别以E型、C型电磁铁为电机械转换机构,设计了两种不同结构的气动高速开关阀;
     第三章在考虑电磁铁边缘磁通和泄露磁通,以及磁性材料饱和特性的基础上,建立了电磁铁的磁路分析模型,得出了有关电磁铁静态力位移关系表达式,初步确定了两种电磁铁的结构参数。建立了电磁铁有限元数值分析模型,对比分析了有限元分析与磁路分析之间的结果;通过二维有限元仿真详细阐述了各结构参数对E型电磁铁静动态特性的影响,通过结构优化得到了新型ε型电磁铁结构,对比分析了电磁铁优化前后的静、动态特性;通过三维有限元仿真分析了各结构参数对C型电磁铁性能的影响,得到了紧凑C型电磁铁结构及其参数。
     第四章针对有限元方法进行多场耦合求解资源消耗大,计算时间长的问题,分别建立了基于磁通变化和基于有限元-集总参数分析的开关阀动态性能求解模型,以提高开关阀动态特性求解效率。对比研究了不同计算方法下的开关阀动态性能仿真结果,在综合考虑求解速度与计算精度条件下,以有限元求解方法分析了各参数对E型电磁铁开关阀动态性能的影响,而以基于有限元-集总参数的混合模型分析了各参数对C型电磁铁开关阀动态性能的影响,揭示了开关阀动态性能变化规律。最后论述了通过检测阀控腔动态压力变化对开关阀动态性能进行检测的可行性,提出了新型阀控腔动态压力特性测试系统。
     第五章介绍了开关阀电磁铁力特性测试系统、电磁铁动态位移特性测试系统、基于检测阀控腔动态压力特性获取开关阀响应时间及寿命特性的测试系统、励磁线圈电流特性测试及开关阀流量与温升特性测试系统。基于搭建的测试系统,分别对所开发的两种电磁铁结构开关阀的静动态特性进行了试验分析,并将其与仿真结果作了对比;最后,将设计开发的高速开关阀应用于所设计的简易光电色选系统中,实现了白、黄两色粒子的自动分选功能;
     第六章概括了全文的主要研究工作和成果,并展望了今后需进一步研究的工作和方向。
With advantages of low cost, anti-pollution ability, high flow rate gain, small size and simple structure, electro-pneumatic high-speed on/off valves have attracted considerable attention in several areas of modern industry. They have been used in sorting parts, flapping control systems and other systems for gluing, dosing and packaging where discrete cyclic, linear or rotating motions and a very long lifetime are required, and have come to a hot topic of research on the pneumatic technology. Besides, with the development of integrated circuits, they have been used to substite the expensive pneumatic proportional or sevro valve for precise and fine position, force or positon control by adopting pulse witdth modulation technology. Research on the key technology of electro-pneumatic high-speed on/off valve would help to better meet the ever-increasing needs of market and to promote development in the field of pneumatic components of China.
     Based on theory analysis, mathematical modeling, numerical simulation and experimental study, the pneumatic high speed on/off valves are systematically, deeply researched in the thesis. With magnetic circuit analysis and finite element simulation, the influences of the structural and control parameters on the vavle performance are analyzed in detail. A new s-type solenoid is presented for improving the dynamic characteristics of high speed on/off valve based on traditional E-type solenoid. Simulation and test results indicate thatε-type solenoid considerably reduces the armature weight that the actuator's response times are decreased by typically 10% under different work conditions with the same level magnetic force. The on/off valve based on this solenoid has a typical on/off time of 0.8ms and 0.8ms, and a maximum volume flow rate of 70L/min under source pressure of 5Bar. A C-type solenoid with a tiny size of 24mm*12mm*3mm is present to meet the compact requiremens from industry automation. It has a typical magnetic force of 20~30N, and the on/off valve based on it has a typical on/off time of 0.8ms and 0.8ms, and a volume flow rate of 45L/min under source pressure of 5Bar. As an application example of the high speed on/off valve, a simplified optical sorting device is successfully developed for sorting particles with different color automatically. The main content of each chapter is summarized as following:
     In chapter 1, the research progress of high speed solenoids for electro-hydraulic or electro-pneumatic on/off vavles are introduced, and the structural features, working status, application requirements and development trend of pneumatic on/off valves are summarized. Relative technologies such as the valve driving circuits, the pneumatic servo control by using on/off valves, the optical sorting system and the magnetic material are also presented.
     In chapter 2, from standpoints of the static mass flow rate, the dynamic response characteristics, the temperature performance, and the stability and life performance for pneumatic high speed on/off valves, the design method and acquirements for the valve are summarized. The influences of the magnetic material on the valve static and dynamic characteristics are illustrated in detailly as the design basis, and two on/off valves based on the traditional E-type and C-type solenoids are presented finally.
     In chapter 3, the magneti circuit models of two high speed solenoids for electro-pneumatic valves are established, fringe flux, leakage flux, and magnetic saturation are took into account in the model. Formulas for deciding the solenoid force are derived and presented explicitly, and then the primitive structrual parameters for two solenoids are presented as the design basis. Finite element models (FEM) of the solenoids are also established, comparisons between the simulation results from the FEM and magnetic circuit model are presented. The action mechanism of the structural parameters on solenoids are analyzed in detail with FEM, and then the specific solenoid structural parameters are determined. A newε-type solenoid is developed based on the traditional E-type solenoid, and a compacted C-type solenoid is also presented to meet the requirement from industrial application.
     In chapter 4, two numerical analysis models for the dynamic characteristics of on/off valves are presented, one is based on the flux variation in the magnetic ciruit, while the other one is based on hybrid FEM-LPM (Lumped Parameter Model) mode. Comparisons between different simulation methods are presented firstly, and then from standpoints of the simulation efficiency and accuracy, FEM is adopted for the dynamic performance of the E-type solenoid, while the hybrid FEM-LPM method is adopted for the C-type solenoid. Influences of different factors on the on/off valve dynamic properties are simulated, some conlusions are presented for the improvment of dynamic performance of on/off valves.
     In chapter 5, a series of test rigs for electro-pneumatic high speed on/off valves, such as force-stroke characteristics, armature dynamic stroke, step pressure reponse of the valve command chamber, coil current, valve mass flow rate and the solenoid temperature, are introduced. Based on these systems, the static and dynamic characteristics of two solenoids are measured, and compared with the simulation results. A simplified optical sorting system are developed based on the newly designed valves, particles with different color, such as yellow and white, can be sorted automatically with this system.
     In chapter 6, all achievements of the dissertation are summarized and the further research work is put forward.
引文
[1]张胜昌. 开关阀性能分析与优化设计的基础研究[D]. 上海:上海交通大学,2002.
    [2]黄茂杨. 柴油机高压共轨燃油喷射系统--高速电磁阀结构与控制参数优化及其特性测试系统的研制[D]. 南京:东南大学,2004.
    [3]向忠,陶国良,谢建蔚,等.气动高速开关阀动态压力特性仿真与试验研究[J].浙江大学学报(工学版),2008,42(5):845-857.
    [4]XIANG Z, LIU H, TAO G L, et al. Development of an ε-type actuator for enhancing high-speed electro pneumatic ejector valve performance [J]. Journal of Zhejiang University Science A,2008,9(11):1552-1559.
    [5]Xiang zhong, Liu Hao, Tao Guoliang. Model and optimal design of pneumatic high-speed on/off valve [C]. Procceedings of the 7th international conference on fluid power transmission and control (ICFP), Hangzhou, China, Mar.2009, 533-536.
    [6]向忠,刘昊,陶国良.高频电气喷射阀优化设计与试验[J].农业机械学报,2009,40(4):210-215.
    [7]Situm Z, Zilic T, Essert M. High Speed Solenoid Valves in Pneumatic Servo Applications [C]. In:Proceedings of the Mediterranean conference on control and automation, Greece, Athens, 2007, T06-001.
    [8]Burrows C R, Webb C R. Simulation of an On-Off Pneumatic Servomechanism [J]. Proceedings of the Institution of Mechanical Engineers, 1968,182:631-642.
    [9]Burrows C R, Webb C R. Further Study of a Low Pressure On-Off Pneumatic Servomechanism [J]. Proceedings of the institution of mechanical engineers,1970,184:849-858.
    [10]Goldstein S R, Ricardson H H. A Differential Pulse Width Modulated Pneumatic Servo Utilizing Floating Flapper Disc Switching Valves [J]. Transactions of the ASME, Journal of basic engineering,1968, Series C:143.
    [11]Eurn T, Cho Y J, Cho H S. Stability and positioning accuracy of a pneumatic on-off servomechanism [C]. Proceedings of the American control conference,1982,1189-1194.
    [12]Noritsugu T. Development of PWM Model Electro-Pneumatic Servomechanism. Part Ⅰ:Speed Control of a Pneumatic Cylinder. Journal of Fluid Control [J]. 1986,17(1):65-80.
    [13]Morito Y S, Shimizu M, Kagawa T. An analysis on pneumatic PWM and its application to a manipulator [C]. In: Proceedings of the international symposium on fluid power control and measurement, Tokyo,1987,3-8.
    [14]Kunt C, Singh R. A Linear Time Varying Model for On-Off Valve Controlled Pneumatic Actuators [J]. ASME J. Dyn. Syst., Meas., Control,1990,112(4):740-747.
    [15]Varseveld R B, Bone G M.Accurate position control of a pneumatic actuator using on/off solenoid valves [J]. IEEE/ASME Trans Mech,1997,2:195-204.
    [16]Tao G L, Zhu X C, Cao J. Modeling and controlling of Parallel manipulator joint driven by pneumatic muscles [J]机械工程学报(英文版),2005,]8(4):537-541.
    [17]Vanderborght B, Verrelst B, Ham R V, et al. Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles [J].Robotica,2006,24:401-410
    [18]谢建蔚,陶国良,周洪.高速开关阀驱动的气动肌肉关节的滑模变结构跟踪控[J]. 中国机械工程,2007,18(5):540-544.
    [19]朱笑丛,陶国良,曹剑.气动肌肉并联关节的位姿轨迹跟踪控制[J].机械工程学报,2008 44(7):161-167.
    [20]Shih M C, Hwang C G. Fuzzy PWM control position of a pneumatic robot cylinder using high speed solenoid valves[J]. International Journal of JSME, Series C,1997,40(3):469-476.
    [21]Shih M C, Ren P K. Development of the pneumatic servo control system [C]. In:Proceedings of the 5th JFPS international symposium, Nara, 2002, 1: 13-15.
    [22]Shih M C,Ma M A.Position Control of a Pneumatic Rodless Cylinder Using Sliding Mode M-D-PWM Control the High Speed Solenoid [J]. JSME Int J.1998,41(2C):236-241.
    [23]Shih M C, Ma M A. Position Control of a Pneumatic Rodless Cylinder Using Fuzzy PWM Control Method [J]. Mechatronics,1998,8(3):241-253.
    [24]李勇.低功耗比例电-机械转换器关键技术研究[D].杭州:浙江大学,2009.
    [25]孟爱华.脉冲喷射开关阀理论及其在BCP应用中的研究[D].杭州:浙江大学,2006.
    [26]Messner S, Muller M, Burger V, et al. A normally-closed, bimetallically actuated 3-way microvalve for pneumatic applications [C]. In:Proceedings of the 11th annual international workshop on micro electro mechanical systems, Heidelberg,1998,40-44.
    [27]周洪.气动技术的新发展[J].液压气动与密封,1999,5:2-12.
    [28]Seilly A H.Helenoid. Actuators-a new concept in extremely fast acting solenoids [J]. SAE 790119,426-435.
    [29]Seilly A H. Colenoid. Actuators-further developments in extremely fast acting solenoids [J]. SAE 810462,1440-1781.
    [30]Michael M.Schechter. Fast response multipole solenoids [J]. SAE 820203,846-857.
    [31]Kushida T. High speed powerful and simple solenoid actuator "disole" and its dynamic analysis results [J].SAE Technical Papers Series,1985,850373,3127-3136.
    [32]Royston T, Singh R. Development of a pulse-width modulated pneumatic rotary valve for actuator position control [J].ASME Journal of dynamic systems, measurement, and control,1993,115:495-505.
    [33]Kajima T.Development of a high-speed solenoid valve-investigation of the energizing circuits [J]. IEEE Transactions on Industrial Electronics,1993,40:428-435.
    [34]Kajima T, Kawamura Y.Development of a high-speed solenoid valve:investigation of solenoids [J].IEEE Transactions on Industrial Electronics,1995,42:1-8.
    [35]Passarini LC, Nakajima P R.Development of a high-speed solenoid valve an investigation of the importance of the armature mass on the dynamic response [J]. J. of the Braz. Soc. of Mech. Sci. & Eng,2003, ⅩⅩⅤ(4):329-335.
    [36]汪志刚,张敬国.高速强力电磁阀的研究现状[J].车用发动机,2003,1(143):11-15.
    [37]William G. Wolber. An overview of automotive control actuators [J].SAE papers,1984,840306:539-550
    [38]周盛.液压自由活塞发动机运动特性及其数字阀研究[D].2006,杭州:浙江大学.
    [39]Hesse H, M Moller.Pulsedauermodnlierte Steuerung von Magnetventilen [J].Olhydraulik und Pneumatik,1972, 451-455.
    [40]田中裕久.高速電磁弁に関する研究[J].日本机械学会论文C,1983,50(457):1594-1601.
    [41]David B, mohler.Rotary and linear DC proportional solenoids [J]. SAE 860759:41-46.
    [42]Chris J G, James S W.Electrically Actuated Injectors for Gaseous Fuels [J]. SAE Paper 892143.
    [43]Scott P J.Gaseous fuel injector valve:American, US4865001[P/OL]. Sep-12-1989.
    [44]Tanaka H, Urai T. Accumulator type fuel injection device for internal combustion engine:Japan, EP1260701A1[P/OL].21-11-2002.
    [45]Miyaki M, Fujisawa H, Masuda A, et al.Development of New electronically controlled fuel injection system ECD-U2 for diesel engines [J].SAE paper,910252:312~327.
    [46]Goodfriend M, Sewell M, and Jones C.Application of a magnetostrictive alloy, Terfenol D to direct control of hydraulic valves [J].SAE International Off-Highway and Power plant Congress and Exposition,1990.
    [47]Urai T, Sugiyama T, Nakamura T.Development of a direct-drive servo valve using a giant mgnetostric-tive material [J].Transactions of the Japan Society of Mechanical Engineers, Part C, 1993,59(563):146-149.
    [48]Urai T.Development of a valve using a giant magnetostrictive actuator [C].Proceeding of the second jhps international symposium on fluid power.Tokyo,1993,131-135.
    [49]Tanaka H, SatoY, Urai T.Development of a common rail proportional injector controlled by a tandem arrayed giant magnetostrictive actuator [J].J.SAE Review,200122:369-371.
    [50]Jason E, Lindler, Eric H, Anderson.Piezoelectric Direct Drive Servovalve [J].Industrial and Commercial Applications of Smart Structures Technologies, SPIE Paper,20024698-53.
    [51]Zhao Y, Jones B. A power air-jet actuator with piezotranslator drive stage [J]. Mechatronics,1991,1(2):231-243.
    [52]Rogge T, Rummler Z, Schomburg W K. Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process [J]. Sensors and actuators,2004,110:206-212.
    [53]Clark A E. Mgnetostrictive Rare Earth-Fe2 Compounds, In:Ferromagnetic Materials [M]. Amsterdam:North Holland Publishing Company,1980,531~538.
    [54]Clark A E. Variable delay line:American, US3949351 [P/OL], Apr-6-1976.
    [55]郭东明,杨兴,贾振元,等.超磁致伸缩执行器在机电工程中的应用研究现状[J].中国机械工程,2001,12(6):724-727.
    [56]金绥更,刘湘林,蒋志红.稀土超磁致伸缩器件的设计与应用[J].稀土,1992,13(1):39-45.
    [57]高平波.基于压电陶瓷驱动器的新型气动阀研究[D].2006,杭州:浙江大学.
    [60]Festo Inc. Festo产品手册.http://xdki.festo.com.cn/xdki/xDKI.asp
    [61]Neff J A, Fagerlie R A, Janssen E P, et al. Solenoid:US,5192936[P].1991-08-22 [1993-03-09]-
    [62]SMC Inc. SMC新产品介绍.http://www.smcworld.com/2002/npp/pdf/jp/npp-e06-13.pdf
    [63]Bee S C, Honeywood M J. Colour sorting for the bulk food industry in Colour in Food:Improving Quality.Cambridge [M]. UK:Woodhead,2002.
    [64]CKD Inc. CKD新产品介绍.http://www. ckd. co. jp/english/kiki/info/gene_val/pd.htm
    [65]Macvalves Inc. Mac新产品介绍.http://www. macval ves.com/products/Three_Way/Small/31/31.pdf
    [66]Kenneth H, Stewart M. Piezoelectric diaphragm valve for use in sorting apparatus ejectors:WO, 96/17192[P].1994-12-01[1996-06-06].
    [67]Post P, Gerhartz J, Bindig R. Piezoelectric valve:US,6715731 B1[P].2000-07-01 [2004-04-06].
    [68]Yano T, Higuchi T, Kudoh K, et al.Piezoelectric air valve and multiple-type piezoelectric air valve.US:7360750 B2[P], 2004-04-09[2008-04-22].
    [69]Frisch, H.; Wirtl, J. Piezo valve:Germany, US 5343894 [P/OL], Sep.6,1994.
    [70]P. Post., J. Gerhartz., R. Bindig., Piezoelectric valve:Festo, US 6715731B1 [P/OL], Apr.6,2004
    [71]W. Eberhardt., H. Kuck., C. Pein., et al. Piezoelectric valve:Festo, US 6811136B2[P/OL], Nov.2,2004
    [72]Janssen E P, Jones T R. Self-latching solenoid valve assembly. US:6129115[P],1999-07-02[2000-10-10].
    [73]Topcu E E, Yiiksel I, Kamis Z.Development of electro-pneumatic fast switching valve and investigation of its characteristics. Mechatronics,2006,16(6):365-378.
    [74]Messner S, Muller M, Burger V, et al. A normally-closed, bimetallically actuated 3-way microvalve for pneumatic applications[C].In:Proceedings of the 11th annual international workshop on micro electro mechanical systems, Heidelberg,1998,40-44.
    [75]Rogge T, Rummler Z, Schomburg W K.Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process[J].Sensors and actuators A:physics,2004,110:206-212.
    [76]Gaiardo M.High-speed solenoid valve for a fluid under pressure, E.G.for pneumatic circuits:US,5048564 [P].1990-05-30[1991-09-17].
    [77]Gaiardo M. High-speed three-way fluid solenoid valve and relative production method:WO,2005/080841 A1[P].2004-12-02[2005-09-01].
    [78]www.matrix.to.it
    [79]苗建中,郑云川.螺纹插装式高速开关阀.液压与气动.1993,6:29-30.
    [80]于春阳,李冀鹏,许耀铭.一种新型的电/气高速开关阀.液压与气动.1993,4:20-23.
    [81]徐捷,韩秀坤,张幽彤,等.高速数字开关阀在柴油机电控技术中的应用[J].北京理工大学学报.1994,14(1):91-95.
    [82]王尚勇,程昌析.柴油机电控燃油系统中的高速电磁阀设计.兵工学报-坦克装甲车与发动机分册[J],1996,237-241.
    [83]赵四海,朱红秀,王正良,周公韬.压电晶体型电液开关阀.中国矿业大学学报,1997,26(4):99-101.
    [84]杜传进.电控直列泵-管-阀-嘴柴油喷射系统高速强力电磁阀的研究[D].1998,北京:清华大学.
    [85]吕福在,项占琴,戚宗军,程耀东.稀土超磁致伸缩材料高速强力电磁阀的研究[J].内燃机学报,2000,18(2):199-202.
    [86]张小军,凌宁,朱国伟,崔可润.新型高速开关阀的设计与研究[J].机床与液压,2001,6:88-91.
    [87]张小军,朱国伟,崔可润.高速大流量二位三通开关式电磁阀[J].阀门.,2001,2:6-8..
    [88]杨继隆,阮健,俞浙青.2D气动高速开关阀.机床与液压[J].,2001,5:29-30.
    [89]陆豪,朱成林,曾思,等.新型PZT元件驱动的液压高速开关阀及其大功率快速驱动技术的研究[J].机械工程学报,2002,38(8):118-121.
    [90]施光林.高速电磁开关阀性能预测与优化研究[D].上海:上海交通大学,2000.
    [91]石延平,张永忠,刘成文.超磁致式高速开关阀的研究与设计[J].中国机械工程,,2003,14(21):1824-1827.
    [92]石延平,张永忠,刘成文.以稀土合金材料为驱动器的高速开关阀的研究与设计[J].南京理工大学学报.2004,28(4):385-389.
    [93]石延平,刘成文.一种大流量高速开关阀的研究与设计[J].机械工程学报.2004,40(4):195-198.
    [94]石延平,张永忠.一种基于超磁致伸缩效应的新型液压高速开关阀的研究[J].工程机械.2004,1:26-28.
    [95]宋军,黄建平,李孝禄,等.柴油机高速电磁阀驱动特性仿真分析.车用发动机.2005,5(159):48-51.
    [96]谢建蔚,陶国良,周洪.气动人工肌肉关节的建模与仿真[J].2007,41(3):450-455.
    [97]朱笑丛,陶国良.气动人工肌肉伺服平台的建模[J].浙江大学学报(工学版)2004,38(8):1056-1060.
    [98]J. M. Low, W. S. Maughan, S. C. Bee, and M. J. Honeywood, "Sorting by colour in the food industry," in Instrumentation and Sensors for the Food Industry, E. K. Rogers and C. J. B. Brimelow, Eds.,2nd ed. Cambridge, U.K.:Woodhead,2001, ch.5.
    [99]李景彬.棉种色选装置的光电检测系统研究[D].石河子:石河子大学.2006.
    [100]盛歆漪.基于DSP的大米色选机智能控制系统实现[D].南京:江南大学.2003.
    [101]郑力新,黄东海,周凯汀,2006.大米色选机信号处理算法与实现[J].福建工程学院学报,4(4):432-435.
    [102]www.hfmeiya.com
    [103]R. Boll著,唐与谌,黄桂煌,译.软磁材料[M].北京:冶金工业出版社,1985.
    [104]大森丰明.磁性材料手册[M].北京:机械工业出版社,1987.
    [105]吴恒颛.电机常用材料手册[M].陕西:陕西科学技术出版社,2001.
    [106]路甬祥.液压气动技术手册[M].北京:机械工业出版社.2002.
    [107]李洪人.液压控制系统[M].北京:国防工业出版社,1981.
    [108]袁恩熙.工程流体力学[M].北京:石油工业出版社,1986.
    [109]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,2003.
    [110]ISO 6358,1989, "Pneumatic fluid power—Components using compressible fluids—Determination of flow-rate characteristics," The International Organization for Standardization
    [111]唐中一,符欲梅,汪永超.PWM气动调压阀数学模型的建立、仿真及试验研究[J].重庆钢铁高等专科学校校报,1997,12(2):23-28
    [112]YANG Shu-xing, Wang Shu-Ian, Lin Xiang-zhu. On the frequency response characteristics of PWM high-speed on-off valves [C]. Proceedings of the Second JHPS International Symposium on Fluid Power. Japan:Tokyo,1993,9:459-463.
    [113]Roters HC. Electro-magnetic devices. USA:John Wiley:1941.
    [I14]Chillet, C.; Voyant, J.,2001. Design-oriented analytical study of a linear electromagnetic actuator by means of a reluctance network [J]. IEEE Transactions on magnetics,37(4):3004-3011.
    [115]Chladny, R.R.; Koch, C.R., Lynch, A.F.,2005. Modeling automotive gas-exchange solenoid valve actuators [J]. IEEE Transactions on magnetics,41(3):1155-1162.
    [116]张文康,毛卫民,白志浩.退火温度对冷轧无取向硅钢组织结构和磁性能的影响[J].特殊钢,2006,27(1):15-17.
    [117]吴小良,叶健松.硅钢电磁性能影响因素的研究[J].浙江岩金,2004,4:21-23.
    [118]陈可来.电机冷轧硅钢片退火工艺浅析[J].中小型电机,2004,31(3):49-50.
    [119]材料性能测试报告.中国计量学院.
    [120]杨世铭,陶文铨.传热学,第四版[M].北京:高等教育出版社.2006.
    [121]Kawase, Y.; Ohdachi, Y.,1991. Dynamic analysis of automotive solenoid valve using finite element method [J]. IEEE Transactions on magnetics,27(5):3939-3942.
    [122]Pawlak, A.M., Nehl, T.W.,1988. Transient finite element modeling of solenoid actuators:the coupled power electronics, mechanical, and magnetic field problem. IEEE Transactions on Magnetics,24(1):270-273.
    [123]Ando, R.; Koizumi, M., Ishikawa T.,2001. Development of a simulation method for dynamic characteristics of fuel injector [J]. IEEE Transactions on magnetics,37(5):3715-3718.
    [124]Cul, P.; Burton, R.T., Ukrainetz, P.R.,1991. Development of a high speed on/off valve [J]. SAE Paper,911815.
    [125]孔晓武,2005.高速开关阀动态性能试验装置及其应用研究[J].机电工程,22(8):38-40.
    [126]刘兴华,李广荣,2004.高速开关电磁发的研究及测试[J].内燃机工程,25(1):38-42.
    [127]夏胜枝,周明,李希浩,欧阳明高,2002.高速强力电磁阀的动态响应特性[J].清华大学学报,42(2):258-262.
    [128]莫波,陈汉超,杜民,2003.一种高速开关阀的工作原理及测试系统设计[J].液压与气动,6:40-41.
    [129]Fu, L.J.; Kong X.W., Qiu, M.X.,2006. Test method of high-speed on-off valve dynamic characteristics [J]. Chinese journal of mechanical engineering,19(1):63-66.
    [130]杨树兴.气动高速开关阀用电磁铁研究[J].机床与液压.1997,15:31-32.
    [131]http://www.romicon.nl/E-catalog/contents/media/pdf/High%20frequency.pdf
    [132]http://www.smcthai.co.th/newversion/catalogue/VQJ.pdf
    [133]http://ftp.festo.com/Public/FTPINT/FR/innovations_2009.pdf
    [134]http://www.macvalves.com/products/Three_Way/Small/31/31.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700