林木联合采育机底盘设计理论研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人工林地作业,林木联合采育机显示出无法比拟的先进性。特别是其特有的底盘具有在林区作业通过性强,对林木和林地损伤小的优势,并为采伐工人提供了安全、舒适的工作环境,从而大大提高了生产效率和木材利用率。
     本论文依托国家“十一五”科技支撑计划资助项目(NO.2006BAD11A15)—“多功能林木采育作业关键技术装备研究与开发”,作为课题中的一部分,主要研究林木联合采育机底盘设计理论研究与应用。
     本论文利用现代设计技术涵盖的数学建模分析、计算机仿真虚拟技术、优化设计理论等方法对林木联合采育机的底盘及其对整机设计的影响进行了理论应用研究与设计优化。主要有以下几个方面:
     1.概述了国内外自动化采育伐机械研究应用的现状,分析探讨了国外典型的林木联合采育机开发研制现状。通过汲取国外先进的研究经验,结合我国工程机械研制技术现状及人工林采育作业环境,提出了适合我国国情、林情的多功能轮式林木联合采育机底盘设计方案和技术路线。
     2.应用计算机虚拟设计技术对整机进行了虚拟设计与优化研究,建立了联合采育机整机结构和机构仿真模型,包括工作底盘、作业装置的模型。建立的林木联合采育机作业平台(底盘前车架)有限元模型,基于有限元理论针对底盘作业工况要求进行车架静态与动态特性分析与评价,并对其进行了振动实测。
     3.根据伐区作业环境对林木联合采育机铰接转向底盘的设计要求,建立采育机底盘铰接转向机构数学模型,应用MATLAB软件的优化工具箱进行优化计算,分析在不同的情况下如何应用不同的约束条件进行采育机底盘铰接转向机构仿真测试及优化设计,同时验证理论数学模型的合理性。
     4.针对林木联合采育机底盘传动系设计方案,建立采育机底盘传动系统数学模型,进行采育机底盘传动系计算机仿真模拟分析,根据采育机底盘作业工况要求仿真分析结果对比,验证采育机底盘传动系数学模型的可用性和仿真模拟的可行性。
     根据理论研究及优化设计结果试制林木联合采育机底盘及整机的物理实验样机,对底盘的行驶性能及作业稳定性进行实地试验分析,验证了林木联合采育机底盘设计理论应用与技术路线的合理性,探索建立了一套适合我国的林木联合采育机底盘设计及评价体系,为今后开发试制新的林木联合采育机底盘提供了技术参考。
Working in the man-planted forest, forestry felling & cultivation machine shows the incomparable advantage. Especially its peculiar chassis has advantages of strong pull, less damage for forest land, and provides safe, comfortable working environment for workers. Then improve the production efficiency and the utilization ratio of timber.
     This paper was conducted on the bases of "the key technology equipment' research and development of multi-function forest felling & cultivation" which is the "11th five-year plan" funded projects of national science and technology support plan (project number 2006BAD11A15), at the same time, this paper is one part of this project and it mainly researches the forestry felling & cultivation machine's chassis design theory research and application.
     This paper uses several methods which include modern engineering machinery design method, Mathematical modeling analysis, the Optimization design theory and the Computer emulation technology to research the forestry felling & cultivation machine's chassis and the influence of machine design, and make optimization design for them. It mainly includes the following aspects:
     1. It summarizes the current situation of automatic Forestry felling & cultivation machinery research's application at home and abroad, and analyzes the present situation of foreign typical forestry felling & cultivation machine's development and research. Through absorbing foreign advanced experience and research, it analyzes the present situation of Chinese engineering machinery research technologies and fast-grown forest's operating environment, and also proposes forestry felling & cultivation machine, chassis' design scheme and technical route which are suitable for Chinese national conditions and forest conditions.
     2. It makes virtual design and optimization design to the machine by using computer virtual design technology and it establishes the whole structure and organization simulation model of the hinged forest cutting which includes work chassis and homework device model. It also establishes the forestry felling &cultivation machine, work platform (chassis frame) multiple target math modal, and makes structural analysis and optimization for chassis operating requirement based on finite element theory.
     3. According to the working environment's design requirements to the forestry felling &cultivation machine, hinged steering chassis, it analyzes the steering process and makes use of the equivalent conversion principle to simplify the steering system into general mechanical model, and establish kinematics model to make dynamic analysis of steering system, it also analyzes the factors which influences the steering control system and make control performance analysis. Based on the solving method of nonlinear optimization problem, it analyzes and optimizes the forestry felling &cultivation machine, chassis hydraulic hinged steering system mechanism. Under different logging conditions, it will test the hydraulic hinged steering system and verify the theoretical mathematics model is reasonable.
     4. Accordingto the design of chassis of the forestry felling &cultivation machine, the mathematical model of the transmission system was set up for simulation analysis, With the contrast between the results of the simulation and the working requirement, it will be validated the mathematical model of usability and the simulation feasibility.
     According to the theory research and optimal design result of the Forestry felling &cultivation machine, chassis and the joint of physics experimental prototype, the author makes experimental analysis of the chassis'driving performance and operation stability, and verifies the rationality of the forestry felling &cultivation machine, chassis optimization design theory. Try to establish a set of suitable for Chinese forestry felling &cultivation machine chassis design and evaluation system. This paper provides technical reference for developing and making new forestry felling &cultivation machine's chassis.
引文
[1]北京林业大学.刘晋浩.多功能林木采伐机[P]:200820123306.6,2009-8-5.
    [2]鲍际平,刘晋浩,魏占国等.世界采运机械的采伐方式及发展进程[J].湖北农业科学,2009,48(8):2004-2006.
    [3]陈茹雯.某军车车身有限元分析及拓扑优化[D].南京:南京理工大学,2004.
    [4]常绿,王国强,张英爽.基于ADVISOR软件的液力变矩器仿真模块的开发[J].系统仿真学报,2006,18(12):3396-3398.
    [5]丁建民.轮式装载机转向系统的研究[D].长春:吉林大学,2006.
    [6]冯国胜,杨绍普著,车辆现代设计方法[M].北京:科学出版社,2006.
    [7]GB/T 19365-2003.自行式林业机械术语、定义和分类[S].北京:中国标准出版社,2003.
    [8]顾正平,沈瑞珍.90年代世界营林机械发展特点[J].林业机械与木工设备.1999(10):4-6.
    [9]国家林业局哈尔滨林业机械研究所.郭克君等.联合伐木工作头[P]:2007201159754,2007-04-13.
    [10]国家林业局哈尔滨林业机械研究所.郭克君等.林木伐打造联合作业机[P]:2007201161398,2007-04-13.
    [11]国家林业局.第七次全国森林资源清查结果[EB/OL]中国网第七次全国森林资源清查,2009-11-19.
    [12]关百钧,魏宝麟.世界林业发展概论[M].北京:中国林业出版社,1994.
    [13]高卫民,王宏雁.汽车结构分析有限元法[J].汽车研究与开发.2000(6):30-32.
    [14]洪清泉,程颖.发动机与液力变矩器共同工作虚拟样机仿真[J].北京理工大学学报.2004.24(1):40-44.
    [15]黄旭就,何进嵩.工程机械产品技术发展现状研究及对策[J].装备制造技术.2004(4):24-28.
    [16]韩林山.机械优化设计[M].郑州:黄河水利出版社.2003.
    [17]贾铭钰.北美及北欧森林采运发展状况[J]森林采运科学.1990(3):58-63.
    [18]吉林工业大学工程机械教研室.轮式装载机设计[M].北京:中国建筑工业出版社,1982.
    [19]江洪,陆利锋,魏峥等.SolidWorks动画演示与运动分析实例解析[M].北京:机械工业出版社,2005.
    [20]江发潮,曹正清,陈全世.虚拟试验技术及其在车辆上的应用[J].拖拉机与农用运输车.2004(4):3-5.
    [21]龙凯,覃文洁,左正兴.基于拓扑优化方法的牵引车车架优化设计[J].机械设计.2007(6):52-54.
    [22]李金波,王文印,杨学春等.谈伐小机械的现状与发展[J].森林工程.1998(1):31-32.
    [23]李立顺,孟祥德,詹隽青等.基于SolidWorks的整体自装卸车虚拟设计与运动仿真[J].起重运输机械.2007(3):21-23.
    [24]李亚智,赵美英,万小朋.有限元法基础和程序设计[M].北京:科学出版社.2004.
    [25]吕光辉,王乃康,魏占国等.基于CosmosWorks集材机车架的设计分析[J].微计算机信息.2010(22):8-9.
    [26]吕光辉,王乃康,魏占国等.林木联合采伐机底盘的研究现状与发展趋势[J].林业机械与木工设备.2010(10):11-14.
    [27]李涛.速生丰产林是生态建设的组成部分[J].中国林业.2006(22):34.
    [28]李德信,吕江涛,应锦春.SX360型自卸车车架有限元分析模型的建立及动静态特性分析[J].机械科学与技术.2002(3):380-383.
    [29]李峰,刘岩.浅述重型汽车车架设计[J].重型汽车.2001(4):18-19.
    [30]李晗.重型自卸汽车车架设计与改进[J].专用汽车.2009(9):52-54.
    [31]雷锡禄.中国速生丰产林建设的发展战略与对策[M].北京:中国林业出版社,1992.
    [32]林海明.伐木作业机具综合评价与择优[J].森林工程.2005(1):12-14.
    [33]林家祥,黄旭就,王昕.ZL50C后车架主梁改型方案的研究[J].广西机械.1999(4):21-23.
    [34]刘义,许志沛.机械设计中基于有限元方法的模态分析[J].机械.2003:96-98.
    [35]刘岩.自卸汽车车架设计[J].专用汽车.1998(1):15-18.
    [36]刘文剑,常伟,金大国等CAD/CAM集成技术[M].哈尔滨:哈尔滨工业大学出版社.2000.
    [37]刘白雁,陈新元,傅连东.基于MATLAB/Simulink机电系统动态仿真[M].北京:机械工业出版社,2005.
    [38]刘晋浩,王丹.谈国内外人工林抚育机械的现状及发展趋势[J].森林工程.2006(3):12-14.
    [39]刘琴.中国林机发展,路在何方?[EB/OL]中国林业新闻网:中国林机发展,路在何方?,2010-01-14.
    [40]刘正兴,正劲松.随机有限元在结构可靠性分析中的应用[J].上海交通大学学报.1994(1):32-40.
    [41]刘齐茂.某型载货车车架结构的优化设计[J].广西工学院学报.2004(4):8-12.
    [42]梁剑,刘颖.车架静力试验与有限元静力分析[J].机械研究与应用.2005(6):72-73.
    [43]马龙滨.森林采伐机械与工具[M].北京:中国林业出版社1991.
    [44]马迅,盛勇生.车架刚度及模态的有限元分析与优化[J].客车技术与研究.2004(4):8-11.
    [45]潘锋,朱平,孟瑾.微型货车车架的拓扑优化设计[J].机械设计与研究.2008(2):87-90.
    [46]潘海兵.多功能联合采伐机平顺性研究及动力学仿真[D].哈尔滨:东北林业大学,2009.
    [47]石红雁,许纯新,纪国军.966E型轮式装载机辅助转向系统特性研究[J].工程机械.1999(7):11-13.
    [48]沈嵘枫,刘晋浩,傅忠良.履带式采伐机的通过性[J].福建农林大学学报(自然科学版).2010(1):98-101.
    [49]沈养中,李桐栋.工程结构有限元计算[M].北京:科学出版社.2001.
    [50]孙靖民.机械优化设计(第3版)[M].北京:机械工业出版社.2004.
    [51]施昆山.当代世界林业[M].北京:中国林业出版社,2001:364-379.
    [52]谭壮士,叶碧成.工程机械双油缸转向机构参数优化[J].建筑机械.2005(4):76-77.
    [53]谭继锦,北京,汽车有限元法[M].北京:人民交通出版社,2005.
    [54]王福山,许福玲,钱祥生.轮式装载机液压系统的参数优化设计[J].工程机械.1991(10):38-41.
    [55]王立海.森林作业与森林环境[M].哈尔滨:东北林业大学出版社,2005.
    [56]王德惠等编译.苏联木材采运机械[M].北京:中国林业出版社,1990.5.
    [57]王华,李有军,刘建存MATLAB电子仿真与应用教程[M].北京:国防工业出版社,2007.
    [58]王宏棣,何金存,张佳彬.人工林小径结构用材的现状与发展趋势[J].林业机械与木工设备.2007(3):13-15.
    [59]王助成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社.2005.
    [60]王猛猛,鲍际平.虚拟样机技术在联合采伐机设计中的应用研究[J].林业机械与木工设备.2009(7):26-28.
    [61]王猛猛,鲍际平,刘晋浩.基于虚拟样机技术的联合采伐机静态稳定性分析[J].湖北农业科学.2009(6):1485-1487.
    [62]汪伟,辛勇.车架有限元建模及模态分析[J].机械设计与制造.2009(11):53-54.
    [63]武兰英,韩林山,董汉厅.大型重载运输车辆液压转向机构的优化设计[J].工程机械.2005(9):35-38.
    [64]武和全,辛勇,董学勤.某越野车车架有限元建模与刚度分析[J].机械设计与制造.2008(6):15-17.
    [65]吴德山.发达国家林业机械化的某些趋向[J].世界林业研究.1989(2):63-68.
    [66]魏占国,刘晋浩.轮式林木联合采伐机底盘的设计与研究[J].广西大学学报(自然科学版).2010(2):263-268.
    [67]魏占国,刘晋浩.基于SolidWorks与有限元理论联合采伐机机械臂的设计方法[J].东北林业大学学报.2010(8):111-114.
    [68]魏占国,阚江明,刘晋浩.基于三维虚拟样机技术大型林业装备设计与研究[J].微计算机信息.2010(28):8-9.
    [69]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002.
    [70]许其春.最佳的木材采运机械系统——根据树木大小、坡度、地面不平度选择合理的木材采运系统的准则[J].林业机械.1978(4):19-25.
    [71]许志华.铰接式自卸车橡胶悬架系统多体动力学分析、试验研究与优化[D].南京:东南大学,2005.
    [72]许亚楠.铰接车架的铰点结构设计[J].工程机械.2003(10):10-14.
    [73]谢里阳.现代机械设计方法[M].北京:机械工业了出版社,2005.
    [74]徐达、蒋崇贤.专用汽车结构与设计[M].北京:北京理工大学出版社,1981.
    [75]余志生.汽车理论.第3版[M].北京:机械工业出版社.2000.
    [76]姚怀新,陈波.工程机械底盘理论(工程机械底盘及其液压传动理论)[M].北京:人民交通出版社.2001.
    [77]杨树凯,朱启昕,吴仕赋.基于有限元技术的汽车支架拓扑优化设计研究[J].汽车技术.2006(3):16-18.
    [78]杨小卫.轮式工程机械机架有限元分析系统[J].筑路机械与施工机械化.2000(2):13-15.
    [79]朱容庆.重型载重汽车车架轻量化设计研究[D].武汉:武汉理工大学,2006.
    [80]朱西产,张金换,李一兵等.客车车身试验模态分析及其在车身定型中的应用[J].汽车技
    术.1996(6):23-26.
    [81]张志涌.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社,2003.
    [82]张文志,韩清凯,刘亚忠,戚向东等.机械结构有限元分析[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [83]张俊梅.人工林无线电传输特性与立木整枝机控制系统研究[D].北京:北京林业大学,2005.
    [84]张国芬,张文明,孙玉亮等.SGA92150型半挂车车架的结构设计与强度和刚度分析[J].北京科技大学学报,2007(7):744-748.
    [85]赵经文,王宏钮.结构有限元分析.科学出版社.2004.
    [86]赵丁选,张子达,刘昕辉等.铰接工程车辆稳定性的固有模态[J].中国公路学报,1995(3):76-79.
    [87]赵文锐,刘晋浩.伐木联合机的现状及发展[J].林业机械与木工设备.2008(11):10-12.
    [88]曾小华.军用混合动力轻型越野汽车动力总成匹配及控制策略研究[D].长春:吉林大学,2003.
    [89]周传月,腾万秀.工程有限元与优化分析应用实例教程[M].北京:科学出版社,2005.
    [90]Aedo-Ortiz, D.M., E.D. Olsen, and L.D. Kellogg.1997. Simulation a harvester-forwarder softwood thinning:A software evaluation. Forest Prod. J.47(5):36-41.
    [91]ADVISOR 2.0:A Second-Generation Advanced Vehicle Simulator for Systems Analysis [J].NREL NAEVI'98 paper presented in Phoenix, AZ,1998.
    [92]Bass, C.M., J.L. Fridley, and F.E. Lee.1991. Methods of interactive control and simulation of forestry machinery. Presented at the 1991 International Winter Meeting. Hyatt Regency Chicao, Chicago, IL. December 17-20,1991.
    [93]Baumgras, J.E., C.C. Hassler, and C.B. LeDoux.1993. Estimating and validating harvesting system production through computer simulation. Forest Prod. J.43(11):65-71.
    [94]Barrett, S.M.2001. A computer simulation model for predicting the impacts of log truck turn-time on timber harvesting system productivity. M.S. Thesis. Virginia Polytechnic Institute and State University. Blacksburg, VA.
    [95]Berger, E.J.; Sadeghi, F.; Krousgrill, C.M. "Finite Element Modeling of Engagement of Rough and Grooved Wet Clutches", ASME Journal of Tribology,118, January,1996:137-146.
    [96]Corns, I.G.W.1988. Compaction by forestry equipment and effects on coniferous seedlings growth on four soils in the Alberta foothills. Can. J. For. Res.18:75-84.
    [97]Da Silva, J.A.A.1986. Dynamics of stand structure in fertilized slash pine plantations. Ph.D. dissertation. University of Georgia, Athens, GA.
    [98]Dong, Y.; Korivi, V.; Attibele, P.; Yuan, Y. "Torque Converter CFD Engineering Part I:Torque Ratio and K Factor Improvement Through Stator Modifications", SAE TechnicalPaper Series,2002-01-0883,2002.
    [99]David S.Fine,Elastic-Platic Finite Element Analysis of Vehicle Structural Components[N],2001,SAE Paper 770614.
    [100]Eliasson, L.1999. Simulation of thinning with a single-grip harvester. For. Sci.45(1):26-34.
    [101]Farrar, K.D.1981. In situ stand generator for use in harvesting machine simulations. M.S.Thesis, Virginia Polytech. Ins. and State Univ., Blacksburg,VA.211.
    [102]Fisher, L.E. and D.L. Gochenour, Jr.1980. Improved timber harvesting through better planning. A GASP IV simulation analysis. Transactions of the ASAE.23 (3):553-557.
    [103]Fridley, J.L., J.L. Garbini, and J.E. Jorgensen.1982. Interactive simulation of forest thinning system concepts. ASAE Paper:82-1603.
    [104]Fridley, J.L, J.L. Garbini, J.E. Jorgensen, and P.A. Peters.1985. An interactive simulation for studying the design of feller-bunchers for forest thinning. Transactions of the ASAE.28(3):680-686.
    [105]Garbini, J.L., M.R. Lembersky, U.H. Chi, and M.T. Hehnen.1984. Merchandiser design using simulation with graphical animation. Forest Prod. J.34 (4):61-68.
    [106]German, H.C. "Real-Time Vehicle Subsystem Modeling and Simulation", M.S. Thesis,The University of Iowa,2000.
    [107]Greene, W.D. and B.L. Lanford.1986. An interactive simulation program to model feller-buncers. Alabama Agricultural Experiment Station, Bulletin No.576.
    [108]Hrovat, D.; Tobler, W.E. "Bond Graph Modeling and Computer Simulation of Automotive Torque Converters", Journal of the Franklin Institute, Pergamon Press Ltd.,0016-0032,1985: 93-114.
    [109]HelmutDannbauer, Christian Gaier, Klaus Hofwimmer, Fatigue Analysis of Welding Seams and Spot Joints in Automotive Structures[J], SAE2005011323,2005,67(1):1178-1180.
    [110]Johnson, L.R., D.L. Gochenour, and C.J. Biller.1972. Simulation analysis of timberharvesting systems. Technical Paper.23rd Annual conference and Convention of the American Institute of Industrial Engineers. Anaheim, CA., May 30-June 3:353-365.
    [111]Jamzadeh, F.; Hsieh, T.; Struthers, K. "Dynamic Simulation Modeling For Heavy Duty Automatic Transmission Control Development", SAE Technical Paper Series,92241,1992.
    [112]Long, C.R.2003. Production and cost analysis of two harvesting systems in central Appalachia. M.S. Thesis. West Virginia University, Morgantown, WV.
    [113]Munns, S., "Computer Simulation of Powertrain Components with Methodologies for Generalized System Modeling", M.S. Thesis, The University of Wisconsin-Madison,1996.
    [114]M.R.Mitchell and R.M.Wetzel, Cumulative Fatigue Damage Analysis of a Light Truck Frame[N].2000, SAE Paper 750966.
    [115]O'Hearn, S.E., W.B. Stuart, and T.A. Walbridge.1976. Using computer simulation for comparing performance criteria between harvesting systems.1976 Winter meeting, American Society of Agricultural Engineers:76-1567.
    [116]Ponsse Oyj.3D simulator[Z].Finland:Ponsse Oyj,2009:1-2.
    [117]Ponsse Oyj.PONSSE Bear harvester[Z].Finland:Ponsse Oyj,2009:1-4.
    [118]Ponsse Oyj.PONSSE HARVESTER HEADS [Z].Finland:Ponsse Oyj,2009:1-2.
    [119]Ponsse Oyj.PRODUCTLINE [Z].Finland:Ponsse Oyj,2009:1-2.
    [120]Parts Manual:980G Series Ⅱ Wheel Loader, Shin Caterpillar Mitsubishi Ltd., Printed in Japan, 2003; XEBP7540.
    [121]Randall Donn Senger. Validation of ADVISOR as a Simulation Tool for a Series Hybrid Electric Vehicle Using the Virginia Tech Future Car[D].Master Thesis. Virginia Polytechnic Institute and State University,1997.
    [122]Reutebuch, S. E., S. D. Bergen, and J. L. Fridley.1997. Collecting and using sitespecific vegetation and terrain data for varying accuracy for use in landscape visualizations of harvest operations. In the Proceedings of 20th Annual Council on Forest Engineering. July 28-July 31,1997, Rapid City, South Dakota.
    [123]Shetron, S.G., J.A. Sturos, E. Padley, and C. Trettin.1988. Forest soil compaction:Effect of multiple passes and loadings on wheel track surface soil bulk density. North. J. Appl. For.5:120-123.
    [124]Tsangarides, M.C.; Tobler, W.E. "Dynamic Behavior of a Torque Converter with Cetrifugal Bypass Clutch", Design Practices:Passenger Car Automatic Transmissions,3rd ed.; SAE Transmission/Axle/Driveline Forum Committee, Comp.; Society ofAutomotive Engineers, Inc.:Warrendale, PA,1994:137-152.
    [125]Timberjack. TIMBERJACK HARVESTER 770D 1070D [Z].Finland:Timberjack,2003:1-18.
    [126]Tugcu, A.K.;Hebbale, K.V.;Alexandridis, A.A.; Karmel, A.M. "Modeling and Simulation of the Powertrain Dynamics of Vehicles Equipped with Automatic Transmission", Proceedings of ASME Symposium on Simulation of Ground Vehicles and Transportation Systems, ASME Winter Annual Meeting, Anaheim, CA,1984.
    [127]Upton, E.W. "Application of Hydrodynamic Drive Units to Passenger Car Automatic Transmissions", Design Practices:Passenger Car Automatic Transmissions,3rd ed.; SAE Transmission/Axle/Driveline Forum Committee, Comp.; Society of Automotive Engineers, Inc.: Warrendale, PA,1994:60.
    [128]V.Balamurugan, S.Narayanan, Shell finite element for smart piezo electric composite plate/shell structures and its application to the study of active vibration control[J], Finite Elements in Analysis and Design,2001(37):713-738.
    [129]Waratah Forestry Attachments.Waratah Harvester Crane[M].Usa:Waratah Forestry Attachments,2001:1-2.
    [130]Wei ZhanGuo,Liu JinHao,Yu Ying.The Design of Forestry Harvesting Machines Connecting Rod based on Finite Element Analysis[C].2010 International Conference on Mechanical and Electrical Technology ICMET 2010,Singapore:201-204.
    [131]Wei ZhanGuo, Liu JinHao, Wu JiaDi.Application and Development of Artificial Intelligence Technology for the Data Management and Analysis in Forestry[C] 2009 International Conference on Artificial Intelligence and Computational Intelligence (AICl'09),shan ghai,China. (IV):438-441.
    [132]Wei ZhanGuo,Liu JinHao,Yu Ying,Wu JiaDi.Modeling and Parameter Optimization for an Articulating Electro Hydraulic Forest Machinery[C],The 2nd International Conference on Computer modeling and simulation (iccms2010), Sanya, China:165-168.
    [133]Winsauer, S.A. and P.D. Kofman.1986. Simulation of the KOCKUMS 81-11 feller/buncher. Presented at the 1986 Winter Meeting American Society of Agriculture Engineers. Hyatt Regency, Chicago, IL. Decemer 16-19,1986.
    [134]Yang, Y.; Lam, R.C.; Fujii, T. "Prediction of Torque Response During The Engagement of Wet Friction Clutch", SAE Technical Paper Series,981097,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700