基于智能网络传感技术的地下水动态监测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水资源与国民经济发展、生态平衡、环境保护以及广大人民群众的生活息息相关,在保障城乡居民生活、支撑经济社会发展、维持生态平衡等方面发挥着重要作用。但是,由于地下水的不合理开采、人类的生产和生活,导致地下水水位下降、水体污染、水质恶化,使有限的水资源更加紧张。为保护有限的水资源,合理开发和利用水资源,必须实时监控地下水的变化,以采取相应的措施,及时调节可能出现的的不利动态趋向,保持社会的可持续发展,因此,对地下水进行动态监测有着现实的社会意义。
     本文在对国内外关于地下水监测系统进行了研究对比以后,详细论述了智能网络传感技术、特点及系统结构,比较了与传统传感器的差异,通过智能传感器对地下水的水位、水温、水质、水量参数进行监测及数据采集,利用嵌入式单片机完成对数据进行处理,不断收集现场设备的运行参数、状态、故障及实时监测的信息,由GSM数据模块TC35实现数据的无线传输,构成一个用于地下水动态监测的智能传感器网络。
     系统采用了模块化设计思路,实现了一个由传感模块、信号转换模块、数据处理模块、无线传输模块四部分组成的地下水动态监测系统。传感模块由传感器电路、调制电路和模拟信号开关组成。传感器将水位、水温、水质、水量信号转换为电信号,通过模拟信号开关,对各种信号进行切换,信号共用一片放大器及A/D转换电路,由控制电路给出的控制信号依次将各种模拟信号选通,经过调制电路进行放大,输出模拟信号。信号转换模块由A/D转换芯片及外围电路构成,将传感模块输出的模拟信号转换为数字信号输出,并输入到单片机的P1口。数据处理模块由单片机单元、报警单元组成。单片机单元负责数据的处理、转发,并对报警单元、转换单元及定时工作等各部分进行控制。报警单元采用报警仪的设计方法,由内含手机模块的单片机进行控制,完成系统数据的传送及报警功能。无线传输模块利用GSM网络,由TC35数据模块完成数据通信,它与单片机的串口相连接,通过串口进行数据交换,无线传输模块能够双向通讯,接收从中心节点传送来的命令信号,转发给传感器,并将传感器发出的数字信号发送中心节点。
     通过以上四个模块形成了地下水动态自动监测无线网络系统,具有数据采集功能、报警功能、网络通信功能,实现了对地下水水位、水温、水质、水量参数的自动采集、自动存储、自动传输等功能,并确保了监测设备和监测数据的稳定可靠。此外,本系统以GSM网络作为数据无线传输网络,可以快速、可靠地实现传感器网络中数据的传输,实现了地下水动态监测系统的数字化、网络化,可以较好的满足地下水动态实时监测的组网需要。
Groundwater resources is closely related to the development of the national economy, ecological balance, environmental protection and the lives of people ,and it plays an important role in protecting people lives , supporting economic and social development and maintaining ecological balance, However, due to the illegitimate exploitation of groundwater in the life and production of human, with the result that the level of ground water declined, water polluted and deteriorated, and the limited water resources became more and more tense. In order to protect the limited water resources, rationally develop and utilize them, we must monitor the groundwater all the time and take appropriate measures to adjust the negative dynamic trend promptly. So it has a realistic social significance to monitor the groundwater.
     In this paper, both the home and abroad on groundwater monitoring system were studied contrastively, then discuss the intelligent network sensing technology, features and system structure detailedly, compare with the traditional sensor, monitor the water level, water temperature, water quality and water parameters by the intelligent sensor, then use the embedded SCM to complete processing of the data and collect the equipments' operating parameters, status and malfunction and real-time monitoring information continuously, realize the wireless transmit of data through the TC35 module of GSM, at last, constitute a intellectualized sensor networks for the dynamic monitoring of the groundwater.
     System uses a modular design, which forms a groundwater monitoring system consists of the sensor module, signal conversion modules, data-processing modules, wireless transmission modules. Sensor module is composed of sensor circuit, modulation circuit and analog signal switch. Sensor converts water level, water temperature, water quality, water quantity and other signals into electrical signals, which switched by analog signal switches. Signals share a signal amplifiers and an A / D converter circuit, and choosed by the control signal given from the control circuit, then enlarged by the modulation circuit and exported in the form of analog signals. Signal conversion modules are composed of the A / D converter chip and the external circuit, and those modules switche the analog signals into digital signals, which are transported to the P2 mouth of the SCM. Data processing module consists of SCM modules, alarm modules. The SCM unit is responsible for the data processing and data transmitting, and it controls the alarm unit, conversion units, regular work and so on. Alarm unit controlled by the embedded phone module uses the design method of annunciator to realize data transmission and alarm functions. Wireless transmission modules use GSM network to complete data communications by TC35 data module. They are linked with serial port, through which exchange of datas, and they can complete two-way wireless communication that transmit the orders received from the central node to the sensors and send the digital signal sent by sensors to the central node. Then, a groundwater monitoring wireless network system is formed by the above four modules. The system has the functions such as data acquisition function, alarm functions, network communication functions. It can automatically gather, storage and transmit parameters including water temperature, water quality and water quantity, and can ensure that the monitoring equipment and monitoring data is stable and reliable.
     In addition, the system uses GSM wireless network as a data transmission network, which can quickly and reliably achieve data transmission in the sensor network, make the digitization and network of groundwater monitoring system come ture, and can meet the demand of dynamic and real-time monitoring of groundwater.
引文
[1]吴爱民,李文鹏,郝爱兵等.全国地下水资源形势与战略对策研究[J].http://www.cigem.gov.cn/
    [2]水资源利用与保护[EB/OL].http://www.eedu.org.cn/Article/es/esbasc/200601/7008.html
    [3]SL/T183-96,《地下水监测规范》[S].水利部,1996.
    [4]李新,王密侠.地下水动态监测系统的研制[J].西北水资源与水工程,1994,(2):54-58.
    [5]何庆成.欧洲地下水监测[EB/OL].http://www.cigem.gov.cn,2004-04-11.
    [6]田延山.做好基础性水文地质工作,加强地下水监测[J].http://www.cgp.gov.vn/ReadNews.asp?NewsID=3269,2005-05-30.
    [7]柯小干.水位采集与系统远处传输系统的研究[D].南京:河海大学,2003.
    [8]霍雪松.基于SMS的无线通信系统的研究与实现[D].南京:河海大学,2002.
    [9]李家福.基于GSM网络的智能监控模块设计[D].西南交通大学,2006.
    [10]贺良.基于GSM短消息的无线数据监测系统[D].上海:上海海运学院,2003.
    [11]陈雷,丁晓明,李强.GSM短消息系统在远程数据采集中的应用[J].中国数据通信,2003(3):58-61.
    [12]P.N.Slater,Remote Sensing:Optics and Optical Systems,Addison-Wesley Publishing Company,1980.
    [13]黄贤武,刘筱霞.传感器原理与应用[M].成都:高等教育出版社:2004.
    [14]梁威等.智能传感器与信息系统[M].北京:北京航空航天大学出版社.2003,185-186.
    [15]吴仲城,戈瑜,虞承端等.传感器的发展方向--网络化智能传感器[J].《电子应用技术》,2001,(2).
    [16]刘军华.智能传感器系统[M].西安:电子科技大学出版社:2004,2-10.
    [17]陈立秋.智能式传感器的应用[J].染整技术,2006,28(2).
    [18]黄勇.网络化智能化传感器的现状与期望[J].企业经济,2003,6:166-167.
    [19]陈丹,郑增威,李际军等.无线传感器网络研究综述[J].计算机测量与控制,2004,25(8):94-97.
    [20]李勇等.MATLAB辅助现代工程数字信号处理[M].西安:西安电子科技大学出版社:2002.
    [21]Currie J F,Essalik A,Marusic J C.Micromachined thin film solid state electrochemical CO_2,NO_2and SO_2 gassensors[J].Sens Actuators B,1999,59:235-241.
    [22]Bergman I.The voltammetry of some oxidizing andr educing toxic gases direct from the gas phase,at gold and platinum metallised membrane electrodes in acid and alkali[J].JElectroanal Chem,1983,157:59-73.
    [23]Hassan Saad S M,Tadros FS.Performance characteristics and some applications of the nitrogen oxidegas sensor[J].Ana Chem,1985,57:162-166.
    [24]Martin GB,Meyerhoff M E.Membrane-dialyzer injection loop for enhancing the selectivity of anion-responsive liquid-mem-braneelectrodes in flow systems[J].Anal Chim Acta,1986,186:71-80.
    [25]Karayannis G.Standards-based wireless networking alternatives[J].Sensors,2003,20:1-6.
    [26]Estrin D.Wireless sensor network:application driver for low power distributedsystems[J].Low Power Electronics and Design International Symposium,2001.
    [27]http://baike.baidu.com/view/1253312.htm.
    [28]戴维德.新型多路模拟开关MAX4524/4525[J].电子制作,1999,(1):13-14.
    [29]李朝青.PC机及单片机数据通讯技术[M].北京:北京航空航天大学出版社,2001.
    [30]周胜海.集成多路模拟开关的应用技巧[J].电子技术应用,2002,(4).
    [31]向学军,刘明芳.无线智能传感器的设计与实现[J].微计算机信息,2006:22(1).
    [32]薛明军,张辉,赵敏.LM2575系列开关稳压集成电路及其应用[J].国外电子器件,2001:(1).
    [33]陈宪洲,赵晓玲,韩小河.低功耗仪器用放大器AD620及其应用[J].今日电子,1996.8.
    [34]曹茂永,王霞,孙农亮.仪用放大器AD620及其应用[J].电测与仪表,2000,37(418).
    [35]房国良.模拟开关组合应用设计原理[J].电子技术应用,1997,23(11):15-16.
    [36]郝鸿安.COMS模拟集成电路实用电路集[M].上海:上海科学普及出版社,1996.
    [37]窦振中.单片机外围器件实用手册[M].北京:北京航空航天大学出版社,1998,123-124.
    [38]高卫东,辛友顺,韩彦征.51单片机原理与实现[M].北京:北京航空航天大学出版社,2008.
    [39]陆爱明.单片机和图形液晶显示器接口应用技术[J].电子产品世界,2001(15).
    [40]张进德.基于WebGIS的地下水环境监测信息发布系统的研究[J].水文地质工程地质,2004,(6).
    [41]盛青松.HY_240128M_201液晶显示模块原理与驱动技术研究[D].南京:南京理工大学,2006.
    [42]曹珍贵.基于USB接口的数据采集系统的设计[D].安徽理工大学,2006.
    [43]刘艳.基于USB技术的脉搏数据采集系统的研究设计[D].哈尔滨理工大学,2005.
    [44]景富军.8098单片机与微型打印机的接口[J].兵工自动化.1995,(2).
    [45]李朝青.PC机及单片机数据通讯技术[M].北京:北京航空航天大学出版社,2002.
    [46]吕景瑜.微型计算机接口技术[M].北京:科学出版社,1995.
    [47]National Instruments Corp..An Overview of IEEE 1451.4Transducer Electronic Data Sheets(TEDS)[EB/OL].http://zone.ni.com/devzone/
    [48]何立民.单片机应用系统设计[M].北京:北京航天航空大学出版社,1999,6.
    [49]吴文杰,蒋梁中.智能传感器在水质在线监测系统中的应用[J].传感器技术,2004,24(9).
    [50]逄玉台,王团部.集成温度传感器AD590及其应用[J].国外电子元器件,2002,(7).
    [51]李冬青.基于GSM手机模块的钻孔水位、水温遥测系统[D].山东:山东科技大学,2006.
    [52]赵长奎.GSM数字移动通讯系统[M].北京:国防工业出版社,2001.
    [53]何自立.基于GSM短消息的灌溉区水情监测系统研究[D].西北农林科技大学,2006.
    [54]陈志伟.用单片机实现的多功能报警装置[J].杭州电子工业学院学报,1998,(3).
    [55]谢炜洪.一种基于单片机的无线自动报警系统[J].引进与咨询,1999,(3).
    [56]秋兴国,付瑞锋.基于GSM的地下水远程监测系统的研制[J].科技信息(学术研究),2007,(36).
    [57]任利荣.基于GSM短消息的水情自动测报系统的设计和应用[J].安徽水利水电职业学院学 报,2007,(4).
    [58]常旭东,洪丽,王志福.基于GSM短消息的远程报警和控制系统[J].江西科学,2006,(2).
    [59]袁汶雯.GSM无线数据传输的研究和应用[D].浙江大学,2003.
    [60]鱼瑞文,龚成龙.智能仪器微型打印记录仪接口电路设计[J].仪器仪表,2001,8(6).
    [61]付民,胡晓辉.地下水分布式多参数实时监测系统[J].地球信息科学,2004,6(1).
    [62]陆爱明.基于TC35模块的无线接入终端设计[J].电子产品世界,2005,(11).
    [63]李鸿.用单片机控制手机收发短信息[J].电子科技应用,2003,(1).
    [64]吴军基,王文斌,张鹏.基于GSM短消息远程抄表系统研究[J].电力自动化设备,2006,(1).
    [65]曹达仲,候春萍.移动通信原理、系统及技术[D],北京:清华大学出版社,2006,125-154.
    [66]潘斌,郭红霞.短信收发模块TC35i的外围电路设计[J].单片机与嵌入式系统应用,2004,(7).
    [67]胡葛军.短距离无线通信技术在智能家居中的应用[D].北京工业大学,2006.
    [68]Siemens TC35/TC37 Hardware Interface Description Vision 04.00,2002.5.29.
    [69]Cellular Engine TC35 Audio Interface Vision 02.00,2001.11.21.
    [70]刘顺兰等.数字信号处理[M].西安:西安电子科技大学出版社:2003.
    [71]韩根亮,张建华.网络化智能传感器[J].甘肃科技,2003,19(9):46-47.
    [72]郭彩萍,倪文琦.MATLAB在数字滤波器设计中的应用[J].山西科技,2006,(6).
    [73]火元莲,齐永峰,刘亚丽等.基于Matlab的数字滤波器的设计与应用研究[J].现代电子技术,2007,(23).
    [74]邱罡.USB-RS232接口转换器设计的[D].电子科技大学,2006.
    [75]曹柱中,徐薇莉.自动控制理论与设计[M].上海:上海交通大学出版社,1991.
    [76]Kazuteru Tobita(The University of Electro-Communications),Takayuki Ohira(Sony Corporation).A Rotary Encoder based on Magneto-Optical Storage Method[EB/OL].
    [77]Tenney R R,Sandel N R.Detection with distributed sensor[J].IEEE Trans.On AES,1981,17(4):501-510.
    [78]Ajit Ambike,Won-jong Kim,Kun Ji.Real-Time Operating Environment for Networked Control System[A].2005 American ControlConference[C].U.S.A:AACC,2005:2353-2358.
    [79]Anonymous.European Commission proposes Groundwarte Monitoring,Protection Law[J].water Environment & Technology,2003,15(12):18.
    [80]Hodson,Cathryn Owano,Kilbourne,et al.Groundwater monitoring and remediation[J].Pollution Engineering 1996,28(7):48-49.
    [81]Roberto Bucher,Silvano Balemi.Scilab/Scicos and Linux RTAI - A unified approach[A].Proceeding of the 2005 IEEE Conference on Control Applications[C],Canada:IEEE,2005:1121-1126
    [82]国家环境保护总局.地下水环境监测技术规范(HJ/T164--2004)(S).
    [83]戴长雷,迟宝明.地下水监测研究进展[J].水土保持研究,2005,12(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700