用户名: 密码: 验证码:
胜利油田聚合物驱采出水处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着聚合物驱油技术的发展,大幅的提高了原油的采收率,但也产生了大量的采油污水。聚合物驱采出水中,聚丙烯酰胺(HPAM)含量高,粘度大,乳化程度高,油水分离困难,原油的处理水驱采出水的“老三套”工艺不能满足聚合物驱采出水的处理要求,针对这种情况,本文提出了“混凝-水解酸化-动态膜生物反应器”(前置混凝)组合工艺和“水解酸化-动态膜生物反应器-混凝”(后置混凝)组合工艺。
     在比较不同单一混凝剂的除油、除浊效果基础上,进行了混凝剂的优化复配,并研究了铝盐混凝剂处理聚合物驱采出水的机理和混凝剂处理聚合物驱采出水的混凝动力学。在组合工艺的研究中,通过实验确定了混凝剂的最佳投加量,水解酸化反应器的最优水力停留时间以及动态膜生物反应器周期运行的规律,通过组合工艺的连续30天运行,探讨了其处理聚合物驱采出水的可行性,所得结论主要有:
     (1)混凝法处理胜利油田坨一站聚合物驱采出水时,传统铝盐铁盐混凝剂除油效果优于无机高分子混凝剂和有机高分子絮凝剂,FC(以Fe计)和AC(以Al2O3计)按投加量质量比1:3混合复配,可以实现铁铝混凝剂缺点互补。无机复配铁铝混凝剂(FC:AC=1:3)与有机絮凝剂三元复配时,除油效果主要决定于无机混凝剂的投加量;投加量为0.5 mg/L的APAM便能使絮体进一步发生桥联,提高沉降性,减少污泥体积。
     (2)无机铝盐混凝剂处理聚合物驱采出水时,混凝效果主要依靠Al3+与水中残余HPAM交联作用,采出水中油滴和盐均会阻碍铝盐与HPAM的交联反应。与HPAM交联能力较强的AC处理采出水的效果较PAC处理效果好。在聚合物驱采出水中原油、聚合物、盐三者共存时,相互作用的结果都导致了铝盐混凝剂投加量增加,除油率和HPAM去除率降低。
     通过对无机混凝剂与聚合物驱采出水混凝动力学研究发现,复配铁铝混凝剂在提高混凝效果的同时絮体粒径没有明显下降。无机混凝剂与聚合物驱采出水中HPAM发生作用以化学键相连,产生的絮体具有较高的强度,不易破碎。
     (3)“混凝-水解酸化-动态膜生物反应器”组合处理工艺经实验运行30 d,首先以140 mg/L的复配铁铝混凝剂进行混凝,水解酸化池的最佳停留时间为8 h,动态膜生物反应器的出水水头为5 cm,周期时间约为140 h。经过运行参数优化之后,整套工艺可以平稳运行。组合工艺稳定运行30天,经过混凝处理后,进水COD平均612.4 mg/L降为168.9 mg/L,经过水解酸化处理后,COD下降至147.7mg/L,经好氧生物处理阶段,COD进一步降到79.7 mg/L,出水COD稳定,可以达到1998年以前建设单位的一级排放标准,以及1998年以后建设单位的二级排放标准。其他污染物指标均可以满足1998年以后建设单位的一级排放标准。在进水氨氮平均27.3 mg/L时,经过混凝处理、水解酸化、好氧生物处理后,氨氮降到1.5 mg/L,达到1998年以后建设单位的一级排放标准。
     (4)“水解酸化-动态膜生物反应器-混凝”组合工艺经实验运行后,水解酸化池的最佳停留时间为12 h,动态膜生物反应器的出水水头为5 cm,周期时间约为140 h,后置混凝工艺混凝剂投加量为120 mg/L,经过运行参数优化之后,整套工艺可以平稳运行。组合工艺稳定运行30天,在进水COD平均627.7 mg/L时,经过水解酸化处理后,COD下降至570.9 mg/L,经好氧生物处理阶段,COD进一步降到476.6 mg/L,经混凝工艺后,COD最终为75.9 mg/L,出水稳定,可以达到1998年以前建设单位的一级排放标准,以及1998年以后建设单位的二级排放标准。在进水氨氮平均29.8 mg/L时,经过水解酸化、好氧生物处理、混凝处理后,氨氮降到1.6 mg/L,达到1998年以后建设单位的一级排放标准。“水解酸化-动态膜生物反应器-混凝”组合工艺的提出虽然在实际的应用中存在不足,但随着聚合物驱采出水性质的变化、HPAM降解菌以及新生物工艺的研究,“水解酸化-动态膜生物反应器-混凝”组合工艺也提出了一种主要依靠生物法处理聚合物驱采出水的新思路。
With polymer flooding applied to enhance oil recovery and increase oil production in many oilfields, large amount of wastewater has been produced. The produced water from polymer flooding contains a quantity of residual hydrolyzed polyacrylamide (HPAM), which seriously impedes the oil-water separation. The old wastewater treatment process in the oilfield cannot meet the standard in treating produced wastewater from polymer flooding. The combined method "coagulation-hydrolysis acidification-dynamic membrane bioreactor" and "hydrolysis acidification-dynamic membrane bioreactor-coagulation" processes were developed.
     The applicable coagulants were chosen and compounded based on the comparison of the single coagulation effect of each coagulant at first. The coagulation mechanism of produced wastewater from polymer flooding by aluminum salt coagulants and the coagulation dynamics of different coagulates were studied. In the combined processes, the optimal dosage of the coagulant, the optimal hydraulic retention time in hydrolysis acidification reactor and the rule in dynamic membrane bioreactor operating were determined. As the combined processes running for 30 days, the feasibility of discharging the produced wastewater from polymer flooding was examined.
     The main contents and results are as follows:
     When the produced wastewater from polymer flooding was treated by coagulation method, the oil or turbidity removal efficiencies of traditional aluminum salt or iron salt coagulants were much better than those of the inorganic polymer coagulants or organic polymer flocculants. When the aluminum chloride (AC) and iron chloride (FC) were compounded with the dosage mass ratio of 1:3, it could not only improve the settling performance and decrease the volume of sludge, but also obtained high oil and turbidity removal efficiencies. When the compounded aluminum-iron coagulant was compounded with anionic polyacrylamide (APAM), the oil and turbidity removal efficiencies were dominated by the dosage of the inorganic compounded aluminum-iron coagulant. And at the dosage of 0.5 mg/L, APAM could bridge the flcos and improve the settling performance and decrease the volume of sludge.
     When the actual wastewater was treated by aluminum salt coagulants, the mainly removal effect was the crosslinking action between Al3+ and residual HPAM in the produced wastewater. But the crosslinking action could be hindered by the crude oil and salt. Aluminum sulfate had better efficiencies of removing oil and HPAM because of the better crosslinking action with HPAM. The dosages were increased and the treatment effects were reduced as crude oil, HPAM and salt existing in the wastewater.
     The flcos size was not decreased when compounded aluminum-iron coagulant reacted with the produced wastewater in the coagulation dynamics research. Inorganic coagulant bonded with HPAM in produced wastewater from polymer flooding through chemical bond, so the flcos were steady and not easy to be broken.
     The combined process of "coagulation-hydrolysis acidification-dynamic membrane bioreactor" was operated for 30 days. The optimal operation parameters were as follow:the dosage of compounded aluminum-iron coagulant was 140 mg/L, the HRT in hydrolysis acidification reactor was 8 h and the head drop of dynamic membrane bioreactor was 5 cm with 140 h running cycle. The results showed that the combined process was stable after optimizing the operation parameters. After coagulation, COD could decrease from 612.4 mg/L to 168.9 mg/L. After hydrolysis acidification, the COD fell to 147.7 mg/L. After aerobic biological process, the COD reduced to 79.7 mg/L. The COD of effluent could steadily reach the class I National Wastewater Discharge Standard before 1998, and the class II National Wastewater Discharge Standard after 1998. The average concentration of NH3-N in influent was 27.3 mg/L, after the combined coagulation, hydrolysis acidification and dynamic membrane bioreactor processes, the concentration decreased to 1.5 mg/L, and could steadily reach the class I National Wastewater Discharge Standard after 1998.
     The combined process of "hydrolysis acidification-dynamic membrane bioreactor-coagulation" was operated for 30 days. The optimal operation parameters were as follow:the HRT in hydrolysis acidification reactor was 12 h, the head drop of dynamic membrane bioreactor was 5 cm with 140 h running cycle and the dosage of compounded aluminum-iron coagulant was 120 mg/L. The results showed that the combined process was stable after optimizing the operation parameters. After hydrolysis acidification, COD could decrease from 627.7 mg/L to 570.9 mg/L. After aerobic biological process, the COD fell to 476.6 mg/L. After coagulation, the COD reduced to 75.9 mg/L. The COD of effluent could steadily reach the class I National Wastewater Discharge Standard before 1998, and the classⅡNational Wastewater Discharge Standard after 1998. The average concentration of NH3-N in influent was 29.8 mg/L, after the combined coagulation, hydrolysis acidification and dynamic membrane bioreactor processes, the concentration decreased to 1.6 mg/L, and could steadily reach the class I National Waste water Discharge Standard after 1998. In despite of the shortcoming of "hydrolysis acidification-dynamic membrane bioreactor-coagulation" process, it provided a new biological method to treat produced wastewater from polymer flooding with the development of produced wastewater, the HPAM degrading bacteria and the new biological technology.
引文
[1]郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发,2004,4(2):26-30.
    [2]胡博仲.聚合物驱采油工程[M].北京:石油工业出版社,2004.9-14.
    [3]朱麟勇,常志英,马昌期等,部分水解聚丙烯酰胺在水溶液中的氧化降解Ⅲ.高温稳定作用[J].高分子材料科学与工程,2002,18(2):93-96
    [4]张志远.聚合物驱采油技术.达县师范高等专科学校学报(自然科学版).2003,23(2):19-21.
    [5]Han, D. K., Yang, C. Z., Zhang, Z. Q., Lou, Z. H. and Chang, Y. I., Recent development of enhanced oil recovery in China[J]. J. Petrol. Sci. Eng.,199922(1-3),181-188.
    [6]元福卿,张以根,姜颜波等,胜利油田聚合物驱作法及效果[J],油田化学,2001,18(2):148-151.
    [7]孙德君,匡洞庭,张宝军等,驱油用超高分子量聚丙烯酰胺的合成[J],精细石油化工,2001,(5):13-15.
    [8]王启民,冀宝发,隋军等,大庆油田三次采油技术的实践与认识[J],大庆石油地质与开发,2001,20(2):1-8.
    [9]Han D.K. The Achievements and Challenges EOR Technology for Onshore Oilfields in China, in:The 15th World Petroleum Congress[M], London:John Wiley & Sons,1997.
    [10]由庆,赵福麟,等.聚合物驱注入与产出聚丙烯酰胺的对比研究[J].北京化工大学学报,2007,34(4):414-417.
    [11]Shubo Deng, Renbi Bai, et al. Effects of alkaline/surfactant/polymer on stability of oil droplets in produced water[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2002,211: 275-284.
    [12]窦丽霞,曹绪龙,等.驱油用聚丙烯酰胺溶液界面特性研究[J].胶体和聚合物,2004,22(2):14-16.
    [13]高迎新.Fenton体系氧化吸附机理研究及在采油污水处理中的应用[D].中国科学院研究生院博士学位论文,2003.
    [14]鲁逸人.采油废水中聚丙烯酞胺处理技术研究[D].天津大学硕士论文,2004.
    [15]张安.生化处理油田污水的新趋势[J].安全与环境工程,2003,10(1):19-21.
    [16]闻岳,章非娟,余志荣.稠油废水处理再生后回用于热采锅炉的研究[J],给水排水,2004,30(1):43-45.
    [17]崔俊华,金文彪.高效原油降解菌处理油田采出水[J].重庆环境科学,2002,24(5):42-47.
    [18]邓波,祝威.生化法处理高温高盐油田采出水[J].中国给水排水,2003,19(4):76-78.
    [19]夏福军,张宝良,邓述波.聚合物驱采出水处理工艺研究.油气田保护.2001,11(3):34-36.
    [20]陈雷等.聚合物驱采油废水处理工艺的试验研究[J].哈尔滨建筑大学学报1999,32(6),117-120.
    [21]蒋明虎等.注聚采出水脱油用水力悬流器机理及试验研究[J].石油机械,1998,26(8),14-16.
    [22]余庆东.射流气浮机处理油田含聚污水.国外油田工程,2001,17(6),50.
    [23]吴迪,艾广智.曝气对聚合物驱采出水流变性和油水分离特性的影响[J].油气采收率技术.1997,4(1):28-32.
    [24]高建平,于九皋等.聚丙烯酰胺在水介质中的低温化学降解[J].化学工业与工程.1999,16(1):44-48.
    [25]李大鹏,樊庆锌,等.油田聚合物采油废水混凝处理方法的试验研究[J].环境科学学报,2000,20:64-68.
    [26]李玉江,杨波.复合混凝剂PAFS处理油田三次采油废水[J].山东化工,2004,33(1):9-11.
    [27]刘国荣,徐群,等.油田含聚污水絮凝处理技术研究[J].Fluid Machinery,2005,33(10):8-11.
    [28]李桂华,张大雷.絮凝沉降法处理聚合物驱采出水[J].辽宁城乡环境科技,2000 20(1):27-30.
    [29]廖广志,石梅,李蔚,等.以部分水解聚丙烯酰胺和原油为营养源的微生物筛选及性能评价[J].石油学报,2003,24(6):59-63.
    [30]陆金仁,王修林,单宝田,等.采油污水生物处理技术[J].环境污染治理技术与设备,2004,5(11):65-69.
    [31]Kay-Shoemake J. L.,Watwood M. E.,Sojka R. E.,et al.Polyacrylmide as a substrate for microbial arnidase in culture and soil[J]. Soil Biol Biochem,1998,30(13):1647-1654.
    [32]Kay-Shoemake J. L., Watwood M. E., Lentz R. D.,et al. Polyacrylmide as an organic nitrogen source for soil microorganisms with potential effects on inorganic soil nitrogen in agriculture soil[J]. Soil Biol Biochem,1998,30(8-9):1045-1052.
    [33]Grula M. M., Huang M., Sewell G. Interactions of certain polyacrylamideswith soil bacteria[J]. Soil Sci,1994,158(4):291-300.
    [34]Sutherland G. R. Haselhach J. Biodegradation of crosslinked acrylic polymers by a white-rot fungus [J]. Environ Sci Pollution Res,1997,4(1):16-20.
    [35]黄峰,卢献忠.腐生菌对水解聚丙烯酰胺降解过程的研究[J].石油炼制与化工,2002,33(3):5-8.
    [36]黄峰,范汉香,董泽华.等.硫酸盐还原菌对水解聚丙烯酰胺的生物降解性研究[J].石油炼制与化工,1999,30(1):33-36.
    [37]李蔚,刘如林,梁凤来,等.一株聚丙烯酰胺降解菌降解聚丙烯酰胺及原油性能研究[J].环境科学学报,2004,24(6):1116-1121.
    [38]孙晓君,王志平,刘莉莉,等.油田采出水中聚丙烯酰胺在SBR中的生物降解特性研究[J].化学与生物工程,2005,2:16-17.
    [39]魏利,马放.一株聚丙烯酰胺降解菌的分离鉴定及其生物降解[J].华东理工大学学报:自然科学版.2007,33(1):57-60.
    [40]佘跃惠,周玲革,舒福昌,等.七株聚丙烯酰胺降解菌对PAM的降解性能评价[J].生物技术,2005,15(5):63-66.
    [41]Tanny G. B. Dynamic membranes in ultrafiltration and reverse osmosis[J]. Sep. Purif. Methods,1978,7(2):183-220.
    [42]范彬.自生动态膜-生物反应器新型污水处理工艺的研究[D]. 清华大学博士后研究报告,2002.
    [43]kiso Y,Jung Y. J., Ichihara T, et al. Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material[J]. Wat. Res.,2000,34(17):4143-4150.
    [44]张捍民,乔森,叶茂盛,等.预涂动态膜-生物反应器处理生活污水试验研究[[J].环境科学报,2005,25(2):249-253.
    [45]高松,周增炎,高廷耀.自组生物动态膜在污泥截留中的应用研究[J].净水技术,2005,24(1):14-17.
    [46]Seo G. T., Moom B. H., Lee T. S., et al. Non-woven fabric filter separation activated sludge reactor for domestic wastewater reclamation[J] Water Sci and Technol,2003,41(1): 133-138.
    [47]Wang W., Jung Y. J., et al. Excess sludge reduction performance of an aerobic SBR process equipped with a submerged mesh filter unit[J]. Process Biochem,2006,41(4):745-751.,
    [48]范彬,黄霞,等.动态膜-生物反应器对城市污水的处理[J].环境科学,2002,23(6):51-56.
    [49]范彬,黄霞,等.出水水头对自生生物动态膜过滤性能的影响[J].环境科学,2003,24(5):65-69.
    [50]初里冰,李书平.动态膜生物反应器的过滤性能及运行特性研究[J].工业水处理,2006,26(4):66-69.
    [51]张建,邱宪锋,高宝玉.动态膜生物反应器中动态膜的作用和结构研究闭.环境科学,2007,28(1):147-151.
    [52]Qiao, X. L., Zhang, Z. J., Yu, J. L. and Ye, X. F., (2008). "Performance characteristics of a hybrid membrane pilot-scale plant for oilfield-produced wastewater".Desalination.,225, 113-122.
    [53]Ren Guangmeng, Sun Dezhi, Jong Shik Chung. Kinetics study on photochemical oxidation of PAM by ozone combined with hydrogen peroxide and ultraviolet radiation [J]. Journal of Environmental Science.2006,18(4):660-664.
    [54]温青,李凯峰,矫移山.油田含聚废水处理方法研究.应用科技[J].2002,29(8):65-66.
    [55]李源,雷中方,等.油田采出水的高温水解-好氧处理工艺研究[J].工业水处理,2003,23(7):22-25.
    [56]闻岳,黄翔峰,等.水解酸化-好氧法处理油田废水机理研究[J].环境科学,2006,27(7):1362-1368.
    [57]陈忠喜.大庆油田含油污水及含油污泥生化/物化处理技术研究[D].哈尔滨工业大学博士学位论文,2006.
    [58]李方,陈季华,奚旦立,等.错流式动态膜生物反应器中污泥活性的研究[J].环境污染治理技术与设备,2006,7(7):47-52.
    [59]徐寅汇,武小鹰,吕少宏,等.动态陶瓷膜的制备及应用研究[J].水处理技术,2003,29(3):134-136.
    [60]Mohd Noor M., Ahmadun F. R., Mohamed T. A.. Performance of flexible membrane using kaolin dynamic membrane in treating domestic wastewater [J]. Desalination,2002(147): 263-268.
    [61]张捍民,乔森,叶茂盛等.预涂动态膜-生物反应器处理生活污水试验研究[J].环境科学学报,2005 25(2):249-253.
    [62]Zhao Y. J., Tan Y., bong F. S., et al. Formation of dynamic membranes for oily water separation by crossflow filtration[J]. Sep. & Purif. Technol.,2005,44 (3):212-220.
    [63]中华人民共和国石油天然气行业标准,油田污水中含油量测定方法—分光光度法SY/T 0530-93,1994.
    [64]张忠智,高玉格,卢晓刚,等.显色法测定HPAM质量浓度的方法改进[J].石油化工高等学校学报,2007,20(1):28-34.
    [65]Francois R. J. Strength of aluminum hydroxide flocs[J]. Water Res.1987,21(9): 1023-1030.
    [66]Yukselen M. A., Gregory J. The reversibility of floc breakage[J]. Int. J. Miner. Process., 2004,73 (2-4):251-259.
    [67]Jarvis P, Jefferson B, Parsons S. A. Breakage, regrowth, and fractal nature of natural organic matter flocs[J]. Environ. Sci. Technol.,2005,39(7):2307-2314.
    [68]Guerrer, L., Omil, F., Mendez, R. and M., L. J., Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein[J]. Wat. Res., 1999,33(15):3281-3290.
    [69]魏复盛,齐文启,等.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [70]冈秦麟.论我国的三次采油技术[J].油气采收率技术,1998,4:1-7.
    [71]邓述波,周抚生,余刚,等.油田采出水的特性及处理技术[J].工业水处理,2000,20(7):10-12.
    [72]常青.水处理絮凝学[M] 北京,化学工业出版社,2003:71-77.
    [73]Hahn H H, Stumm W. Kinetics of coagulation with hydrolyzed A1(Ⅲ)[J]. J Coll Interf Sci,1968,28 (1):134-144
    [74]汤鸿霄.羟基聚合氯化铝的絮凝形态学[J].环境科学学报,1998,18(1):1-8.
    [75]李大鹏,樊庆锌,周定.油田聚合物采油废水混凝处理方法的实验研究[J].环境科 学学报,2000,20(增刊):64-68.
    [76]方道斌,郭睿威,哈润华 丙烯酰胺聚合物[M] 北京,化学工业出版社,2006:247-257.
    [77]Yue. Q. Y. Gao B Y, Wang B J. Electrophoretic nature and evalua-tion of poly-aluminum-chloride-sulfate (PACS) as a coagulant for water and wastewater treatment[J]. J Environ Sci Heal A,2003,38(5):897-907.
    [78]赵华章,葛晓鹏,栾兆坤,等.钙对聚合氯化铝中铝形态分布及结构形貌的影响[J].科学通报,2004,49(9):854-857
    [79]梅佑黔.部分水解聚丙烯酸胺的盐敏效应[J].石油学报,1982,3(1):41-49.
    [80]常青,水处理絮凝学[M] 北京,化学工业出版社,2003:53-54.
    [81]张忠国,栾兆坤,赵颖,等.聚合氯化铝(PACl)混凝絮体的破碎与恢复[J].环境科学,2007,28(2):346-351.
    [82]Wenzheng Y, Guibai L., Yongpeng X. et al, Breakage and re-growth of flocs formed by alum and PACl[J]. Powder Technol,2009,189:439-443
    [83]Yukselen M. A., Gregory J.. The effect of rapid mixing on the break-up and re-formation of flocs.[J] Chem Technol Biot,2004,79:782-788
    [84]Bache D. H., Johnson C., McGilligan J., et al. A Conceptual View of Floc Structure in the Sweep Floc Domain[J]. Water Sci Tech-nol,1997,36 (4):49-56
    [85]Sharp E. L., Jarvis P., Parsons S. A., et al, The impact of zeta potential on the physical properties of ferric-NOM flocs[J]. Environ Sci Technol.2006,40(12):3934-3940.
    [86]程林波,废水中聚丙烯酰胺的生物降解试验研究初探[J],工程与技术,2004,1:20-23.
    [87]包木太,骆克峻,耿雪丽,等,聚丙烯酰胺降解菌的筛选及降解性能评价[J],西安石油大学学报(自然科学版),2008,23(2):71-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700