光纤光栅在微波光子学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波光子学是一门集合了微波技术和光通信优势的交叉学科,利用光子学的办法处理微波信号,具有传输损耗低、带宽高、抗干扰能力强等优点。光纤光栅的出现,因其频谱的多样性和应用的灵活性,已成为微波光子学应用中一个重要的光纤器件,它在光载无线系统、微波/毫米波信号源、光控相控阵天线、光子微波信号处理等多个领域具有很好的应用前景。本论文主要研究的是光纤光栅在微波光子学中的应用:
     基于π-相移光纤Bragg光栅改善RoF链路性能。使用窄线宽的相移光纤光栅作为光滤波器抑制光载波改善RoF链路性能。载波抑制后,链路增益和噪声系数提高了17dB,动态范围也得到了明显提高,得到的射频功率曲线在4-14 GHz范围内浮动不超过2 dB。
     基于窄带光纤光栅和布里渊掺铒光纤激光器来实现60 GHz毫米波。布里渊光纤激光器产生第n阶斯托克斯光,经过窄带光纤光栅滤波以后,与泵铺光一起送到高速光电探测器上拍频,得到了毫米波信号,该方法无需外部微波信号源。
     基于π-相移光纤Bragg光栅实现可调谐超宽带陷波滤波器。滤波器的3 dB通带在3.1~10.6 GHz,陷波中心波长在5.5 GHz附近,最大的陷波点功率减少了25 dB以上,有效减少了与IEEE802.11a无线通信之间的信号干扰。
     基于光纤光栅和相位调制器进行实时频率测量,光调制信号的载波位于光纤光栅斜边的不同位置时,得到了不同的微波功率,通过频率与功率的映射关系得到微波信号的频率。系统仅需要一个光纤光栅,简化了实验结构,且提高了频率可测量范围和精度。相比强度调制器,相位调制器插入损耗小,而且不需要直流偏置,系统更加稳定。
Microwave photonics is an interdisciplinary area, which combines the advantages of microwave technology and optical communication. Processing the microwave signals with photonic techniques has many advantages, such as low cost, high bandwidth, immunity to electromagnetic interference ect. The fiber Bragg grating(FBG) is a key component for the applications in microwave photonics, for its diversity of the spectrum and flexibility. It can be used in radio over fiber technology, microwave/millimeter-wave generation, phased-array radar and photonics signal processing, etc. In this thesis, the applications of FBGs in microwave photonics are studied:
     A low-cost method for improving RoF performances by using a phase-shift fiber Bragg grating is proposed. The fiber grating with an ultra-narrow bandwidth is implemented as an optical filter, to suppress the optical carrier of the double-sideband signal. Experimental results show that 17 dB improvement of the RoF link gain and noise figure can be achieved after the carrier suppression. The spur-free dynamic range can also be significantly improved. As a result, the RF gain response is flat with fluctuation less than 2dB ranging from 4 GHz to 14 GHz.
     A novel system configuration is introduced for optical generation of 60GHz millimeter wave, which is realized through Brillouin-erbium fiber laser and a fiber Bragg grating. The nth-order Stokes wave is generated in the Brillouin-erbium fiber laser, and filtered out by the fiber Bragg grating. The microwave/mm-wave is generated by the mixing of the nth-order Stokes wave and the pump power on the high-speed photodetector.60GHz millimeter wave is generated without any microwave generator.
     A novel tunable ultra-wideband bandpass filter with narrow notched band is proposed based on a phase-shift fiber Bragg grating. The proposed filter ranges from 3.1 to 10.6 GHz with the center frequency of narrow notched band located at about 5.5 GHz. The rejection loss is more than 25 dB at the dip of the notched band. It can avoid interference that occurs with IEEE 802.11a radio signals significantly.
     Instantaneous microwave frequency measurement based on frequency-to-power mapping is proposed and demonstrated by using the transmission spectrum of a FBG. The microwave frequency can be estimated by measuring the microwave power difference when the carrier located at the different positions of the FBG. The entire system was significantly simplified and cost-effective since only a FBG was used. Microwave frequency measurement with improved measurement range and resolution is realized. In addition, the optical phase modulator has smaller insertion loss, and can be worked without the bias circuit, so the system is more stable by using an optical phase modulator than Mach-Zehnder intensity modulator.
引文
[1]周波,“微波光子学发展动态”,激光与红外,2006,vol.36(2),pp.81-84.
    [2]Matsui, Y. Murai, Arahira, S. Kutsuzawa, and Y. Ogawa, "30 GHz bandwidth 1.55μm strain-compensated InGaAlAs-InGaAsp MQW laser", IEEE Photon. Technol. Lett.,1997,vol 9(1), pp.25-27.
    [3]Gerd Keiser,李玉权、崔敏、蒲涛等译,光纤通信,电子工业出版社,2005,第三版.
    [4]T. Ishibashi, H. Fushimi, H. Ito, and T. Furuta, "High power uni-travelling-carrier photoiodes," Int. IEEE Microw. Photon.,1999, pp.75-78.
    [5]E. M. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, "Maximum dynamic range operation of a microwave external modulation fiber-optic link," IEEE Trans. Microw. Theo. Tech.,1993, vol.41(8),1299-1306.
    [6]邓大鹏等,光纤原理通信,人民邮电出版社,2003,第一版.
    [7]D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz and M. Popov, "Tunable microwave photonic filter noise and interference suppression in UMTS base stations", Electron. Lett.,2004, vol.40(16), pp.997-998.
    [8]M. Attygalle, D.B. Hunter, "Improved Photonic Technique for Broadband Radio-Frequency Measurement.," IEEE Photon. Technol. Lett.,2009. vol.21(4), pp. 206-208.
    [9]G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-optical mixing in LiNbO3 Modulators," IEEE Trans. Microw. Theo. Technol,1993, vol. 41(12), pp.2383-2391.
    [10]A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Review of Scientific Instruments.2000, vol.71(5). pp.1929-1960.
    [11]J. D. Shin, B. S. Lee, and B. J. Kim. "Optical true timedelay feeder for X-band phased array antennas composed of 2x2 optical switches and fiber delay lines," IEEE Photon. Techno. Lett.,2004, vol.16(5), pp.1364-1366.
    [12]Y. Q. Jiang, and Z. Shi, "Delay time enhanced photonic crystal fiber array for wireless communications using two dimensional X-band phased array antennas," Opt. Engin.,2005, vol.44(12),125001.
    [13]J. E. Roman, M. Y. Frankel, P. J. Matthews, and R. D. Esman, "Time-steered array with a chirped grating beamformer", Electron. Lett.,1997, vol.33(8), pp. 652-653.
    [14]D. B. Hunter, M. E. Parker, and J. L. Dexter, "Demonstration of a continuously variabletrue-time delay beamformer using a multichannel chirped fiber grating," Microw. Theory and Tech.,2006, vol.54(2), pp.861-867.
    [15]S. S. Lee, and H. D. Chae, "Continuous photonic microwave true time delay using tapered chirped fiber Bragg grating," Electron. Lett.,2005, vol.41(12), pp.690-691.
    [16]K. O. Hill, Y. Fujii, D. C. Johnson, and B.S. Kawasaki, "Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication," Appl. Phy. Lett., 1978, vol 32(10), pp 647-649.
    [17]B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii "Narrow-band Bragg reflectors in optical fibers," Opt. Lett.,1978, vol.3(2), pp 66-68.
    [18]G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett.,1989, vol.14(15), pp 823-825.
    [19]S. Blais, and J. P. Yao, "Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating." Photon. Technol. Lett.,2006, vol.18(21), pp.2230-2232.
    [20]C. H. Cox, E. I. Ackerman. and J. L. Prince. "What do we need to get great link performance," Microw. Photon.,1997, pp.215-218.
    [21]C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microw. Theory Tech.,2006, vol.54(2), pp.906-920.
    [22]A. Karim, and J. Devenport, "Noise Figure Reduction in Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett.,2007, vol.19(5), pp.312-314
    [23]R.D. Esman, and K.J. Williams, "Wideband efficiency improvement of fiber-optic systems by carrier subtraction," IEEE Photon. Technol. Lett.,1995, vol. 7(2),218-220.
    [24]M. Bakaul, A. Nirmalathas, and C. Lim, " Efficient multiplexing scheme for wavelength-interleaved DWDM millimeter-wave fiber-radio systems," IEEE Photon. Technol. Lett.,2005, vol 17(12), pp.2718-2720.
    [25]M. J. LaGasse, W. Charezenko, M. C. Hamilton, and S. Thaniyavarn, "Optical carrier filtering for high dynamic rang fiber optic links," Electron. Lett.,1994, vol.30(25), pp.2157-2158.
    [26]K. J. Williams, and R.D. Esman, "Stimulated Brillouin scattering for improvement of microwave fiber-optic link efficiency," Electron. Lett.,1994, vol. 30(23), pp.1965-1966.
    [27]Y. Shen, X.M. Zhang, and K.S. Chen, "Optical carrier-suppression of microwave signals with stimulated Brillouin scattering in long fiber ring," IEEE Microw. Opt. Technol. Lett.,2004, vol.43(3),258-260.
    [28]A. Karim, and J. Devenport, "Noise figure reduction in externally modulated analog fiber-optic links," IEEE Photon. Technol. Lett.,2007, vol.19 (5), pp.312-314.
    [29]J. Devenport, and A. Karim, "Optimization of an externally modulated RF photonic link," Fiber and Integ. Opt.,2008, vol.27 (1), pp.7-14.
    [30]R.D. Esman, and K.J. Williams, "Wideband efficiency improvement of fiber-optic systems by carrier subtraction," IEEE Photon. Technol. Lett.,1995, vol. 7(2),218-220.
    [31]M. Bakaul. A. Nirmalathas, and C. Lim, "Efficient multiplexing scheme for wavelength-interleaved DWDM millimeter-wave fiber-radio systems," IEEE Photon. Technol. Lett.,2005. vol.17(12). pp.2718-2720.
    [32]C. Lim, M. Attygalle, A. Nirmalathas. D. Novak, and R. Waterhouse, "Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links," IEEE Trans. Microw. Theo. Tech.,2006, vol.54(5), pp.2181-2187.
    [33]X. M. Zhang, S. L. Zheng, L. Liu, X. M. Liu, X. M. Zhang, and X. F. Jin, "Frequency response equalization using fiber Bragg grating tilted filter in RoF systems," IEEE J. Lightw. Technol.,2009, vol.27(13), pp.2465-2469.
    [34]R. C. Daniels, and R. W. Heath, "60GHz wireless communications:emerging requirements and design recommendations," Vehi. Technol.,2008, vol.2(3), pp. 41-50.
    [35]F. Lecoche, E. Tanguy, B. Charbonnier, H. W. Li, F. V. Dijk, A. Enard, F. Blache, M. Goix, and F. Mallecot, "Transmission quality measurement of two types of 60 GHz millimeter-wave generation and distribution systems," IEEE J. Lightw. Technol.,2009, vol.27(23), pp.5469-5474.
    [36]J. Marti, F. Ramos, V. Polo, J. M. Fuster, and J. L. Corral, "Millimetre-wave generation and harmonic uoconversion through Realizing PM-IM conversion in chirped fiber gratings," Electron. Lett.,1999, vol.35(15), pp.1265-1266.
    [37]J. Zhang, and T. E. Darcie, "Low_biased microwave photonic link using optical frequency or phase modulation and fiber bragg grating discriminator," Opt. Fiber Commun. Conf.,2006.
    [38]X. Chen, Z. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser", IEEE Trans. Microw. Theo. Tech.,2006, vol.54, (2), pp.804-809.
    [39]J. P. Yao, F. Zeng and Q. Wang, "Photonic generation of ultrawideband signals,' IEEE J. Lightw. Technol.,2007, vol.25(11), pp.3219-3235.
    [40]F., Zeng, and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating- based frequency discriminator." IEEE Photon. Technol. Lett..2006. vol.18(19), pp.2062-2064.
    [41]H. Shaman, and J. S. Hong, "Ultra-wideband (UWB) Bandpass Filters With Embedded Band Notch Structures," IEEE Microw. Wirel. Compon. Lett.,2007, vol. 17(3), pp.193-195.
    [42]N. Thomson and J. S. Hong, "Compact ultra-wideband microstrip/coplanar waveguide bandpass flter," IEEE Microw. Wirel. Compon. Lett.,2007, vol.17(3), pp. 184-186.
    [43]M. A. Muriel, J. Azana, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett.,1999, vol.24(1), pp.1-3.
    [44]H. Chi, F. Zeng, J. P. Yao, "Photonic Generation of Microwave Signals Based on Pulse Shaping," IEEE Photon. Technol. Lett.,2007, vol.19(9), pp.668-670.
    [45]H. Chi, and J. P. Yao, "Chirped RF Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Nonlinearly Chirped Fiber BraggGrating," IEEE J. Lightw. Technol.,2008, vol.26(10), pp.1282-1287.
    [46]J. Seeds and K. J. Williams, "Microwave photonics," IEEE J. Lightw. Technol., 2006, vol.24(12), pp.4628-4641.
    [47]J. P. Yao, "Microwave photonics," IEEE J. Lightw. Technol.,2009, vol.27(3), pp.314-335.
    [48]D. B. Hunter, L. G. Edvell, and M. A. Englund, "Wideband microwave photonic channelised receiver," in Int. Top. Meet. on Microw. Photon.,2005, pp.249-251.
    [49]X. H. Zou and J. P. Yao, "An optical approach to microwave frequency measurement with adjustable measurement range and resolution," IEEE Photon. Technol. Lett.,2008, vol.20(12), pp.1989-1991.
    [50]X. M Zhang, H. Chi, X. M Zhang, S. L. Zheng, X. F. Jin, and J. P. Yao, "Instantaneous microwave frequency measurement using an optical phase modulator," IEEE Microw. Wirel. Compon. Lett.,2009, vol.19(6), pp.422-424.
    [51]H. Chi, X. H. Zou, and J. P. Yao, "An approach to the measurement of microwave frequency based on optical power monitoring," IEEE Photon. Tech. Lett., 2008, vol.20(14), pp.1249-1251.
    [52]Z. Li, B. Yang, H. Chi, X. M. Zhang, S. L. Zheng, and X. F. Jin, "Photonic instantaneous measurement of microwave frequency using fiber Bragg grating," Opt. Commun.,2010, vol.283(3), pp.396-399.
    [1]K. O. Hill, Y. Fujii, D. C. Johnson, and B.S. Kawasaki, "Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication," Appl. Phys. Lett., 1978, vol.32(10), pp.647-649.
    [2]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett.,1993 vol.62(10), pp.1035-1037.
    [3]P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres," Electron. Lett.,1993, vol.19(13), pp.1191-1193.
    [4]D. Johlen, P. Klose, H. Renner, and E. Brinkmeyer, "Fiber Fabry-Perot interferometer with mode -coverting Bragg grating," IEEE J. Lightw. Technol.,2001, vol.18(11), pp.1575-1582.
    [5]Y. Jiang, T. F. Jiang, and L. Liu, "Optical Fiber Bragg Grating Michelson Interferometer," J. Beijing Insti. Technol.,2006, vol.5(4), pp.448-450.
    [6]T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instum.,2002, vol.73(4), pp.1702-1705.
    [7]X. W. Shu, S. Jiang, and D. X. Huang, "Fiber grating Sagnac loop and its multiwavelength laser application," IEEE Photon. Technol. Lett.,2000, vol.12(8), pp. 980-982.
    [8]Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett.,2004, vol.16(10), pp.2284-2286.
    [9]H. Patrick, S..L. Gilbert, A. Lidgard, and M. D. Gallagher, "Anealing of Bragg Gratings in Hydrogen-Loaded Optical Fiber," J. Appl. Phy.,1995, vol.78(5), pp. 2940-2945.
    [10]B. O. Guan, H. Y. Tam, and X. M. Tao, "Highly Stable fiber Bragg gratings written in hydrogen -loaded fiber," IEEE Photon. Technol. Lett.,2000, vol.12(1), pp. 1349-1351
    [11]J. Skaar and K. M. Risvik, "A Genetic Algorithm for the Inverse Problem in Synthesis of Fiber Gratings," IEEE J. Lightw. Technol.,1998, vol.16(10), pp. 1928-1932.
    [12]L. Wang and T. Erdogan, "Layer peeling algorithm for reconstruction of long-period fibre gratings" Electron. Lett.,2001, vol.37(3), pp154-156.
    [13]J. Bae, J. Chun, and S. B. Lee, "Synthesis of Long-Period Fiber Gratings With the Inverted Erbium Gain Spectrum Using the Multiport Lattice Filter Model," IEEE J. Lightw. Technol.,2004, vol.22(8), pp.1976-1986.
    [14]R. Feced, and M. N. Zervas, "An efficient Inverse Scattering Aglorithm for the Design Of Nonuniform Fiber Bragg Gratings," J. Ouan. Electeron.,1999, vol.35(8), pp.1105-1115.
    [15]M. Ibsen, and M. K. Durki, "Custom Design of Long Chirp Bragg Gratings: Application to Gain-Flattening Filter with Incorporated Dispersion Compensation," IEEE Photon. Technol.,2005, vol.12(8), pp.498-500.
    [16]R. D. Chamberlain, M. N. Edelman, M. A. Franklin, and E. E. Witte, "Simulated annealing on a multiprocessor," Comp. Des. VLSI in Comp. and Pro.,1988, vol.6(4), pp.540-544.
    [17]汤树成,刘小会,陈刚,“一种改进型的管状光纤光栅温度补偿封装实验,现代有线传输,2005,vol.5,pp.76-78.
    [1]E. M. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, "Maximum dynamic range operation of a microwave external modulation fiber-optic link," IEEE Trans. Microw. Theo. Tech.,1993, vol.41(8),1299-1306.
    [2]邓大鹏等,光纤原理通信,人民邮电出版社,2003,第一版.
    [3]原荣,光纤通信,电子工业出版社,2002,第一版.
    [4]C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microw. Theo. Tech.,2006, vol.54(2), pp.906-920.
    [5]A. Karim, and J. Devenport, "Noise Figure Reduction in Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett.,2007,vol.19(5), pp.312-314
    [6]M. Bakaul, A. Nirmalathas, and C. Lim, "Efficient multiplexing scheme for wavelength-interleaved DWDM millimeter-wave fiber-radio systems," IEEE Photon. Technol. Lett.,2005, vol 17(12), pp.2718-2720.
    [7]M. J. LaGasse, W. Charezenko, M. C. Hamilton, and S. Thaniyavarn, "Optical carrier filtering for high dynamic rang fiber optic links," Electron. Lett.,1994, vol. 30(25), pp.2157-2158.
    [8]A. Karim, and J. Devenport, "Noise figure reduction in externally modulated analog fiber-optic links," IEEE Photon. Technol. Lett.,2007, vol.19 (5), pp.312-314.
    [9]J. Devenport, and A. Karim, "Optimization of an externally modulated RF photonic link," Fiber and Integ. Opt.,2008, vol.27(1), pp.7-14.
    [10]E. G. Turitsyna, and S. Webb, "Simple design of FBG-based VSB filters for ultra-dense WDM transmission," Electron. Lett.,2005, vol.41 (2), pp.89-91.
    [11]L. Liu, S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Performances improvement in radio over fiber link through carrier suppression using Stimulated Brillouin scattering," Opt. Exp.,2010, vol.18 (11), pp.11827-11837.
    [12]Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett.,2004, vol.16 (10), pp.2284-2286.
    [1]. P. Smulders, "Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions," Commun. Magaz.,2002, vol.40(1), pp.140-147.
    [2]. S. Pinel, C. H. Lee, S. Sarkar, B. Perumana, S. Padvanama, R. Mukhopadhyay, and J. Laskar. "Low cost 60 GHz Gb/s radiodevelopment", Pro. In Electrom. Res. Sympo.,2006, Cambridge, USA, March 26-29,2006.
    [3]T. Schneider, D. Hannover, and M. Junker, "Investigation of Brillouin Scattering in Optical Fibers for the Generation of Millimeter Waves," IEEE J. Lightw. Technol., 2006, vol.24 (1), pp.295-304.
    [4]. R. C. Daniels, and R. W. Heath, "60 GHz wireless communications:emerging requirements and design recommendations," Veh. Technol. Magaz.,2008, vol.2(3), pp.41-50.
    [5]S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, "Optical microwave source," Electron. Lett.,2002, vol.38, pp.334-335.
    [6]B. N. Biswas, "Optical generation of mm-wave signal with wide linewidth lasers for broadband communications," Piers Online,2007, vol.3(7), pp.1058-1063.
    [7]B. N. Biswas, A. Banerjee, A. Mukherjee, and S. Kar, "Lightwave technique of mm-wave generation for broadband mobile communication," Piers online,2007, vol. 3(7), pp.1071-1075.
    [8]F. Lecoche, E. Tanguy, B. Charbonnier, H. W. Li, F. V. Dijk, A. Enard, F. Blache, M. Goix, and F. Mallecot, "Transmission quality measurement of two types of 60 GHz millimeter-wave generation and distribution systems," IEEE J. Lightw. Technol., 2009, vol.27(23), pp.5469-5474.
    [9]D. Wake, C. R. Lima, and P. A. Davies, "Optical generation and transmission of 60 GHz signals over 100 km of optical fibre usinga dual mode semiconductor laser," Microw. Conf.,25th Europ.,1995, vol.2, pp.866-869.
    [10]F. Friederich, G. Schuricht. A. Deninger, F. Lison, G. Spickermann, P. H. Bolivar, and H. G. Roskos, "Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHz to THz rang," Opt. Exp.,2010, vol.18(8), pp. 8621-8629.
    [11]J. J. Oreilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical-generation of very narrow linewidth millimeter-wave signals," Electron. Lett.,1992, vol.28(25), pp.2309-2311.
    [12]L. Goldberg, H. F. Taylor, J. F. Weller. and D. M. Bloom, "Microwave signal generation with injection locked laser diodes," Electron. Lett.,1983, vol.19(13), pp. 491-493.
    [13]Z. Fan, and M. Dagenais, "Optical generation of a mHz-linewidth microwave signal using semiconductor lasers and a discriminator aided phase-locked loop," IEEE Trans. Microw. Theory Tech.,1997, vol.45(8), pp.1296-1300.
    [14]G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," Trans. On Microw. Theo. And Tech.,2005, vol.53(10), pp.3090-3097.
    [15]Y. C. Shen, X. M. Zhang, and K. S. Chen, "All-Optical Generation of Microwave and Millimeter Wave using a Two-Frequency Bragg Grating-Based Brillouin Fiber Laser," IEEE J. Lightw. Technol.,2005, vol.23(5). pp.1860-1865.
    [16]C. T. Lin, P. T. Shih, J. Chen, W. J. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, "Optical millimeter-wave Up-conversion employing, frequency quadrupling without optical filtering," Trans. On Microw. Theo. And Tech.,2009, vol.57(8), pp. 2084-2092.
    [17]D. Culverhouse, K. Kalli, and D. A. Jackson, "Stimulated Brillouin scattering ring resonator laser for SBS gain studies and microwave generation," J. Electron. Lett.,1991, vol.27(22), pp.2034-2035.
    [18]T. Masato, and H. Kazuo, "Application of correlation-based continuous-wave technique for fiber Brillouin sensing to measurement of strain distribution on a small Size material," IEEE Photon. Technol. Lett.,2002, vol.14(5), pp.675-677.
    [19]G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, "Microwave/Millimeter-wave Generation using Multi-wavelength Photonic Crystal Fiber Brillouin Laser," PIER, 2008, vol.80, pp.307-320.
    [20]W. Guan, and J. R Marciante, "Single-frequency 1 W hybrid Brillouin/ytterbium fiber laser", Opt. Lett.,2009, vol.34(20), pp.3131-3132.
    [21]G. J. Cowle, and D. Y. Stepanov, "Multiple Wavelength Generation With Brillouin/Erbium Fiber Lasers," IEEE Photon. Technol. Lett.,1996, vol.8 (11), pp. 1465-1467.
    [1]H. Ishida, and K. Araki, "Design and analysis of UWB band pass filter with ring filter," IEEE MTT-S Int. Dig.,2004, vol.3, pp.1307-1310.
    [2]K. Li, D. Kurita, and T. Matsui, "An ultra-wideband bandpass flter using broadside-coupled microstrip-coplanar waveguide structure," IEEE MTT-S Int. Dig., 2005, vol.2, pp.675-678.
    [3]L. Zhu, S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wirel. Compon.,2005, vol.15(11), pp. 796-798.
    [4]J. P. Yao, F. Zeng, and Q. Wang, "Photonic generation of ultrawideband signals," IEEE J. Lightw. Technol.,2007, vol.25(11), pp.3219-3235.
    [5]H. Shaman, and J. S. Hong, "Ultra-wideband (UWB) Bandpass Filters With Embedded Band Notch Structures," IEEE Microw. Wirel. Compon. Lett.,2007, vol. 17(3), pp.193-195.
    [6]N. Thomson, and J. S. Hong, "Compact ultra-wideband microstrip/coplanar waveguide bandpass flter," IEEE Microw. Wirel. Compon. Lett.,2007, vol.17(3), pp. 184-186.
    [7]F. Zeng, and J. P. Yao, "Frequency domain analysis of fiber Bragg grating based phase modulation to intensity modulation conversion," Proc. SPIE, p.59712B,2005.
    [8]Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett.,2004, vol.16(10), pp.2284-2286.
    [1]J. Seeds, and K. J. Williams, "Microwave photonics," IEEE J. Lightw. Technol., 2006, vol.24(12), pp.4628-4641.
    [2]H. S. Lee, "photon modeling method for the characterization of indoor optical wireless communication," Pro. In Electrom. Res.,2009, PIER 92. pp.121-136.
    [3]J. P. Yao, "Microwave photonics," IEEE J. Lightw. Technol.,2009, vol.27(9), pp. 314-335.
    [4]S. T. Winnall, and A. C. Lindsay, "A Fabry-Perot scanning receiver for microwave signal processing," IEEE Trans. Microw. Theo. Tech.,1999, vol.47(7), pp. 1385-1390.
    [5]D. B. Hunter, L. G. Edvell, and M. A. Englund, "Wideband microwave photonic channelised receiver," in Int. Top. Meet. on Microw. Photon.,2005, pp.249-251.
    [6]M. V. Drummond, P. Monteiro, and R. N. Nogueira, "Photonic RF instantaneous frequency measurement system by means of a polarization-domain interferometer,' Opt. Exp.,2009, vol.17(7), pp.5433-5438.
    [7]Z. Li, B. Yang, H. Chi, X. M. Zhang, S. L. Zheng, and X. F. Jin, "Photonic instantaneous measurement of microwave frequency using fiber Bragg grating," Opt. Commun.,2010, vol.283(3), pp.396-399.
    [8]J. Zhou. S. N. Fu, P. P. Shum, S. Aditya, L. Xia, J. Q. Li, X. Sun, and K. Xu, "Photonic measurement of microwave frequency based on phase modulation," Opt. Exp.,2009, vol.17(9), pp.7217-7221.
    [9]T. Erdogan, "Fiber grating spectra," IEEE J. Lightw. Technol.,1997, vol.15(8), pp. 1277-1294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700