底部钻柱振动特性及减振增压装置设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井下增压技术是在现有钻井工艺条件下提高钻进速度的有效途径之一。本文在对底部钻柱振动特性实验研究的基础上,提出了设计一种集钻柱减振和井底钻井液增压于一体的钻柱减振增压装置的新概念。该装置是通过吸收钻井过程中钻柱纵向振动的能量作为钻井液增压的能量来源,利用钻柱的纵向振动带动井下柱塞泵的柱塞往复运动,并利用钻压波动压缩钻井液使之增压,既实现了井底增压又起到了钻柱减振的效果。避免了以往的井下增压装置必须具有的复杂换向机构、大大简化了井下增压装置的结构,消除了影响增压装置寿命的一个重要因素,使之更利于在井下恶劣环境下实现增压目的和正常工作。
     论文运用底部钻柱动力学模拟试验装置,通过室内实验,对直井眼中底部钻柱的纵向振动特性进行了模拟实验研究。分析得出了五种常用底部钻具组合(BHA)在不同钻进参数条件下的钻柱振动特性以及井底钻压波动规律,给出了311.1mm和244.5mm井眼中常用钻井参数条件下井底钻压波动的幅度范围和频率范围。为合理利用钻柱纵向振动能量实现井下钻井液增压提供了实验依据,为井下减振增压装置主体结构参数的确定提供了设计依据。根据钻柱纵向振动特性的研究结果,设计出了装置的总体结构,并对装置的重要零部件进行强度校核。应用液压伺服系统仿真工具SIMULINK以及机械动态仿真工具PRO /ENGINEER Wildfire对减振增压装置进行了工作原理及机械结构运动仿真分析,从理论上论证了减振增压原理的可行性。在上述研究的基础上,完成了装置的所有零件设计、相关的进排水阀设计、动密封机构设计、超高压钻头设计、连接装置设计、零件加工图纸以及整体装配图纸的绘制等工作,完成了减振增压系统的加工和样机研制。在胜利油田桩古10-58井中生界地层进行的首次井下试验,证实了该装置能够显著提高钻井速度。试验钻进井段为3457.5-3482.5m,钻进25.0m,平均机械钻速6.20m/h(平均钻时9.67min/m);比未使用减振增压装置的邻井相同井段和地层的机械钻速(0.67m/h(平均钻时90.10min/m))提高了8.25倍。
Down-hole hydraulic pressurizing technology is one of the most effective ways to improve the rate of penetration under the existing conditions of drilling technology. This paper have presented a new kind of concept which will integrate drilling string vibration reducing with bottom hole drilling fluid pressurizing to design a vibration reducing and pressure increasing device based on the study of experiment of bottom hole drilling string vibration characteristics. This kind of device will absorb energy generated from the longitudinal vibration of the drilling string as its own power in the process of drilling, and take advantadge of the longitudinal vibration of the drilling string to achive the to-and-fro movement of the piston located in the plunger pump, as the mean while the drilling fluid get pressurized because of the compress of the vibration of the drilling pressure. Therefore, the effect of bottom hole pressure increasing as well as the effect of drilling string vibration reducing have been gained at the same time. The merit of this new type of device can be describe as the new designed device is more simplified compare to the prior ones with more complicated reversing agent, and it also eliminated another important factor which contribute to the short life cycle of the device, so it must be more suitable to the purpose of down-hole pressure increasing under the harsh working conditions in the bottom hole.
     This paper commited to the simulated experiment study targeted to the bottom hole drilling string vibration characteristics in straight holes using the bottom hole drilling string dynamics simulated experimental device. Having analysed the data, drilling string vibration characteristics and down-hole drilling pressure alternating regulation have been gained for five sets of BHA under different drilling parameters condition, and presented amplitude range and frequency range for wellbore sized 311.1mm and 244.5mm under normal used drilling parameter conditions. Therefore, this study has presented experimental criteria for increasing down-hole drilling fluid pressure using energy generated by drilling string longitudinal vibration, and presented design criteria for the determination of device parameters. According to the study result of the longitudinal drilling string vibration characteristics, the overall structure of the device has been designed and the intensity check for some crucial parts has been calculated. The operating principle and mechanical structure of the device has been analysed and simulated using SIMULINK and PRO/ENINEER WILDFIRE, as a result the feasibility of the theory of drilling string shock absorption and hydraulic pressurizing has been proved. On the basis of the above research, the design of the all the parts, relative valves, active sealling agents, UHP bit, connecting device, machining drawings, overall assembly drawings and so on have been achived, then the production of drilling string shock absorption and hydraulic pressurizing system and the development of prototype has completed. In the first down-hole experiment in Mesozoic erathem of Zhuanggu 10-58 Well located in Shengli Oilfield, the result proved this type of device can improve drilling speed greatly. The experimental distance is 3457.5m to 3482.5m, and the drilling depth is 25.0m with the average drilling speed of 6.20m/h(the average drilling time of 9.67min/m). The drilling speed is 8.25 times greater than the same drilling distance in the nearby well without the device.
引文
[1] Alley S D, Sutherland G B. The Use of Real-Time Downhole Shock Measurements to Improve BHA Component Reliability[R]. SPE 22537, 1991.
    [2] Rewcastle S C, Burgess T M. Real-Time Downhole Shock Measurements Increase Drilling Efficiency and Improve MWD Reliability[R]. SPE 23890, 1992.
    [3]屈展,张绍槐.钻柱振动失稳突变模型的研究[J].石油大学学报(自然科学版),1994,18(1):35-38.
    [4]屈展,刘德铸.钻柱振动问题及其理论研究进展[J].石油机械,1996,24(2):27-30.
    [5]马斐,施太和.实测钻柱振动特征分析[J].天然气工业,1997,17(2):48-51.
    [6]吕英民,蔡强康.钻柱隔振理论及钻井效率分析[J].石油大学学报(自然科学版),1997,21(4):27-30.
    [7]姚恒申,江晓涛,刘清友.石油钻井钻头钻柱的纵向振动受力分析[J].数理统计与应用概率,1998,13(2):151-158.
    [8]张焱,陈平,施太和.深井中钻柱动力学机理研究[J].石油机械,1998,26(7):17-20.
    [9]孙超,刘巨保.钻柱瞬态动力学分析及其应用[J].大庆石油学院学报,1998,22(3):55-58.
    [10]刘清友,马德坤,汤小文.钻柱纵向振动模型的建立及求解方法[J].西南石油学院学报,1998,20(4):55-58.
    [11]高岩,刘志国,郭学增.钻柱轴向振动固有频率的计算和测量[J].西安石油学院学报(自然科学版),2000,15(1):39-43.
    [12]章扬烈,肖载阳.钻柱的剧烈振动与控制[J].石油矿场机械,1999,28(3):6-10.
    [13]高岩.三牙轮钻头钻进时钻柱轴向振动的特征[J].石油学报,2000,21(6):93-96.
    [14]吴泽兵,马德坤,况雨春.钻柱纵向振动仿真分析[J].石油学报,2000,21(3):73-76.
    [15]韩致信,李钫.钻柱纵向自由振动研究[J].甘肃工业大学学报,2002,28(2):50-53.
    [16]王珍应,林建.钻柱轴向振动仿真与井底状态监测方法探讨[J].石油机械,2001,29(6):43-47.
    [17]况雨春,马德坤.钻柱-钻头-岩石系统动态行为仿真[J].石油学报,2001,22(3):81-87.
    [18]朱才朝,谢永春,秦大同.牙轮钻头纵向横向扭转振动动力学仿真研究[J].机械工程学报,2002,38(2):69-75.
    [19]赵德云,杨海波,杨跃波.深井钻具纵向振动规律分析研究[J].钻采工艺,2002,14(3):14-17.
    [20]邱利琼.钻柱动态数学模型的建立及求解[J].重庆大学学报,2002,25(5):148-152.
    [21]章扬列,萧载阳.液压减振器功能的探讨[J].石油矿场机械,1997,26(3):21-24.
    [22]刘巨保,张学鸿.深井钻柱中减振器最佳安放位置计算[J].天然气工业,1997,17(5):44-48.
    [23]夏宏南,杨明和,刘刚.泥浆压差式钻柱减振器的研究[J].江汉石油学院学报,2001,23(2):3-6.
    [24]王朝晋.减振器作用分析及新型吸振器[J].天然气工业,2002,22(4):53-56.
    [25]秦红祥.超高压射流辅助钻井技术[J].西部探矿工程,2002,14(2):14-18.
    [26]李洪敏,朱明亮,潘欣.井下增压钻井技术前景展望[J].石油钻采工艺,1998,20(3):20-24.
    [27]林元华,黄万志,施太和.水力加压器研制及应用[J].石油钻采工艺,2003,25(3):53-55.
    [28]陈庭根,管志川.钻井工程理论与技术[M].东营:石油大学出版社,2000:145-147.
    [29]王瑞和,沈忠厚,周卫东.高压水射流破岩钻孔的实验研究[J].石油钻采工艺,1995,29(1):145-147.
    [30] Labus T J. Fluid Jet Technology-Fundamentals and Applications. Water jet Technology Association[R], Missouri, USA, 1995.
    [31] J.J.Kolle. Laboratoryand Field Testing of an Ultra-high-pressure Jet-Assisted Drilling System[R], SPE/IADC 22000, 1998.
    [32] S.D. Veenhuizen. Development and Testing of Downhole Pump for High-Pressure Jet-Assist Drilling[R], SPE/IADC 38581, 2004.
    [33]刘致敏.井下液体增压器[J].国外石油机械,1995(2).
    [34]王德玉.井下增压器的结构初探[J].西南石油学院学报,1995,17(3):109-112.
    [35]赵国珍,龚伟安.钻井力学基础[M].北京:石油工业出版社,1988,101-112.
    [36] Macpherson J D, Mason J S, Kingman J E E. Surface measurement and analysis of drillstring vibrations while drilling[R]. SPE/IADC 25777, 1993.
    [37]章扬烈,萧载阳,端木刚.减振器效果的模拟研究[J].石油矿械,1989,18(6):9-13.
    [38] Derrel D Webb. Multiderictional Shock Absorbing Device[J]. US Patent 3998443, Dec.21,1976.
    [39] Charles E.Millar. Practical Application of Dowmhole Vibration Dampeners[J]. Drilling dcw. August, 1972, 34, 36, 43.
    [40] (美)W C毛勒.断式钻岩技术[M].北京:地质出版社,1986年:12-14
    [41]高岩.三牙轮钻头钻进时钻柱轴向振动的特征[J].石油学报,2000,21(6):12-15.
    [42]魏文忠,管志川,刘永旺,等.直井眼钟摆钻具纵向振动特性的实验研究[J].中国石油大学学报(自然科学版),2007,31(2):64-68.
    [43]史玉才.底部钻具组合动力学特性及防斜打直机理研究[D].山东东营:石油大学(华东),2004.
    [44]乔国发.直井旋转钻柱运动状态的模拟实验研究[D].山东东营:石油大学(华东),2004.
    [45]刘永旺.井下减振增压装置设计研究[D].山东东营:中国石油大学研究生院,2007.
    [46]管志川,王以法,靳彦欣.直井中底部钻柱运动状态的实验研究[J].石油学报,2003,24(5):102-106.
    [47] A.S.Yigit,A.P.Christoforou. COUPLED AXIAL AND TRANSVERSE VIBRATIONS OF OILWELL DRILLSTRINGS[J]. Journal of Sound and Vibration, 1996, 195(4): 617-627.
    [48] A.P.Christoforou,A.S.Yigit.DYNAMIC MODELLING OF ROTATING DRILL STRINGS WITH BOREHOLE INTERACTIONS[J]. Journal of Sound and Vibration, 1997, 206(2): 243-260.
    [49] A.S.Yigit, A.P.Christoforou. COUPLED TORSIONAL AND BENDING VIBRATIONS OF DRILLSTRINGS SUBJECT TO IMPACT WITH FRICTION[J]. Journal of Sound and Vibration, 1998, 215(1):161-181.
    [50] A.S.Yigit, A.P.Christoforou.COUPLED TORSIONAL AND BENDING VIBRATIONS OF ACTIVELY CONTROLLED DRILLSTRINGS[J]. Journal of Sound and Vibration, 2000, 234(1):67-83.
    [51] Mrs.L.Rey-Fabret,M.C.Mabile, Mrs.N.Oudin.Detecting Whirling Behaviour of the Drill string from Surface Measurements[R]. SPE 38587, 1997.
    [52]章扬烈.钻柱运动学与动力学[M].北京:石油工业出版社,2001
    [53]成大先.机械设计手册.单行本.弹簧?起重运输件?五金件[M].北京:石油工业出版社,2004:77-87.
    [54]孙江宏,黄小龙,高宏.Pro/ENGINEER Wildfire/2001结构分析与运动仿真[M].北京:中国铁道出版社,2004.
    [55]赵春章.中文版Pro/ENGINEER机械零件设计教程[M].北京:海洋出版社,2004.
    [56]方建军,刘仕良.机械动态仿真与工程分析- Pro/ENGINEER Wildfire工程应用[M].北京:化学工业出版社,2004.
    [57]吕英民.材料力学[M].东营:石油大学出版社,1993.
    [58]李振斌.Auto CAD中公差标注形式及其设置技巧[J].长江工程职业技术学院学报2005,22(3)45-46.
    [59]何秀娟,李德宝.Auto CAD中块的灵活运用[J].现代机械,2005(5):44-45.
    [60]张曼拓.Auto CAD实用指南[M].北京:机械工业出版社,2000.
    [61]赵虹.韩富跃.提高Auto CAD绘图效率的技巧[J].一重技术,2003,98(4):53-55
    [62]刘佳霓.计算机辅助设计中有关尺寸标注的若干问题[J].中南民族大学学报(自然科学版),2003,22(增):28-29.
    [63]郑阿奇.AutoCAD2000中文版实用教程[M].北京:电子工业出版社,2001.
    [64]清源计算机工作室.AutoCAD设计与开发宝典[M].北京:机械工业出版社,1999.
    [65]彭江丰.Auto CAD图形文件标题栏、明细栏的处理[J].船舶,2003(3):55-57.
    [66]张祖媛.Auto CAD环境下的尺寸公差自动查询与标注[J].四川工业学院学报,2000,19(3):17-19.
    [67]司文荣.曲继和.张秀玲.基于Matlab-Simulink平台机构动态仿真的研究[J].桂林航天工业高等专科学校学报,2006(1):24-26.
    [68]刘德贵,费景高.动力学系统数字仿真算法[M].北京:科学出版社,2000.
    [69]周进雄,张陵.机构动态仿真-使用MATAB和SIMULINK[M].西安:西安交通大学出版社,2002.
    [70]田树军,张宏.液压管路动态特性的Simulink仿真研究系统仿真学报[J].2006,18(5):1136-1148.
    [71]刘能宏,田树军.液压系统动态特性数字仿真[M].辽宁大连:大连大连理工大学出版社,1993.
    [72]吴跃斌,谢英俊,徐立.液压仿真技术的现在和未来[M].液压与气动,2002(11): 1-3.
    [73]蔡廷文.液压系统现代建模方法[M].北京:中国标准出版社,2002.
    [74]黄文梅.系统仿真分析与设计[M].长沙:国防科技大学出版社,2001.
    [75]孙兆林.MATLAB6.x图像处理[M].北京:清华大学出版社,2002.
    [76]霍族亮,郭凡灿,谢伟,等.基于SIMULINK的液压伺服系统仿真[J].煤矿机械,2006,27 (4):20-21.
    [77]葛述卿.Simulink和GUI结合实现机械系统仿真及动画[J].机械研究与应用,2006,19(1):104-106.
    [78]冯鉴,郭世伟.基于Simulink的机械系统可视化建模仿真分析[J].煤矿机械,2002,11(6):24-26.
    [79]温熙森.机电系统分析动力学及其应用[M].北京:科学出版社,2003.
    [80]施阳.MATLAB语言精要及动态仿真工具Simulink[M].西安:西北工业大学出版社,1999.
    [81]况雨春,曾恒,周学军,等.PDC钻头水力结构优化设计研究[J].天然气工业,2006,26(4):60-67
    [82] L EDGERWOOD L W. Advanced hydraulics analysis optimizes performance of roller cone drill bits[R]. SPE 59111,1987.
    [83]谢翠丽,杨爱玲.PDC钻头水力学研究初探[J].石油机械,2002,30(11):123.
    [84]石志明.杨迎新.PDC钻头三维参数化布齿设计[J].煤矿机电,2006(2):36-38.
    [85]杨迎新.PDC钻头切削力学研究[M].成都:西南石油学院,2003.
    [86]李树盛,马德坤,侯季康.PDC钻头几何学研究[M].西南石油学院学报,1996.
    [87]林龙震.PRO /ENGINEER Wildfire高级设计[M].北京:电子工业出版社,2004.
    [88]李树盛,蔡镜仑,马德坤.胎体与钢体PDC钻头结构参数的互相转换[J].石油大学学报,1998,22(1):27-30.
    [89]彭烨,王福修.钻头冠部剖面形状设计模式[J].石油钻探技术,1996,24(4):37-40.
    [90]翟应虎.PDC钻头设计理论及设计方法的研究[D].北京:石油大学(北京),1990.
    [91] Glowka D A1The Use of Single - CutterData in the Analysisof PDC BitDesigns[R]. SPE 15619, 1989.
    [92]谢翠丽,杨爱玲,陈康民.非对称多喷嘴平底钻头井底三维流场数值模拟[J].石油学报,2002,23(6):77-80.
    [93]郑胜,杨爱玲,陈康民.关于PDC钻头形态设计的探讨[J].石油机械,2003,31(1): 21-23.
    [97]赵付国.徐依吉,冯云春.双流道PDC钻头超高压系统的设计[J].石油机械,2005,33(1):21-23.
    [95]韩来聚,杲传良,陈庭根.PDC钻头的最新发展与应用[J].钻采工艺,1994,17(1): 102-105.
    [96]王瑞和,沈忠厚.PDC钻头冲蚀机理分析与研究[J].石油钻采工艺,1992,14(3): 1-6.
    [97]孙明光,张云连,马德坤.适合多夹层地层PDC钻头设计及应用[J].石油学报,2001,22(5):95-99.
    [98]孙家骏.水射流切割技术[M].徐州:中国矿业大学出版社,1992:86-98.
    [99]简明动力管道手册编写组[M].简明动力管道手册.北京:机械工业出版社,1998: 180-182.
    [100]徐依吉,赵付国,陈宏道.高压水射流与机械联合作用处理堵塞油管[J].西南石油学院学报,2004,26(2):70-73.
    [101] Maurer W C.Advanced drilling techniques[M].Tulsa:The Petroleun Publishing Company, 1980.
    [102] Kolle J J, Stang D L. Laboratory and field testing of an ultra-high-pressure jet-assist drilling system[R]. SPE/IADC 22000,1991.
    [103] Veenhuizen S D, Koole J J. Ultra-high pressure jet assist of mechanical[R]. SPE/INDC 37579, 1997.
    [104] Labus T J, Savanick G A. An overview of waterjet fundamental and application [M]. Saint Louis: Waterjet Technology Association, 2001.
    [105] Li Gensheng, Wu Zhiming, Hu Yongtang. Numerical simulation of flowing field of high pressure jet impinging bottom-hole[R]. Jisu, Korea: Proceedings of the 7th Pacific Rim International Conference on Water Jet Technology, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700