飞机装配工艺样机构建关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机研制正在向设计制造一体化的方向发展,航空制造企业迫切需要建立完善的以数字量为基础的工艺信息传递体系,旨在提高工艺数据的传递和发放效率,降低数据更改周期和成本,以满足现代飞机“低成本、短周期和高质量”研制需求。针对航空制造企业存在的实际问题和应用需求,以装配工艺信息的建模、表示和传递为对象,提出飞机装配工艺样机的概念,并对其构建的关键技术进行深入研究。主要的研究工作如下:
     (1)通过分析飞机装配工艺设计中需要传递和发放的各类工艺信息,提出飞机装配工艺样机的概念,并对其信息构成和建模框架进行详细描述。装配工艺样机以产品三维模型为载体,以装配工艺结构为主模型,对各类工艺信息进行结构化定义和表示,建立了几何信息与非几何信息之间的关联关系,能够有效支持飞机装配工艺设计过程中的数据发放工作。
     (2)针对飞机产品装配规划非线性的特点,建立了层次式混合装配规划模型,用于生成装配工艺结构,提出基于免疫算法的装配单元划分方法和逐步求解的装配顺序规划方法。装配单元划分方法以零部件之间的装配关系强度矩阵为基础,采用免疫克隆算法进行聚类优化,获得装配单元。装配顺序规划方法以装配约束混合编码矩阵为基础,将产品装配过程每一步的可行装配方案作为评价对象集,建立多因素模糊综合评判的评价模型,逐步获得最优装配顺序。二者互为因果,相互配合,能够生成合理有效的装配工艺结构。
     (3)研究基于拓扑的层次式工艺特征建模方法。采用多色集合对工艺特征模型的底层框架进行描述,并建立推理关系矩阵,完成特征的表面层和基准层推理,实现了对设计特征的拓扑级信息提取和工艺化描述,建立了工艺信息与设计几何之间的数字化关联。
     (4)针对装配工艺样机的信息构成特点和飞机产品工程更改频繁的特点,给出基于层次编码的工艺信息表示和管理方案。采用工艺码和设计码联合的编码方式,不仅能够清晰地表达主模型与其他工艺信息之间的层次和隶属关系,而且建立了工艺样机与设计模型之间的关联,实现了二者的统一表示和管理。研究由设计模型到工艺样机的更改传播机制和方法,借助层次编码以及工艺特征对设计几何的引用关系,实现面向设计更改的工艺信息更改。
     (5)开发了飞机装配工艺样机建模系统。并在某型号飞机的装配工艺设计中进行应用。实现了基于数字量传递的数据发放,能够满足企业装配工艺设计过程中的信息传递和发放需求,提高了装配工艺设计效率和质量。
There is a trend towards integration of aircraft design and manufacturing. Aviation industryenterprises urgently need to establish digital process information transfer system to improve transferefficiency of process information, which can meet the “low cost, short cycle, and good quality”demands of the aircraft manufacturing. In view of the practical problems and applicationrequirements of aviation enterprises, the modeling, representation, and transfer of processinformation are studied. Aircraft assembly process mock-up is defined, and its key modelingtechnologies are researched in depth. The creative achievements are as follows:
     (1) In the aircraft assembly process planning, a lot of process information is transferred todownstream phases. Through analyzing that process information, assembly process mock-up isdefined. According to the mock-up,3D model is a carrier, and assembly process structure is mastermodel, and the geometry and process attributes of all kinds of process information are modeling. Andthen the relationship between the geometric information and non-geometric information is established.The digital process information can be transferred smoothly and effectively to downstream phases.
     (2) In view of the nonlinear of aircraft assembly planning, hierarchical mixed assembly planningmodel is proposed to generate assembly process structure, which includes two key methods: anassembly unit partition method based on immune algorithm and a gradually solving method forassembly sequence planning. According to the assembly relation intensity matrix, immune clonealgorithm is applied to clustering optimization, and then all the assembly units are gotten. Accordingto the mixed code matrix of assembly constraints, all the feasibly assembly element of every step areregarded as evaluation object set in assembly process, and an evaluation model based on multi-factorfuzzy comprehensive evaluation is established, which aims to obtain the optimal assembly sequencegradually. The two methods co-operate with each other to generate assembly process structure, whichcan meet the engineering demands.
     (3) A hierarchical modeling method based on topology for process feature is proposed. Bottomframe of process feature model is constructed by using Polychromatic Sets. Reasoning matrix is usedto get feature surface and datum of the process feature. Feature extraction and process informationmodeling based on feature surface and datum is realized. And then the digital connection betweenprocess information and design geometry is established.
     (4) According to information form characteristics of assembly process mock-up and frequent modification of aircraft product design, the process information management scheme based onhierarchical code is put forward. Process code and design code is combined to represent processinformation, which not only can clearly express the level and subordination of master model and otherprocess information, but also can establish the connection between assembly process mock-up anddesign model. And then unified representation and management of assembly process mock-up anddesign model can be realized. Modification response mechanism between the two models isresearched. By means of hierarchical code and geometric reference, the process informationmodification with product design modification is realized.
     (5) A modeling software system for aircraft assembly process mock-up is developed. The systemhas been used in a certain type of aircraft assembly process design. The system can meet the needs oftransfer and distribution of digital process data. The efficiency of assembly process design isimproved greatly.
引文
[1]杨海成.数字化设计制造技术基础[M].西安:西北工业大学出版社,2007.
    [2]航空制造工程手册总编委会.航空制造工程手册-飞机装配(第2版)[M].北京:航空工业出版社,2010.
    [3]黄良.飞机制造工艺学[M].北京:航空工业出版社,1993.
    [4]王云渤,张关康,冯宗律等.飞机装配工艺学[M].北京:国防工业出版社,1990.
    [5]蔡文沁,姜寿山.飞机数字化产品定义知识模型[J].计算机集成制造系统,2003,9(12):1053-1056.
    [6]范玉青.现代飞机制造技术[M].北京:北京航空航天大学出版社,2001.
    [7]刘善国.先进飞机装配技术及其发展[J].航空制造技术,2006,(10):38-41.
    [8] Hartmann J, Meeker C, Weller M, et al. Determinate assembly of tooling allows concurrent designof Airbus wings and major assembly fixtures[R]. SAE Paper2004-01-2832,2004.
    [9]曹增强.国外大型飞机装配型架设计的新方法[J].航空制造技术,2006,(2):60-61.
    [10] Munk C. Determinant spar assembly cell[R]. SAE Paper2002-01-2646,2002.
    [11]许国康.大型飞机自动化装配技术[J].航空学报,2008,29(3):734-740.
    [12] Naing S. Feature based design for jigless assembly[D]. USA, Bedfordshire: Cranfield University,2004.
    [13] Rampersad H K. A case study in the design of flexible assembly systems[J]. The InternationalJournal of Flexible Manuufacturing Systems,1995,(7):255-286.
    [14]郭恩明.国外飞机柔性装配技术[J].航空制造技术,2005,(9):28-32.
    [15]卜泳,许国康,肖庆东.飞机结构件的自动化精密制孔技术[J].航空制造技术,2009,(24):61-64.
    [16]林琳,夏雨丰.民用飞机装配自动制孔设备探讨[J].航空制造技术,2011,(22):86-89.
    [17]邹方.飞机装配迎来机器人时代[J].航空制造技术,2009,(24):34-37.
    [18]王珉,陈文亮,张得礼等.飞机轻型自动化制孔系统及关键技术[J].航空制造技术,2012,(19):40-43.
    [19]王珉,陈文亮,郝鹏飞等.飞机数字化自动钻铆系统及其关键技术[J].航空制造技术,2013,(1/2):80-83.
    [20]李泷杲,黄翔,方伟等.飞机装配中的数字化测量系统[J].航空制造技术,2010,(23):46-59.
    [21] Muske S, Salisbury D, Calkins J.747data management system development andimplementation[C]. Boeing Large Scale Metrology Conference, Long Beach,2000.
    [22] The Boeing Company. Large scale mapping&alignment[R]. Technology application bymaterials&process technology,2002.
    [23] Hartmann J, Zieve P. Wing manufacturing: next generation[C]. SAE Aerofast Proceedings,1999:9-14.
    [24]郭洪杰.浅谈数字化测量技术在飞机装配中的应用[J].航空制造技术,2011,(21):26-29.
    [25]许旭东,陈嵩,毕利文等.飞机数字化装配技术[J].航空制造技术,2008,(14):48-50.
    [26]王巍,贺平,万良辉.飞机柔性装配技术研究[J].机械设计与制造,2006,(11):88-90.
    [27] Waterbury R. Computerized assembly process planning[J]. Assembly Engineering,1984,38-41.
    [28]盛义军,张振明,樊其瑾等.基于CAPPFramework的飞机装配CAPP系统开发[J].机械科学与技术,2001,20(1):145-146.
    [29]丘宏俊.基于知识的飞机装配工艺设计关键技术研究[D].西安:西北工业大学,2006.
    [30]杨雨图,李亚白,王宁生.面向飞机装配的工艺设计与管理系统研究与开发[J].机械科学与技术,2005,24(11):1354-1358.
    [31] Krause F L, Kimura F, Kjellberg, et al. Product modelling[J]. Annals of the CIRP,1993,42(2):695-706.
    [32] Kimura F, Kawabe S, Sata T, et al. A study on product modelling for integration of CAD/CAM[J].Computers in Industry,1984,5(5):239-252.
    [33] Baer A, Eastman C, Henrion M. Geometric modelling: a survey[J]. ComPuter-Aided Design,1979,11(5):253-272.
    [34] Bjorke O. Geomeric modelling as an integral part of computer aided design and manufacturingsystems[J]. Robotics and Computer-Integrated Manufacturing,1984,1(2):161-165.
    [35] Masuda H. Topogical operations for complex-based nonmanifold geometric model[J].ComPuter-Aided Design,1993,25(3):119-129.
    [36] De Martino T, Faleidieno B, Giannini F, et al. Feature-based modelling by integrating design andrecognition approaches[J]. Computer-Aided Design,1994,26(8):646-653.
    [37] Gu P, Zhang Y, Norrie D H. Object-oriented product modeling for computer-integratedmanufacturing[J]. International Journal of Computer integrated manufacturing,1994,7(1):17-28.
    [38]江伟光.产品集成建模技术及应用研究[D].杭州:浙江大学,2009.
    [39]王涛.广义产品建模方法的研究[D].北京:清华大学,2004.
    [40]戴国洪.数字化预装配建模与序列规划技术的研究[D].南京:南京理工大学,2007.
    [41] Bourjault A, Lhote A. Modelling an assembly process[C]. IEEE International Conference onAutomation of Manufacturing Industry,1986:183-198.
    [42] Homem de Mello L S, Sanderson A C. A correct and complete algorithm for the generation ofmechanical assembly sequences[J]. IEEE Transaction on Robotics and Automation,1991,7(2):228~240.
    [43] Kim S H, Lee K. An assembly modeling system for dynamic and kinematics analysis[J].ComPuter-Aided Design,1989,21(1):2-12.
    [44] Lee K, Gossard D C. A hierarchical data structure for representing assemblies: part1[J].ComPuter-Aided Design,1985,17(1):15-19.
    [45]董天阳,童若锋,张玲等.多细节层次装配模型及序列规划[J].计算机集成制造系统,2004,10(10):1212-1219.
    [46]王峻峰,李世其,刘继红.面向协同装配规划的信息模型研究[J].计算机集成制造系统,2009,15(4):670-675.
    [47] Lewis W P, Cangshan L. The timely allocation of resources in the concurrent design of newproducts[J]. Journal of Engineering Design,1997,8(1):3-17.
    [48] Adler P S, Mandelbaum A, Nguyen V, et al. From project to process man-agement: anempirically-based framework for analyzing product development time[J]. Management Science,1996,41(3):458-484.
    [49] Altus S S, Kroo I M, Gage P J. A genetic algorithm for scheduling and decomposition ofmultidisciplinary design problems[J]. Journal of Mechanical Design,1996,118(4):486-489.
    [50] Eppinger S D, Nukala M V, Whitney D E. Generalized models of design iteration using signalflow graphs[J]. Research in Engineering Design,1997,9(2):112-123.
    [51]刘建刚,唐敦兵,杨春.基于设计结构矩阵的耦合任务迭代重叠建模和分析[J].计算机集成制造系统,2009,15(9):1715-1720.
    [52]马飞,同淑荣,李博等.基于模糊设计结构矩阵的产品设计过程模块化分解[J].计算机集成制造系统,2010,16(3):477-483.
    [53]吴祚宝,吴澄.基于产品数据管理的产品和开发过程集成方法[J].清华大学学报(自然科学版),2000,40(4):88-91,95.
    [54] László H, Imre J R. Attaching knowledge to product model for representation of human intent[C].Orlando, USA,1997:1580-1585.
    [55] Nagy R L, Ullman D G, Dietterich T G, et al. A data representation for collaborative mechanicaldesign[J]. Research in Engineering Design,1992,3(4):233-242.
    [56] Kusiak A, Larson T N, Wang J R. Reengineering of design and manufacturing mrocesses[J].Computers and Industrial Engineering,1994,26(3):521-536.
    [57]周秋忠,范玉青. MBD技术在飞机制造中的应用[J].航空维修与工程,2008,(3):55-57.
    [58]余志强,陈嵩,孙炜等.基于MBD的三维数模在飞机制造过程中的应用[J].航空制造技术,2009,(25):82-85.
    [59]卢鹄,韩爽,范玉青.基于模型的数字化定义[J].航空制造技术,2008,(3):78-81.
    [60]卢鹄,于勇,杨五兵等.飞机单一产品数据源集成模型研究[J].航空学报,2010,31(4):836-841.
    [61]张魁,范玉青,卢鹄等.基于MBD制造体系的装配工艺数据集成[J].机械工程师,2009,(1):55-58.
    [62]罗炜,童秉枢.基于模型定义的飞机数字化工艺规划、验证及执行技术[J].航空制造技术,2010,(18):73-76.
    [63]冯廷廷,金霞,王珉等.基于MBD的飞机装配工艺模型设计[J].航空制造技术,2010,(24):95-98.
    [64]郭具涛,梅中义.基于MBD的飞机数字化装配工艺设计及应用[J].航空制造技术,2011,(22):74-77.
    [65]石淼,唐朔飞,李明树.装配序列规划研究综述[J].计算机研究与发展,1994,31(6):30-34.
    [66]苏强,林志航.计算机辅助装配顺序规划研究综述[J].机械科学与技术,1999,18(6):1006-1012.
    [67]牛新文,丁汉,熊有伦.计算机辅助装配顺序规划研究综述[J].中国机械工程,2001,12(12):1440-1443.
    [68]王峻峰,李世其,刘继红等.计算机辅助装配规划研究综述[J].工程图学学报,2005,(2):1-7.
    [69]王永,刘继红.面向协同装配规划的装配单元规划方法[J].机械工程学报,2009,45(10):172-179.
    [70]周炜.单元化装配规划关键技术[D].上海:华东理工大学,2011.
    [71] Ong N S, Wong Y C. Automatic subassembly detection from a product model for disassemblysequence generation[J]. International Journal of Advanced Manufacturing Technology,1999,15(6):425-431.
    [72] Wang J F, Liu J H, Zhong Y F. Integrated approach to assembly sequence planning of complexproducts[J]. Chinese Journal of Mechanical Engineering,2004,17(2):181-184.
    [73] Wang Y, Liu J H, Li L S. Assembly sequences merging based on assembly unit partitioning[J].International Journal of Advanced Manufacturing Technology,2009,45(7-8):808-820.
    [74] Liu J H, Wang Y. Fuzzy analytical hierarchy process-based assembly unit partition for complexproducts[C]. Proceedings of the ASME2007Intemational Design Engineering TechnicalConferences&Computer and Information in Engineering Conference,2007:121-128.
    [75]王自军,郑国磊,杜宝瑞.基于飞机三维模型的装配单元快速划分方法[J].北京航空航天大学学报,2009,35(12):1495-1498.
    [76]薛鹏,李原,彭培林.基于实例的飞机装配单元划分技术研究[J].中国机械工程,2007,18(19):2318-2321.
    [77]李丽萍,李原,张开富.基于图树模型的飞机装配单元划分[J].机械科学与技术,2008,27(2):157-161.
    [78] Teng X Y, Kong F K, Zhang J T. Approach for module Partition of blocks in shipbuilding [J].Chinese Journal of Mechanieal Engineering(EnglishEdition),2008,21(2):65-71.
    [79] Gao J, Xiang D, Duan G. Subassembly identification based on grey clustering[J]. InternationalJournal of Production Research,2008,46(4):1137-1161.
    [80]王艳玮,樊其瑾,彭炎午.基于模糊聚类的产品合理子装配划分[J].机械科学与技术,2001,20(2):299-301.
    [81]马恒儒,邵毅,张开富.飞机工艺组件划分的模糊聚类方法[J].航空制造技术,2006,(9):73-81.
    [82] De Fazio T L, Whitney D E. Simplified generation of all mechanical assembly sequences[J].IEEE Journal of Robotics and Automation,1987,3(6):640-658.
    [83] Baldwin D F, Abell T E, Lui M C M, et al. An integrated computer aid for generating andevaluating assembly sequences for mechanical products[J]. IEEE Transactions on Robotics andAutomation,1991,7(1):78-94.
    [84] Homem de Mello L S, Sanderson A C. A correct and complete algorithm for the generation ofmechanical assembly sequences[J]. IEEE Transaction on Robotics and Automation,1991,7(2):228-240.
    [85] Homem de Mello L S, Sanderson A C. AND/OR graph representation of assembly plans[J]. IEEETransaction on Robotics and Automation,1990,6(2):188~199.
    [86] Wilson R H. Minimizing user queries in interactive assembly planning[J]. IEEE Transactions onRobotics and Automation,1995,11(2):308~311.
    [87]付宜利,田立中,谢龙等.基于有向割集分解的装配序列生成方法[J].机械工程学报,2003,39(6):60-62.
    [88] Abrantes M J, Hill S D. Computer-aided planning of mechanical assembly sequences[R].Technical Report95-7, Monash University, Clayton, Australia,1996.
    [89] Dini G, Failli F, Lazzerini B, et al. Generation of optimized assembly sequences using geneticalgorithms[J]. Annas of CIRP,1999,48(1):17-20.
    [90] Lazzerini B, Marcelloni F. A genetic algorithm for generating optimal assembly plans[J].Artificial Intelligence in Engineering,2000,14(4):319-329.
    [91] Guan Q, Liu J H, Zhong Y F. A concurrent hierarchical evolution approach to assembly processplanning[J]. International Journal of Production Research,2002,40(14):3357-3374.
    [92] Smith G C, Smith S. An enhanced genetic algorithm for automated assembly planning[J].Robotics and Computer Integrated Manufacturing,2002,18(5-6):355-364.
    [93]李原,张开富,王挺等.基于遗传算法的飞机装配序列规划优化方法[J].计算机集成制造系统,2006,12(2):188-191.
    [94]宁黎华,古天龙.基于免疫算法的装配序列规划问题求解[J].计算机集成制造系统,2007,13(1):81-87.
    [95]赵磊,李原,余剑峰.支持变约束的装配顺序随需式规划方法[J].机械工程学报,2011,47(5):149-155.
    [96] Tonshoff H K, Menzel E, Park H S. A knowledge-based system for automated assemblyplanning[J]. Annals of the CIRP,1992,1(41):19-24.
    [97] Zha X F, Samuel Y E, Fok S C. Integrated knowledge-based assembly sequence planning[J].Intemational Joumal of Advaneed Manufaeturing Technology,1998,14(1):50-64.
    [98]董天阳,童若锋,张玲等.运用有向联接件知识求解装配序列规划[J].计算机辅助设计与图形学学报,2004,16(1):128-134.
    [99] Dong T Y, Tong R F, Zhang L, et al. A knowledge-based approach to assembly sequenceplanning[J]. International Journal of Advanced Manufacturing Technology,2007,2(11-12):1232-1244.
    [100]李荣,付宜利,封海波.基于连接结构知识的装配序列规划[J].计算机集成制造系统,2008,14(6):1130-1135.
    [101] Swam Inathan A, Barber S. An experience-based assembly sequence planner for mechanicalassemblies[J]. IEEE Transaction on Robotics and Automation,1996,12(2):252-267.
    [102] Zhao S M. An intelligent computer-aided assembly process planning system[J]. InternationalJournal of Advanced Manufacturing Technology,1995,15(5):332-337.
    [103] Gupta S, Krishnan V. Product family-based assembly sequence design methodology[J]. ITETransactions,1998,30(10):933-945.
    [104] Su Q. A hierarchical approach on assembly sequence planning and optimal sequencesanalyzing[J]. Robotics and Computer Integrated Manufacturing,2009,25(1):224-234.
    [105]苏强,赖胜杰.基于事例推理的装配顺序规划中的遗传算法改进设计[J].上海交通大学学报,2007,41(8):1233-1243.
    [106] Ahmad N, Haque A. Manufacturing feature recognition of parts using DXF files[C]. FourthInternational conference on Mechanical Engineering, Dhaka, Bangladesh,2001.
    [107] Nasr E A, Kamrani A K. A new methodology for extracting manufacturing features from CADsystem[J]. Computers&Industrial Engineering,2006,51(3):389-415.
    [108] Miao H, Sridharan N, Shah J. CAD-CAM integration using machining features[J]. InternationalJournal of Computer Integrated Manufacturing,2002,15(4):296-318.
    [109] Kang M, Han J, Moon J G. An approach for interlinking design and process planning[J]. Journalof Materials Processing Technology,2003,139(1-3):589-595.
    [110] Sundararajan V, Wright P K. Volumetric feature recognition for machining components withfreeform surfaces[J]. Computer-Aided Design,2004,36(1):11-25.
    [111] Gao J, Zheng D T, Gindy N, et al. Extraction/conversion of geometric dimensions andtolerances for machining features[J]. International Journal of Advanced ManufacturingTechnology,2005,26(4):405-414.
    [112] Zhou X H, Qiu Y J, Hua G R, et al. A feasible approach to the integration of CAD and CAPP[J].Computer-Aided Design,2007,39(4):324-338.
    [113]刘振宇.面向过程与历史的虚拟环境中产品装配建模理论、方法及应用研究[D].杭州:浙江大学,2001.
    [114]郑轶,宁汝新,王恒等.基于装配特征本体表达的虚拟产品建模研究[J].计算机集成制造系统,2006,1(12):1964-1985.
    [115]王念东,刘毅,李文正等.面向装配工序交叉的虚拟装配工艺信息模型[J].计算机辅助设计与图形学学报,2009,21(9):1352-1358.
    [116]周秋忠,范玉青.基于数字标工模型的飞机数字化协调方法[J].计算机集成制造系统,2004,14(4):683-689.
    [117]刘志存,孟飙,范玉青.飞机制造中数字化标准工装的定义与应用[J].计算机集成制造系统,2007,13(9):1852-1857.
    [118]潘志毅,黄翔,李迎光.基于飞机产品结构更改的装配工装变型设计方法[J].航空学报,2009,30(5):959-965.
    [119]郑国磊,李文杰,王自军.某大型飞机舱门框工艺标准数字模型[J].航空学报,2010,31(8):1674-1679.
    [120]于勇,陶剑,范玉青.波音787飞机装配技术及其装配过程[J].航空制造技术,2009,(4):44-49.
    [121]安鲁陵.基于三维模型定义技术应用的思考[J].航空制造技术,2011,(12):45-47.
    [122] Quintana V, Rivest L, Pellerin R, et al. Will Model-based Definition replace engineeringdrawings throughout the product lifecycle? A global perspective from aerospace industry[J].Computers in Industry,2010,61(5):497-508.
    [123]卢鹄,韩爽,范玉青.基于模型的数字化定义技术[J].航空制造技术,2008,(3):78-81.
    [124]田富君,田锡天,耿俊浩等.基于模型定义的工艺信息建模及应用[J].计算机集成制造系统,2012,18(5):914-919.
    [125]潘双夏,高飞,冯培恩.批量客户化生产模式下的模块划分方法研究[J].机械工程学报,2003,39(7):1-6.
    [126]贡智兵,李东波,史翔.面向产品配置的模块形成及划分方法[J].机械工程学报,2007,43(11):160-167.
    [127]陈光柱.产品免疫概念设计理论及应用[M].北京:科学出版社,2009.
    [128]李涛.计算机免疫学[M].北京:电子工业出版社,2004.
    [129]肖人彬,曹鹏彬,刘勇.工程免疫计算[M].北京:科学出版社,2007.
    [130]焦李成,杜海峰,刘芳等.免疫优化计算、学习与识别[M].北京:科学出版社,2006.
    [131]焦李成,尚荣华,马文萍.多目标优化免疫算法、理论和应用[M].北京:科学出版社,2010.
    [132] Dashora Y, Tiwari M K, Karunakaran K P. A psycho-clonal-algorithm-based approach to thesolve operation sequencing problem in a CAPP environment[J]. International Journal ofComputer Integrated Manufacturing,2008,21(5):510-525.
    [133]常青,濮剑锋,高洪元等.基于改进的克隆选择算法的多用户检测技术[J].航空学报,2007,28(2):391-396.
    [134]余建军,孙树栋,王军强等.基于免疫算法的柔性制造单元动态调度研究[J].航空学报,2007,28(2):464-469.
    [135] Burnet F M. The clonal selection theory of acquired immunity[M]. Cambridge: CambridgeUniversity Press,1959.
    [136] De Castro L N, Von Zuben F J. The clonal selection algorithm with engineering applications[C].Proceeding of GECCO, Las Vegas, USA,2000:36-37.
    [137]顾寄南,张林鍹,肖田元等.基于推理的有向图拓扑排序装配顺序规划及优化研究[J].机械工程学报,2002,38(12):142-145.
    [138]刘玉生,高曙明.基于特征的层次式公差信息表示模型及其实现[J].机械工程学报,2003,39(3):1-7.
    [139]张博,李宗斌.采用多色集合理论的公差信息建模与推理技术[J].机械工程学报,2005,41(10):111-116.
    [140] Pavlov V V. Polychromatic graph of mathematics simulation for technical system[C]. InProceedings of Scientific and Technical Conference “CAD-88”, Plovdiv, Bulgaria,1988:8-10.
    [141] Pavlov V V. Polychromatic sets and graphs for CALS technology[M]. Moscow: STANKINPress,2000.
    [142] Pavlov V V. Polychromatic sets and graghs for CALS in machine building[M]. Moscow: StankPress,2002.
    [143]李宗斌.先进制造中多色集合理论的研究及应用[M].北京:中国水利水电出版社,知识产权出版社,2005.
    [144] Li Z B, Xu L D. Polychromatic sets and its application in simulating complex objects andsystems[J]. Computers&Operations Research,2003,30(6):851-860.
    [145]李宗斌,高新勤,赵丽萍.基于多色集合理论的信息建模与优化技术[M].北京:科学出版社,2010.
    [146]孙香云,刘增进,郑朔昉.信息分类与编码及其标准化[M].北京:机械工业出版社,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700