谐振式材料疲劳试验系统振动载荷的模型预测控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳试验即测出各种结构材料在不同的交变载荷作用下的疲劳寿命,对于结构设计和产品可靠性保证具有十分重要的意义。谐振式高频疲劳试验机是基于共振原理的用于测定金属材料疲劳特性的试验设备,因其工作频率高、能量消耗低、试验时间短等优点被广泛地应用在高等院校科研和教学及工业生产等各部门。目前,高频疲劳试验系统存在的主要问题是因试验过程中试样刚度随裂纹扩展而逐渐减小,造成系统共振频率点的改变从而影响了工作台的共振振幅,因此需要通过调节试验机的工作载荷来实现系统的恒幅控制。基于高频疲劳试验系统的时变性,论文提出了模型预测控制在高频疲劳试验机控制系统中的应用实现研究,通过对被控对象的精确建模分析了系统的动态响应特性,以此为依据对试验机的动态载荷进行了模型预测控制。主要研究工作和取得成果如下:
     (1)建立了被控对象的双自由度线性定常及时变两个振动系统力学模型,通过理论分析计算得出了线性定常系统固有频率和共振振幅的表达式,并分析了试样刚度对两者的影响;将裂纹扩展试验得到的裂纹与时间的关系代入试样刚度模型,根据线性时变系统模型仿真得到了系统固有频率和共振振幅随时间的变化趋势。
     (2)依据预测控制中的动态矩阵控制(DMC)算法建立了谐振式高频疲劳试验机载荷控制系统的预测模型,根据仿真得到的系统试验过程不同阶段的振幅阶跃响应曲线,用MATLAB7.0分阶段设计了预测控制器并总结了控制参数的选取对控制器性能的影响。
     (3)开发了基于LabVIEW8.5的虚拟仪器实验平台,设计了控制系统的应用软件,实现了基于动态矩阵控制算法的预测控制器的在线应用,由实验结果对控制器的性能进行了评估。
     论文以电磁谐振式高频疲劳试验系统的动态特性为依据设计了预测控制器,并通过仿真分析和实验验证体现了预测控制的优越性。本文的创新点为首次将模型预测控制技术运用到高频疲劳试验机载荷控制系统中,并通过MATLAB7.0和LabVIEW8.5联合编程实现了动态矩阵控制算法的实际应用,方便了对被控对象输入输出的监测控制,提高了程序的运行效率。
Fatigue test is used to measure the fatigue life of various structural materials under alternating load. It has great significance for structural design and assurance of product reliability. Resonant frequency fatigue testing machine is used to determine the fatigue characteristics of metallic materials based on the resonance principle. It has been widely used in research and teaching institutions of higher learning and industrial production sectors because of its high frequency, low energy consumption and short test time . Currently, the main problem of high-frequency fatigue test system is specimen stiffness gradually decreases with the crack during the test, which affects the system resonance amplitude due to the change of system resonance frequency. So this paper presents the Model Predictive Control applied in high-frequency fatigue test machine control system for its time-varying and designed the predictive controller through the accurate modeling of the controlled object and the analysis of system dynamic response characteristics. The main researches and achievements of this paper are listed as following:
     (1) The two degrees of freedom linear time-invariant and time-varying mechanical vibration system model of the controlled object were established, the system natural frequency and resonance amplitude were calculated based on theoretical analysis of linear time-invariant system work principle. The impact of both along the sample stiffness change was analyzed. The system natural frequency and resonance amplitude versus time relationship were simulated based on the relationship between the crack and time got from crack propagation test in time-varying system.
     (2) The predictive model of resonant frequency fatigue testing machine load control system was established based on of Dynamic Matrix Control algorithm of predictive control. Predictive controller in stages was designed with MATLAB7.0 based on system amplitude step response curves during the test at different stages got by simulation with MATLAB7.0. The selection of control parameters affecting the performance of the controller was summarized.
     (3) Experimental platform based on virtual instrument was developed with LabVIEW8.5. The control system application software was designed in order to achieve online application of the predictive controller based on DMC algorithm. The prediction model was amended and the controller performance was evaluated according to results.
     The core achievement of this paper is designing the predictive controller based on dynamic characteristics of high-frequency fatigue testing system, and showing the advantages of predictive control via simulation and experimental results. Innovation of this paper is the first application in dynamic load control system of high frequency fatigue tester with MPC technology and hybrid programming through MATLAB7.0 and LabVIEW8.5. The input and output of the controlled object are easily monitored and the operating efficiency of the program is improved meanwhile.
引文
[1]赵少汴,王忠保.疲劳设计[M].北京:机械工业出版社, 1992.
    [2]李舜酩.机械疲劳与可靠性设计[M].北京:科学出版社, 2006.
    [3]李跃光,姬战国.国内高频疲劳试验机的技术现状及其发展[J].试验技术与试验机, 2006,23(5):43-48.
    [4]倪振华.振动力学[M].西安:西安交通大学出版社, 1989,5.
    [5] Min-Shin Chen, Ren Jay Fu. An observer-based state feedback control of parametrically excited systems [J]. Systems and Control, 1996, 30(1997): 119-125.
    [6] Shinn-Horng Chena, Jyh-Horng Choub, Chien-Jyh Chen.Robust-optimal active vibration controllers design for the certain flexible mechanical systems possessing integrity via genetical gorithm [J]. Inte -rnational Journal of Mechanical Sciences, 2008, 19(50): 455-465.
    [7] Fen Wu, Karolos M. Grigoriadis. LPV Systems with parameter-varying time delays:analysis and con -trol [J]. Automatica, 2001, 37(13): 221-229.
    [8] Ricardo C. L. F. Oliveira, Pedro L. D. Peres. Time-varying discrete-time linear systems with bound -ed rates of variation, Stability analysis and control designI Automatica, 2009, 45(34): 2620-2626.
    [9]隋振,徐凤.最优控制在汽车部件疲劳试验台的应用[J].吉林大学学报, 2010,28(2): 191- 196.
    [10] Luders G, K S Narendra. Stable model reference adaptive control in the Presence of bounded disturb -ances [J]. IEEE Trans on Automatic Control. 1974, 19(6): 841-847.
    [11] R H Middleton, G C Goodwin. Adaptive control of time-varying linear systems [J]. IEEE Tra ns on Automatic Control, 1988, 33: 150-155.
    [12]赛奇,怀特,汪寿涛译.最优系统控制[M].辽宁:水利电力出版社, 1985.
    [13]马宝山.汽车悬架振动主动控制技术研究[D].哈尔滨:哈尔滨工程大学, 2003.
    [14] Riccardo Marino, Patrizio Tomei. Robust adaptive regulation of linear time-varying systems [J]. IE -EE Transactions on Automatic Control, 2000, 45(7): 1301-131l.
    [15] Zhang Y P , Fidan B, Ioannou P A, Back stepping control of linear time-varying systems[J]. IEEE Trans.Automat.Contr., 2003, 48(11): 1908-1925.
    [16]刘杰,巫林,纪盛青,闻邦椿.电振机振幅控制数学模型[J].东北大学学报(自然科学版), 1996, 01(22): 23-26.
    [17]李萍,李峰,赵虎,居滋培﹒模糊自整定PID控制器的设计和仿真[J].仪器仪表学报, 2004,25(4).
    [18]胡国龙,孙优贤﹒预测控制进展及其应用研究[J]﹒电力系统及其自动化学,2003,15(1) :109-115
    [19]赵景波,周祥龙﹒预测函数控制在工业锅炉燃烧系统上的应用[J]﹒工业仪表与自动化装置, 2003,(3):24-26.
    [20]邹涛,丁宝苍,张瑞﹒模型预测控制工程应用导论[M].北京:化学工业出版社,2010﹒
    [21]丁宝苍﹒预测控制的理论与方法[M].北京:机械工业出版社,2008﹒
    [22]王国玉,韩璞,王东风﹒预测函数控制及其应用研究[J]﹒系统仿真报,2002 ,14(8) :1087-1091.
    [23]闻邦椿.振动利用工程[M].北京:科学出版社, 2005.
    [24]陈立群,刘延柱.振动力学发展历史概述[J].上海交通大学学报. 1997, 31(7): 132-136.
    [25]蒋明,何小元.振动轮式微机械陀螺动态特性的光学测试[J].光学精密工程, 2008, 16(2):295-2 99.
    [26]黄凤.电磁振动给料机振幅的自适应控制[D].河海大学硕士学位论文, 2007.
    [27]孙磊,姬战国,尹廷林,李泽宇,马伟.高频疲劳试验机振动系统动力学特性分析[J].工程与试验, 2010, 50(2): 13-15.
    [28]徐会希.机械振动利用工程中的振幅控制研究[D].东北大学硕士学位论文, 2002.
    [29]刘杰,孙光复.反共振振动机械的理论与应用[J].东北大学学报(自然科学报), 1995,1 (28):50-63.
    [30]刘杰,李允公,刘劲涛,徐会希.基于振幅稳定的原点反共振振动机动力学分析及其控制[J].机械工程学报, 2006, 42(1): 145-148.
    [31] Wang Feng-Quan, Han Xiao-Ling, Guo Ying-zheng. Analysis of Characteristics ofPseudo res -onance and Anti– resonance [J], Journal of Vibration and Acoustics,Trans .ASME, 1996, 11 8: 663-667.
    [32] Yusuda Masashi, Gu Rongrong, Nishihara Osaamu, Matahisa. Development ofanti-resonance enforced active vibration absorber system [J], Series C JSM E, 1996, 39(3): 464-469.
    [33] Seiji Hirose, Manabu Aoyagi. High power characteristic at anti-resonance frequency ofpieozo -electric transducers [J], Ultrasonics, 1996, 34: 213-217.
    [34]褚亦清,李翠英.非线性振动分析[M].北京:北京理工大学出版社, 1996.
    [35]胡家升,潘红华,苏宏业等.预测函数控制系统的闭环性能分析[J].控制理论与应用,2001,18 (5) :774-778,38(1):105-120.
    [36]张聚,王集华,王万良.显式模型预测控制及其在电梯机械系统振动控制中的应用[J].信息与控制,2009.
    [37]云雪峰.基于组态王和MATLAB的预测控制器实现设计[D].内蒙古:内蒙古科技大学, 2009.
    [38]邹健.智能预测控制及其应用的研究[D].浙江:浙江大学, 2002.
    [39] PLG-100型高频疲劳试验机使用说明书[Z].天水:天水红山试验机厂, 1982.
    [40]温熙森,陈循等.机械系统建模与动态分析[M].北京:科学出版社, 2004.
    [41]陈桂明.运用MATLAB建模与仿真[M].北京:科学出版社, 2001.
    [42] C. H. Lamarque, J. M. Malasoma and V. Roberti. Analysis Of Mechanical Systems With Slowly Var -ying Parameters By Normal Form Method [J] Journal of Sound and Vibration Volume 160, Issue 2, 1993, 33:364-368.
    [43] Daley S, Owens D H, Hatonen J. Application of optimal iterative learning control to the dynamic tes -ting of mechanical structures [J]. Systems and control engineering, 2007, 211-222.
    [44] Nestor E. SanCHez .The Method of Multiple Scales: Asymptotic Solutions and Normal Forms for N-onlinear Oscillatory Problems [J]. Journal of Symbolic Computation.Volume 21, Issue 2, 1996, 35 : 245-252.
    [45]陈海明.高频激振控制器的研究[D] .浙江:浙江工业大学, 2004.
    [46]任中全,郭世伟,何万库.振动系统的时频域仿真分析研究[J].计算机仿真, 2002,01(25):25-28.
    [47]李建生.共振式电磁振动机振动系统的计算与分析[J] .贵州农学院学报, 1997.16(2): 70-75.
    [48]吴淇泰.振动分析[M].浙江:浙江大学出版社, 1989.
    [49]杜春艳,李立军.振动理论的计算机MATLAB仿真研究方法[J].佳木斯大学学报(自然科学版), 2002,57(04) :60-63 .
    [50]张妮.高频疲劳试验机动态特性的研究[D].浙江:浙江工业大学, 2009.
    [51]范瑞霞,莫伟锋,毕军.广义预测控制在液位控制系统中的应用研究[J].北京理工大学学报, 2003,23(2) .194-211.
    [52]诸静.智能预测控制及其应用[M].杭州:浙江大学出版社,2002.
    [53]牛永肖.基于输入非线性MPC的过程控制系统研究[D].河北:河北工业大学,2006.
    [54]李元春.计算机控制系统[M].北京:高等教育出版社,2005,3.
    [55]胡玲笑.谐振式材料疲劳试验系统动态特性及载荷控制技术研究[D].浙江:浙江工业大学,2010.
    [56]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005.
    [57]梅晓榕.自动控制原理[M].北京:科学出版社, 2002.
    [58]刘君华.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社, 2003.
    [59]丛爽,邓娟. MATLAB环境下的模型预测控制理论的应用[J].计算机工程与应用, 2005(16) :196-198.
    [60]胡佑兰,彭天好,朱刘英. MATLAB和LabVIEW混合编程及在控制系统中的应用[J].机床与液压, 2009,37(10): 210-212.
    [61] Weiliang Xu, Floyd D. McDaniel. A LabVIEW-based expandable modular control system with a layered structure for a 3 MV tandem accelerator, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 241, Issues 1-4, December 2005.
    [62]岳俊红,刘吉臻,谭文.改进的预测函数控制算法及其应用研究[J].中国电机工程学报,2007,27(11) :93-97,
    [63]牛永肖,丁宝苍,孙鹤旭.输入非线性系统的两步法预测控制的鲁棒稳定性[J].控制与决策, 2006,.21(4): 457-461.
    [64] V. Sh. Burd. Almost periodic resonance oscillations in non-linear two-dimensional systems with slowly varying parameters. Journal of Applied Mathematics and Mechanics. Volume 60, Issue 3, 1996, Pages 391-398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700