使用CCD摄像仪测定人体直立时的身体动摇和对人平衡能力的评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:利用CCD摄像仪测定人体直立时的身体动摇,与重心动摇检查结果进行比较,寻找此方法用于评价人体平衡功能的可能性。材料与方法:CCD摄像仪测定系统由CCD摄像仪,图象采集卡及分析软件三部分组成。CCD摄像仪拍摄人体直立时背部一个黑色的指标,这个指标直径为32毫米,拍摄速度设定为10幅/秒,共拍摄35秒获得349幅图像。软件分析系统对这349幅图像进行分析,找出每幅图像上指标的圆心坐标,得出指标的运动曲线,这曲线也代表人站立时的身体摇动。由于指标是位于背部,所以这一系统主要用于测定人直立时左右方向的摇动。为了进行个体之间的比较,我们对得到的指标的运动曲线有必要进行标准化处理,这里我们定义离地1米高的地方为标准的身体动摇测定点。测定指标主要有两个,一是身体动摇角度(Trunk Sway Angle,TSA),它代表身体摇动是在以地面与脚为支点的动摇范围。二是身体动摇速度(Trunk Sway Speed,TSS),它代表身体动摇的快慢。这两个指标都用于反映身体直立时的稳定性。实验随意选用了男女性各11名,男性平均年龄为39.1岁,女性平均年龄为42.8岁。测定分开眼和闭眼轮流交替进行,共十次。测定时让被检者站在常用的重心动摇检查仪上,与重心动摇检查同时进行,得到的结果与重心动摇的检查结果进行相关性的分析。结果:22人开眼时
    
     R322 浙江大学医学院硕士学位论文
     的身体动摇速度为 3.40士 0.98m。八,闭眼时的身体动摇速度为 4.70士
     1.47 m。儿;开眼时的身体动拐角度为 1.05士0.29“,闭眼时的身体动
     摇角度为1.41士0.44“.开限时的身体动扬速度比闭限时少 二.30士
     0.69m。/s(P<0.of),开眼时的身体动摇角度比闭眼时少 0.36土0.23
     (P<0.of);闭眼与开眼时的身体动摇速度之比(Romberg 率)为
     1.39士0.19,闭眼与开眼时的身体动摇角度之比(Romberg串)为 1.35
     士0.ZI。35 秒间重心动摇检杏结果,开眼时的轨迹长为12.57士
     3.39。m/s,闭眼时的轨迹K为20.50士5.88mm/s,闭眼与开眼轨迹K之
     比(Ro。berg 率)为 1.64士0.25。检查各所得指标的稳定性以开、闭
     眼各五次所得的值的标准偏差与平均值之比(SD/AVG值)作为稳定性
     指标,因为针对同一被检者多次检查所得结果越稳定越能反映机体的
     平衡功能(平衡能力被认为是相对稳定的)。开眼时身体动摇速度的
     SD/AVG值为 0.11士0.05,身体动摇角度的 邪/AVG值为 0.19士0.09,
     而开眼时重心动摇轨迹长的 SD/AVG值为 0.15士0.08;闭眼时身体动摇
     速度的 SD/AVG值为 0.14ic.08,身体动摇角度的 SD/AVG值为 0.20f
     0.08,而闭眼时重心动摇轨迹长的 m/AVG值为0.14士0.06。可见身体
     动摇速度值的SD/AVG值最小,其次是重心动摇轨迹长的SD/AVG值,
     摇动角度的SD/AVC值最大,但动摇速度的SD/AVC值与重心动摇轨迹
     长的SD/AVG值之间未见显著性差异。身体动摇速度与重心动摇轨迹长
     之间的相关系数开眼时为0.6321,闭眼时为0.6841,两者呈中度相关。
     而身体动摇角度与重心动摇轨迹长之间的相关系数什眼时为0.5382,
     闭眼时为0.5053。身体动摇速度更接近重心动摇检查的结果。技论:
     使用CCD摄像仪测定身体动摇速度大小可以在一定程度上反映人体综
     合平衡能力的大小。
Objective: The assessment of postural control using the displacement of the center of pressure (COP) is incapable when subjects are requested to stand on an inclined board. The aim of present study is to establish a CCD video camera system that record subjects' postural sway directly, with an analyzing software to figure out postural sway locus. By normalizing and comparing the locus with COP results, we make effort to evaluate human postural stability by trunk sway speed (TSS) or trunk sway angle (TSA), both of them can be acquired by analyzing the locus. Methods and materials: The system is composed of a CCD video camera, a video image capture board and analysis software. In practice, a black circular mark (32mm in diameter) is pasted on subjects' upper back using for record. The CCD video camera is set up on subject's back directory in the same high level with the mark and leaving it about 150cm. The video camera system records 35 seconds AVI format image acquired consecutive 349 frames (320 X 240 pixel, lOframe/sec). The system computes
    
    
    
    postural sway locus by tracing movements of the black mark and the locus represented subjects' left-right direction postural stray. For inter-individual comparability, the acquired postural sway locus is normalized as swaying at a high of 1 meter from the ground. Two indexes, TSS and TSA were used to describe postural stability. TSS represents trunk sway speed at the point of 1 meter high, and TSA represents angle scope of postural away. 22 healthy subjects (all were well informed and consented) took part in the examination, 11 females aged 42.8 years, and 11 males aged 39.1 years. Each subject was conducted 10 times 35
    Recond-period exams with eye-open alternated with eye-closed. During the examination, subjects stand on a COP measurement platform, relaxing their hands on both lateral sides of thighs, staring at a point 1 meter in front of them in the same high level. At last, the results of postural sway are compared with the results from COP examination and their correlation coefficient was calculated. Results: The averaged TSS of 22 subjects is 3.40 + 0.98mm/s in eyes open and 4. 70+1. 47mm/s in eyes closed. The averaged TSA is 1.05+0.29?in eyes open and 1.41+0.44?in eyes closed. The TSS increased 1. 30+ 0. 69mm/s (P<0. 01) and the TAS is 0.36 ?0. 23 " (P<0.01) when eyes closed. Romberg's rate (cyc-closcd /cyc-opcn) is 1. 39 + 0. 19 in TSS, 1. 35?. 21 in TSA. For COP examination, linear length of locus (LNG) is 12.57?3. 39mm/s in eyes open, 20. 50?5. 88mm/s in eyes closed. Romberg's rate is 1.64 + 0.25. in each case of examination, the value of
    
    
    
    SD/AVG was also calculated in TSS, ISA and LNG, in order to compare the stability of each index in the same subject. More stable the value of SD/AVG is more suitable to reflex the equilibrium of body. The value of SD/AVG is 0.11+0.05 in TSS, 0.19 + 0.09 in TSA and 0.15 + 0.08 in LNG when eyes open; 0.14 + 0.08 in TSS, 0. 20 + 0. 08 in TSA and 0. 14 + 0. 06 in LNG when eyes closed. The value of SD/AVG in TSS is smallest, however have no significant difference with LNG, and the value of SD/AVG in TSA is largest. The correlation coefficient between TSS and LNG is 0.6321 in eyes open, 0.6841 in eyes closed; the correlation coefficient between TSA and LNG is 0.5382 in eyes open, 0.5053 in eyes closed. TSS shows moderate correlated with LNG larger than TSA. Conclusion: The CCD video camera system is suitable for postural stability measurement especially used the index of TSS and may become a prospective method for human beings balance ability evaluation.
引文
[1] Robbins-AS, Rubenstein-LZ, Josephson-KR, et al. Predictors of falls among elderly people. Results of two population-based studies. Arch Intern Med, 1989, 149: 1628-33
    [2] Kannus-P, Niemi-S, Palvanen-M, et al. Continuously rising problem of osteoporotic knee fractures in elderly women: nationwide statistics in Finland in 1970-1999 and predictions until the year 2030. Bone, 2001, 29(5) : 419-23
    [3] Devito-CA, Lambert-DA, Sattin-RW, et al. Fall in juries among the elderly. Community-based surveillance. J Am Geriatr Soc, 1988, 36: 1029-35
    [4] Gillespie-LD, Gillespie-W J, Robertson-MC, et al. Interventions for preventing falls in elderly people (Cochrane Review) . Cochrane Database Syst Rev, 2001, 3 : CD000340
    [5] Maki-BE, Ho11iday-PJ, Topper-AK. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol, 1994, 49: M72-84
    [6] Ingemarsson-AH, Frandin-K, Hellstrom, et al. Balance function and fall-related efficacy in patients with newly operated hip fracture. Clin. Rehabil., 2000, 14(5) : 497-505
    [7] Starck-J, Pyykko-I, Aalto-H, et al. Measurements of postural stability: development of a force platform and some
    
    excitation systems. Med.Prog. Technol, 1992-1993, 18(4) : 209-15
    ?[8] Fitzgerald-JE, et al. Acta Otolarygol (Stockh) 1994,114:115
    [9] 高伟。重心动摇检查对平衡功能的评价。 Foreign medical sciences section on neurology and neurosurgery, 2000, 27(6) : 284-87
    [10] Kapteyn-TS, Njiokiktjien-CJ, Bles-W, et al. Standardization in platform stabilometry being a part of posturography.Agressologe, 1983, 24: 321-26
    [11] Shimba-T. An estimation of center of gravity from force platform data. J Biomech 1984, 17: 53-60
    [12] Lord-SR, Clark-RD, Webster-IW. Visual acuity and contrast sensitivity in relation to falls in an elderly population. Age and aging , 1991, 20: 175-81
    [l3] Lord-SR, Menz-HB. Visual contributions to postural stability in older adu1ts.Gerontology, 2000, 46: 306-310
    [14] Wolf-SL, Barnhart-HX, Kutner-NG, et al. Reducing frailty and falls in older persons: an investigation of Tai Chi and computerized balance training. J Am GERIATR Soc, 1996, 44: 489-497
    [15] Bronstein-AM, Guerraz-M. Visual-vestibular control of posture and gait: physiological mechanisms and disorders. Curr. Opin. Neurol, 1999, 12(1) : 5-11
    [16] Mauritz-KH, Dietz-V. Characteristics of postural instability induced by ischemic blocking of leg afferents .
    
    Exp. Brain Res., 1980, 38: 117-19
    [17] Anastasopoulos-D, Haslwanter-T, Bronstein-A, et al. Dissociation between the perception of body verticality and the visual vertical in acute peripheral vestibular disorders in humans. Neurosci Lett, 1997, 233: 151-53
    [18] Manchester-D, Woollacott-M, Zederbauer-HN, et al. Visual, vestibular and somatosensory contributions to balance control in the older adult. J Gerontol , 1989, 44: 118-27
    [l9] Gill-J, Allum-JH, Carpenter-MG, et al. Trunk sway measures of postural stability during clinical balance tests: effects of age. J Gerontol A Biol Sci Med Sci, 2001, 56(7) : M438-47
    [20] Hirasawa-Y, Stasiology(5) -Study of Human Standing Ability. 静冈大学教育部研究报告,1974, 9: 35-47
    [21] 德增厚二,大久保仁,加藤功,等。平衡机能的标准化资料-1987年平衡机能检查法标准化委员会答申书及英文项目。 Equilibrium Res, 1988, 47: 221-44
    [22] Hirasawa-Y. An observation on standing ability of Japanese males and females. J. Anthrop. Soc. Nippon 1979, 87(2) : 81-92
    [23] Hashizume-K, Ito-H, Maruyama-H, et al. 立位保持能力的加龄变化。日本老年医学会杂志, 1986, 23(1) : 85-91
    [24] Rogers-MW, Wardman-DL, Lord-SR, et al. Passive tactile sensory input improves stability during standing. Exp. Brain Res., 2001, 136(4) : 514-22
    
    
    [25] Nagasaki-S, Jiang-Y, Hayakawa-M, et al. A new method to measure postural sway on upright stance using CCD video camera system. 教育医学( 日文 ) , 2001, 46 (5) : 1174-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700