宏观尺度的纳米级定位控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着工业领域如微型机械制造、超精密测量、超精密加工、集成电路制造、生物工程、医疗科学、光纤对接和机器人系统等众多领域的不断发展,与之相关的设备对定位行程和定位精度的要求越来越高,因此宏观尺度的纳米级定位技术一直是精密工程领域的研究热点之一。同时,随着各项大型天文物理项目的不断开展,对大口径高精度的衍射光栅提出了越来越高的要求。因此本论文以衍射光栅刻划机的分度定位系统作为实验和应用对象,对其中的核心技术——宏观尺度的纳米级定位控制技术中的系统构建、定位系统建模及特性分析、定位误差补偿控制策略及宏/微级定位方式等关键问题进行了研究。
     通过对衍射光栅刻划机的工作方式、系统构成和各种宏观尺度纳米级定位系统构成方案的对比分析,确定了以直流无刷力矩电机加蜗杆蜗轮、丝杆螺母机构作为宏动台、压电陶瓷加弹簧钢片作为微动台、双频激光干涉仪作为位置测量系统全闭环的宏/微级驱动方式的宏观尺度纳米级分度定位系统。在PC机上通过VC对刻划机的分度定位系统和刻划系统进行了集成。实现了对中国科学院长春光学精密机械与物理研究所2号衍射光栅刻划机的控制。在实际光栅刻划的过程中,其分度定位系统实现了在300mm行程内,平均稳态3σ定位误差小于7nm的定位精度。
     在宏/微级驱动定位系统的系统建模研究中,分析对比了常用的“白箱建模”、“黑箱建模”和“灰箱建模”三种建模方法的优缺点,并确定采用“灰箱建模”方法对定位系统进行建模。通过机理建模,根据宏、微工作台的链接方式建立了不同驱动方式(宏驱动单输入-双输出、微驱动单输入-双输出和宏/微驱动双输入-双输出)的整体动态模型,并通过系统辨识实验,对系统中的未知参数进行了估计,获得了与实际系统较接近的系统模型,根据灰箱建模得到的系统模型对系统的动态特性进行了分析,并提出了系统改进方向。通过对传统PID控制原理及实验结果的分析,阐明了其不适于宏观尺度纳米级定位系统控制的原因,在阐述了神经网络基本原理的基础上,阐明了使用神经网络PID控制作为宏观尺度的纳米级定位系统控制方法的优点,通过对单神经元PID控制和BP神经网络PID控制种神经网络控制算法的原理分析及在“灰箱建模”得到的系统模型进行的控制仿真,对这种PID控制算法的控制性能进行了对比分析。
     最后,根据本论文所研究的衍射光栅刻划机的机械结构及其分度系统的定位精度要求,搭建了实验平台,对定位系统的几个关键的驱动和传感器件进行了选择;在此基础上,采用虚拟硬件在环的方法对光栅刻划机的计算机控制软件进行了仿真开发,利用“灰箱建模”得到的控制系统模型在完全虚拟的环境下编程实现了刻划机的定位控制流程和刻划流程。通过对单神经元PID和BP神经网络PID种算法的阶跃和步进定位实验,对上述种控制算法的研究和仿真进行了验证,并对控制算法的快速性、定位精度等进行了对比分析得出:BP神经网络学习收敛速度更快,能够更快速地适应系统的变化,具有较好的快速性,能够获得更高的定位精度,但是系统超调较大。然后,根据衍射光栅刻划原理实现了间歇式定位和宏动台连续-微动台间歇种定位方式的光栅刻划机的刻划控制,并进行了实际刻划实验,通过对实验结果的处理分析可以得出,目前长春光机所2号衍射光栅刻划机的宏定位系统存在爬行现象,因此采用间歇式定位方式和快速性较好的BP神经网络PID控制算法可以获得几种方法中最高的定位精度(7nm以下),而宏动台连续-微动台间歇的定位方式的精度较差。通过微定位实验和实际刻划实验验证了本论文研究工作的正确性。
Recently,asthedevelopmentofnumerousindustrialareassuchasmicro-machines,ultra-precision measurement, ultra-precision machining, integrated circuit manufactur-ing, biotechnology, medical science, optical docking and robotics, the equipment withlarger positioning range and higher positioning accuracy are highly required, so themacroscopic-scale nano-precision positioning technology has been a hot in engineeringresearch field. Meanwhile, as the development of large-scale astrophysics project, therequirement on high-precision diffraction gratings in large diameter grows. Therefore,by taking the indexing and positioning system in dissertation diffraction grating rulingmachine as the research object, this dissertation investigated the system construction,system modeling and characterization, positioning error compensation control strategyand macro/micro-dual positioning in macroscopic-scale and nano-positioning technol-ogy.
     By comparing the operating mode and system component of diffraction gratingruling engine with that of other macroscopic-scale and nano-positioning systems, aclosed loop macroscopic-scale nano-positioning indexing and positioning system withmacro/micro dual-drive is established, with the DC brushless torque motor plus wormgear and screw nut mechanism as macro blank, with the piezoelectric ceramics plus s-teel spring asmicroblank, with thedual-frequency laser interferometerasmeasurementequipment. Through simulating the indexing positioning and ruling systems of the d-iffraction grating ruling engine on PC via VC, effective control on diffraction gratingruling engine No. 2 in Changchun Institute of Optics, Fine Mechanics and Physics ofChinese Academy of Sciences is realized. In practice, the average 3σpositioning errorof the indexing positioning system is less than 7nm within 300m positioning range.
     Inthesystemmodelingofthemacro/microdual-drivepositioningsystem, bycom-paring the advantages and shortcomings of the commonly used”white box modeling”,”black box modeling”and”gray box modeling”, the”gray box modeling”is adopted.According to the link mode of the macro and micro worktable, overall dynamic modelof different driving modes (Macro drive single input - dual output, Micro drive singleinput - dual output, and macro / micro drive dual input - dual output)are establishedby mechanism modeling. Through system identification experiments, unknown param-eters in systems are estimated and system model close to the actual system is obtained.Dynamiccharacterofthesystemisanalyzedbased on”graybox modeling”, andfurther improving methods are proposed.
     ThroughanalyzingthetraditionalPIDcontroltheoryandexperimentalresults, thisdissertation stated it is not suitable for macro-scale and nano-positioning system controland the reasons are given. Based on the principles of neural network, the advantage ofusing neural network PID control in macro-scale nano-positioning system is demon-strated. By analyzing control algorithm of the single neuron PID control and BP neuralnetwork PID control, together with the simulation of the system model based on”graybox modeling”, the performance of the two types of PID control algorithm were com-pared.
     Finally, according to the positioning accuracy demand of the mechanical structureandindexingsystemofdiffractiongratingrulingengine, severalkeydriversandsensorsof the positioning system were selected and the experiment platform was constructed.Based on this, the computer-controlled software of the grating ruling engine was de-veloped with the virtual hardware in the loop method, and the positioning process andruling process of the ruling engine were realized in a fully virtual environment usingcontrol system model based on”gray box modeling”. Through the step positioningexperiments on the single neuron PID and BP neural network PID control algorithm,the two control algorithm were simulated and verified, and the rapidity and accuracyof the control algorithms was compared. It is obtained that BP neural network controlconverges faster, is more adaptable to changes in the system, works faster, can achievehigher accuracy, but has larger overshoot. Then, based on the working principle ofdiffraction grating ruling engine, intermittent positioning and macro worktable contin-uous mode-micro worktable intermittent mode positioning control of the grating rulingengine were realized. Ruling experiment were conducted and the analysis on the result-s show that the macro positioning system of the diffraction grating ruling engine No.2 in Changchun Institute of Optics, Fine Mechanics and Physics of Chinese Academyof Sciences has crawl, therefore, by using intermittent positioning and fast BP neuralnetwork PID control algorithm, high accuracy (7nm or less)can be achieved, whilethe accuracy performance of the macro worktable continuous mode-micro worktableintermittent mode positioning is poor. The correctness of the work in the dissertation isverified by micro-positioning experiments and practical ruling experiments.
引文
[1]董吉洪,田兴志,李志来,王明哲. 100nm步进扫描投影光刻机工件台、掩模台的发展.微纳科学与技术, 5:20–24, 2004.
    [2]王文,李欣欣.超精密定位平台的测量系统研究.机电工程, 23(4):13–16, 34, 2006.
    [3]吴鹰飞,周兆英.超精密定位工作台.微细加工技术, 2:41–47, 2002.
    [4]巴音贺希格.衍射光栅色散理论与光栅设计、制作和检验方法研究.中国科学院长春光学精密机械与物理研究所博士论文, 2004.
    [5]时轮.一种亚纳米级栅距变化量的变栅距光栅分度控制方法的研究.中国科学院长春光学精密机械与物理研究所博士论文, 2003.
    [6]赵博.衍射光栅的相位拼接.中国科学院长春光学精密机械与物理研究所博士论文, 2000.
    [7]赵博,郝德阜.用拼接法获取大面积衍射光栅.光学精密工程, 8:503–507, 2000.
    [8] Jianpeng Wang, Yunxia Jin, Jianyong Ma, Tianyu Sun, and Xufeng Jing. Design and analysis of broadbandhigh-efficiency pulse compression gratings. Appl. Opt., 49:2969–2978, 2010.
    [9]朱煜,尹文生,段广洪.光刻机超精密工件台研究.电子工业专用设备, 2:24–27, 44, 2004.
    [10]唐小萍.亚微米i线投影曝光机三维精密定位工作台控制系统研究.微细加工技术, 3:12–17, 1998.
    [11] A. T. Elfizy, G. M. Bone, and M. A. Elbestawi. Design and control of a dual-stage feed drive. InternationalJournal of Machine Tools & Manufacture, 45(2):153–165, 2005.
    [12] M.C. Hutley. Diffraction grating. Academic Press, 1982.
    [13]祝绍箕,邹海兴,包学诚,郭厚林.衍射光栅.机械工业出版社,北京, 1988.
    [14]李燕青,都德阜.衍射光栅制造技术的发展.长春理工大学学报, 26:66–68, 2003.
    [15] Harvey J.E., Byme D.M. Diffraction phenomena in optical engineering applications. Proc. SPIE, 560, 1985.
    [16] M. koike and T. harada. New blazed holographic gratings fabricated by an aspherical recording with an ion-etching method. Proc. SPIE, 815:96–101, 1987.
    [17] T. harada, Sakuma and Masaru Fuse. Fabrication of blazed gratings and grisms utilizing anisotropic etchingof silicon. Proc. SPIE, 3450:11–16, 1998.
    [18] Benoit Deville, F.Bonnemason and B. Touzet. Holographically recorded ion-etched variable line space grat-ings. Proc. SPIE, 3450:24–35, 1998.
    [19] L. Mashev and S. Tonchev. Formation of blazing holographic diffraction gratings. Appl. Phys, B28:349–353,1982.
    [20] Flamand J., Bonnemason F. and Thevenon A. The blazing of holographic gratings using ion-etching. Proc.SPIE, 1055:288–294, 1989.
    [21] K.N.塔拉索夫.光谱仪器.机械工业出版社,北京, 1985.
    [22] Savage N. Astronomy - Tiny wavelength shifts reveal giant planets. LASER FOCUS WORLD, 1999.
    [23] Erwin G., Loewen, Robert S., Wiley. Large diffraction grating ruling engine with nanometer digital controlsystem. Proc. SPIE, 815:88–98, 1987.
    [24]尤政,梁晋文.纳米计量技术.计量技术, 11:2–4, 1995.
    [25]袁哲俊,谢大纲.纳米技术的最新发展.制造技术与机床, 5:5–8, 2000.
    [26] Valery Kiryanov. Laser nanointerferometry of displacement methods and means of measurement accuracyimprovement. Proc. SPIE, 3736:410–415, 1999.
    [27] Marek Dobosz. Analysis of tolerances in a grating interferometer for high-resolution displacement measure-ment. Proc. SPIE, 3744:253–261, 1999.
    [28] D. Croft and S. devasia. High precision stages for micro/nano-lithography. Proc. SPIE, 3225:68–75, 1997.
    [29]李鸣鸣.大行程纳米定位系统若干关键技术研究.上海大学博士论文, 2007.
    [30]王立松,苏宝库,董申,张晶.大行程高精度级定位工作台控制方法研究.机械设计与制造, 4:71–72,2001.
    [31]徐从裕.大行程纳米定位驱动控制方法与系统研究.合肥工业大学博士论文, 2008.
    [32]节德刚,刘延杰,孙立宁,孙绍云,蔡鹤皋.一种宏微双重驱动精密定位机构的建模与控制.光学精密工程, 13:171–177, 2005.
    [33]李欣欣.宏/微级驱动的大行程高精度二维定位平台基础技术研究.浙江大学博士论文, 2008.
    [34]胡长德,赵美蓉,李咏强,高娟,朱砂.大行程纳米级压电微动工作台的设计与试验研究.传感技术学报,22:803–807, 2009.
    [35]薛实福,李庆祥.精密仪器设计.清华大学出版社, 1991.
    [36]余文新,胡小唐,邹自强.光栅纳米测量技术及应用.计量技术, 7:9–12, 2001.
    [37]苏绍瑕.大量程纳米级光栅位移测量理论及关键技术研究.国防科学技术大学博士论文, 2001.
    [38] Xinghui Huang, Robcrto Horowits, Yunfong Li. Track-following control with active vibration damping andcompensation of a dual-stage servo system. Miorosystem Technologies, 11:1276–1286, 2005.
    [39]田延岭,张大卫,陈华伟,黄田.基于微定位工作台的精密磨削过程动力学建模与误差补偿技术.
    [40] Mike Holmes, Robert Hocken, David Trumper. The long-range scanning stage: a novel platform for scanned-probe microscopy.
    [41] JSamir Mekid. High precision linear slide. part i: design and construction.
    [42] JSamir Mekid, Olivier Olejniczak. High precision linear slide. part ii: control and measurements.
    [43] Junhong Mao, Hiroyuki Tachikawa, Akira Shimokohbe. Precision positioning of a dc-motor-driven aerostaticslide system.
    [44] H. J. Pahk, D. S. Lee, and J. H. Park. Ultra precision positioning system for servo motor-piezo actuator usingthe dual servo loop and digital filter implementation. International Journal of Machine Tools & Manufacture,41(1):51–63, 2001.
    [45] C. Moon, S. Lee, and J. K. Chung. A new fast inchworm type actuator with the robust i/q heterodyne inter-ferometer feedback. Mechatronics, 16(2):105–110, 2006.
    [46] S. Q. Lee, Y. Kim, and D. G. Gweon. Continuous gain scheduling control for a micro-positioning system:simple, robust and no overshoot response. Control Engineering Practice, 8(2):133–138, 2000.
    [47] C. L. Chao and J. Neou. Model reference adaptive control of air-lubricated capstan drive for precision po-sitioning. Precision Engineering-Journal of the International Societies for Precision Engineering and Nan-otechnology, 24(4):285–290, 2000.
    [48] J. S. Chen and I. C. Dwang. A ballscrew drive mechanism with piezo-electric nut for preload and motioncontrol. International Journal of Machine Tools & Manufacture, 40(4):513–526, 2000.
    [49] Christopher Palmer. Diffrcation Grating Handbook. Newport Corporation, USA, 2005.
    [50] Toshiaki Kita, Tatsuo Harada. Ruling engine using a piezoelectric device for large and high-groove densitygratings. APPLIED OPTICS, 31:1399–1406, 1992.
    [51]时轮,郝德阜,齐向东.高精度衍射光栅刻划机的最新技术进展.仪器仪表学报, 4增刊:438–439, 2001.
    [52] C.L. Chen, M.J. Jang, K.C. Lin. Modeling and positioning control of a ball-screw-driven stage. PrecisionEngineering, 28:483–495, 2004.
    [53]王波,董申,赵万生.利用滚珠丝杠的微动特性实现纳米定位.航空精密制造技术, 6:8–10, 1998.
    [54]薛实福,李庆祥.精密仪器设计.清华大学出版社, 1991.
    [55] R. J. Linderman and V. M. Bright. Nanometer precision positioning robots utilizing optimized scratch driveactuators. Sensors and Actuators a-Physical, 91(3):292–300, 2001.
    [56] C. Moon, S. Lee, and J. K. Chung. A new fast inchworm type actuator with the robust i/q heterodyne inter-ferometer feedback. Mechatronics, 16(2):105–110, 2006.
    [57] M.V.Shutov, D.L.Howard, E.E.Sandoz, J.M.Sirota, R.L.Smith, andS.D.Collins. Electrostaticinchwormmicrosystem with long range translation. Sensors and Actuators a-Physical, 114(2-3):379–386, 2004.
    [58]杨宜民.新型驱动器及其应用.机械工业出版社, 1997.
    [59]吴鹰飞,李勇,周兆英,刘钦彦.蠕动式x-y-θ微动工作台的设计实现.中国机械工程, 3:263–265, 2001.
    [60] Y. T. Liu, T. Higuchi, and R. F. Fung. A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator - part ii: theoretical analysis. Precision Engineering-Journal of the Interna-tional Societies for Precision Engineering and Nanotechnology, 27(1):22–31, 2003.
    [61] C. L. Chao and J. Neou. Model reference adaptive control of air-lubricated capstan drive for precision po-sitioning. Precision Engineering-Journal of the International Societies for Precision Engineering and Nan-otechnology, 24(4):285–290, 2000.
    [62] J.Mao, H.Tachikawa, andA.Shimokohbe. Precisionpositioningofadc-motor-drivenaerostaticslidesystem.Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,27(1):32–41, 2003.
    [63]戴一帆,李圣怡,罗兵,彭莉.扭轮摩擦驱动系统研究.国防科技大学学报, 2:85–88, 1999.
    [64] H. Mizumoto, M. Yabuya, T. Shimizu, and Y. Kami. An angstrom-positioning system using a twist-rollerfrictiondrive. PrecisionEngineering-JournaloftheAmericanSocietyforPrecisionEngineering,17(1):57–62,1995.
    [65] M. Holmes, R. Hocken, and D. Trumper. The long-range scanning stage: a novel platform for scanned-probe microscopy. Precision Engineering-Journal of the International Societies for Precision Engineeringand Nanotechnology, 24(3):191–209, 2000.
    [66] A. T. Elfizy, G. M. Bone, and M. A. Elbestawi. Design and control of a dual-stage feed drive. InternationalJournal of Machine Tools & Manufacture, 45(2):153–165, 2005.
    [67] S. Mekid. High precision linear slide. part i: design and construction. International Journal of Machine Tools& Manufacture, 40(7):1039–1050, 2000.
    [68] S. Mekid and O. Olejniczak. High precision linear slide. part ii: control and measurements. InternationalJournal of Machine Tools & Manufacture, 40(7):1051–1064, 2000.
    [69]田军委,王建华,李平,徐萍.超精密驱动机构比较.西安工业学院学报, 1:62–66, 2002.
    [70]吴震.光干涉测量技术.中国计量出版社, 1995.
    [71] Lennart Ljung. System Identification Theory for the User (Second Edition). Prentice Hall, 1999.
    [72] K.J. Astrom and P. Eykhoff. System identification-a survey. Automatica, 7(2):123–62, 1971.
    [73]周彤.面向控制的系统辨识导论.清华大学出版社, 2002.
    [74]王秀峰,卢桂章.系统建模与辨识.电子工业出版社, 2004.
    [75]侯媛彬,汪海,王立琦.系统建模及其MATLAB仿真.科学出版社, 2004.
    [76]李言俊,张科.系统辨识理论及应用.国防工业出版社, 2003.
    [77]白继平,许德辉.基于matlab下的pid控制仿真.中国航海, 4:77–80, 2004.
    [78]白金,韩俊伟.基于matlab / simulink环境下的pid参数整定.哈尔滨商业大学学报(自然科学版), 23(6):673–676, 2007.
    [79]喻宗泉,喻晗.神经网络控制.西安电子科技大学出版社, 2009.
    [80]舒怀林. PID神经元网络及其控制系统.国防工业出版社, 2006.
    [81] N.M.Hao.etal G.C.Chen, L.Zhang. Application of Neural network PID Controller in Constant Temperatureand Constant Liquid-level System. Micro-computer information, 19(1):23–24,42, 2003.
    [82]徐秉铮,张百灵,韦岗.神经网络理论与应用.华南理工大学出版社, 1994.
    [83]阎平凡,张长水.人工神经网络与模拟进化计算第二版.清华大学出版社, 2005.
    [84]赵振字,徐用懋.模糊理论和神经网络的基础与应用.清华大学出版社, 1996.
    [85]施彦,韩力群,廉小亲.神经网络设计方法与实例分析.北京邮电大学出版社, 2009.
    [86]蒋宗礼.人工神经网络导论.高等教育出版社, 2001.
    [87] T H Lee S N Huang, K K Tan. Adaptive motion control using neural network approximations. Automatica,38:227–233, 2002.
    [88] A B Rad H L Chan. Real-time flow control using neural networks. ISA Transactions, 39:93–101, 2000.
    [89] LiuJingnanZhangJinlong,YuLingling. Ultraorecisiontmsitionin :ontroltechniqlbasedonneuralnetwork.Journal of Southeast University(English Edition, 22(1):130–133, 2006.
    [90] C. A. Yang, Q. Zhao, H. R. Wang, and Z. Zhang. Study on intelligent control system of two-dimensional plat-form based on ultra-precision positioning and large range. Precision Engineering-Journal of the InternationalSocieties for Precision Engineering and Nanotechnology, 34(3):627–633, 2010.
    [91]刘慧颖. MATLAB R2007基础教程[.清华大学出版社,北京, 2008.
    [92]尹湛华.一种基于BPNN的复合型PID控制算法.控制理论与应用, 27(7):5–8, 2008.
    [93] Z. X. Xing, Q. W. Li, X. B. Su, and H. Y. Gu. Application of bp neural network for wind turbines. Icicta: 2009Second International Conference on Intelligent Computation Technology and Automation, Vol I, Proceedings,pages 42–44 952, 2009.
    [94]张丽虹陈书谦. BP神经网络在PID控制器参数整定中的应用.计算机仿真, (10):171–174, 2010.
    [95] Y. Q. Wang, F. Sun, J. Liu, M. H. Sun, and Y. H. Xie. Application of smith predictor based on single neuralnetwork in cold rolling shape control. Chinese Journal of Mechanical Engineering, 22(2):282–286, 2009.
    [96] T. N. Shi, C. L. Xia, M. C. Wang, and Q. Zhang. Single neural pid control for sensorless switched reluc-tance motor based on rbf neural network. WCICA 2006: Sixth World Congress on Intelligent Control andAutomation, Vols 1-12, Conference Proceedings, pages 8069–8073 10525, 2006.
    [97] PMAC用户手册.北京元茂兴控制设备技术有限责任公司.
    [98]欧阳航空.基于PMAC的精密定位控制系统的研究.上海大学硕士学位论文, 2005.
    [99] Akira O Kako J, Naozumi O. Efficient control system development using model based development. in 27thChinese Control Conference, CCC, July 16, 2008 - July 18, 2008, Kunming, Yunnan, China, 2008, pages582–585, 2008.
    [100] H. J. Kim and S. G. Moss. Common hardware-in-the-loop development. in Technologies for Synthetic En-vironments: Hardware-in-the-Loop Testing XIV, April 13, 2009 - April 13, 2009, United states, 2009, p. TheInternational Society for Optical Engineering (SPIE).
    [101] O. Wahyunggoro and N. B. Saad. Development of fuzzy-logic-based self tuning PI controller for servomotor.in200810thInternationalConferenceonControl,Automation,RoboticsandVision,ICARCV2008,December17, 2008 - December 20, 2008, Hanoi, Viet nam, 2008, pages 1545–1550, 2008.
    [102] Jasmin Blanchette, Mark Summerfield. C++ GUI Programming with Qt 4, Second Edition. Prentice Hall,2008.
    [103]闫锋欣. C++ GUI Qt 4编程(第二版).电子工业出版社, 2008.
    [104]蔡志明.精通Qt4编程(第2版).电子工业出版社, 20011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700