弹性接触对被动行走多体系统动力学与稳定性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被动行走是双足仿生行走的新概念。相比于传统的双足行走,其优点为能量消耗率很低。被动行走的仿真研究一般采用倒立摆模型假设,认为支撑足与地面铰接,足在地面上不发生弹起以及相对滑动。这种简化模型忽略了足与地面接触的过程。在各种多体系统中,碰撞与接触问题对于系统的动力学行为与稳定性有很重要的影响,实际的被动行走多体系统中足与地面接触也是行走过程的重要环节。
     为研究上述接触过程对行走的影响,本文首先建立了考虑足与地面弹性接触的二维被动行走模型,利用Hertz接触(弹簧阻尼)模型以及经过改进的Coulomb摩擦模型分别描述足与地面的法向接触力与切向摩擦力。通过动力学仿真,在寻找到周期行走步态的同时,得到了行走过程的接触力变化。通过改变模型的接触刚度系数、阻尼系数以及摩擦系数,发现接触阻尼系数与摩擦系数对于行走步态基本无影响,接触刚度系数对于行走的步态影响最大。接触刚度系数越大,行走的平均速度和碰撞力峰值越大。
     通过增加仿真模型的斜面倾角,可得到单步周期、二步周期、多步周期等周期加倍的行走结果,这与Gacia等人的倒立摆模型结果类似。改变模型参数及接触参数,可得到参数对步态分岔点的影响。仿真结果表明接触刚度系数越大,步态分岔发生的倾角越小,其它接触参数对分岔点没有影响。
     进一步利用Floquet乘子以及胞映射方法对行走的稳定性研究。通过简单假设使动力学系统的状态空间降维,得到了3维胞空间下的被动行走吸引域。通过改变接触参数,发现接触刚度系数与接触阻尼系数对吸引域大小没有影响;摩擦系数越大,行走的吸引域越大。这说明摩擦力是考虑弹性接触的被动行走稳定性的决定因素。
     为验证仿真模型结果,建立了含有测试系统的简单直腿被动行走实验模型。利用陀螺仪测量双腿摆角,利用薄膜力传感器测量足地接触的法向力。在不同行走介质上测试的结果,说明了摩擦力对行走稳定性的决定作用。利用测试得到的行走步态以及接触法向力曲线,与仿真模型结果进行了对比,二者吻合较好。这说明考虑足与地面弹性接触的被动行走模型是更加接近真实物理模型的。
Passive dynamic walking is a new concept of walking in contrast to the traditionalbiped walking, and its advantage is the low energy dissipation. The passive walkerperforms like an inverted pendulum on the assumption that the stance leg stick on theslope. The contact procedure is neglected in this simple walking model. As we know,the impaction and the contact procedure have great influences on the dynamiccharacters and stability in the multi-body system, so the contact procedure is obviouslyimportant in the passive walking gait.
     A model with elastic contact between the feet and the ground is established inorder to concentrate on the procedure mentioned above. The Hertz contact law and theapproximate Coulomb friction law is introduced into the walking model as the normaland tangential contact model. The period-one gait is found in the simulation, and thecontact forces are derived from the equations. By changing the contact parameters inthis model, we find the contact damping and the friction coefficients have nothing to dowith the walking gaits, and the contact stiffness is the most significant parameter onwalking gaits. Larger contact stiffness implies the higher walking speed and the largercontact force peak.
     With this passive walking model, the period-one, the period-two and the chaos ofthe walking gait are found as the walking slope increases. This phenomenon is the sameas Gacia’s models. When the parameters change, the influences on bifurcation is found.If the contact stiffness is larger, the bifurcation point advances as the walking slopeincreases. The contact damping and the friction coefficients have nothing to do with thebifurcation point.
     With Floquet multiplier and the cell mapping method, the stability of this walkingmodel is discussed. Some assumptions are introduced in order to reduce the state spacedimensions to three. The basin of attraction of this model is obtained from the specialassumption in the cell mapping method. The basin of attraction of the model changes asthe contact parameters change. The contact stiffness and damping have nothing to dowith the basin of attraction, while the large contact friction coefficients is beneficial forthe stability of this model.
     The testing model is established in order to validate the simulation model. Twogyros are used for testing the swing angles of the legs, and the FlexiForce sensors areused for testing the normal contact forces of the model. The testing data of walking ondifferent surfaces indicates the friction coefficients are beneficial for the walking. At thesame time, the comparison of the walking gait and the contact forces between thetesting data and the simulation implies that the model with elastic contact is moreapproached to the real walking model.
引文
[1] Fallis G T. Walking toy: U. S. Patent. No.376588,1888
    [2] Mochon S, McMahon T A. Ballistic walking. Journal of Biomechanics,1980,13:49-57
    [3] McGeer T. Passive dynamic walking. The International Journal of Robotics Research,1990,9:62-82
    [4] Arthur D Kuo. The six determinants of gait and the inverted pendulum analogy: A dynamicwalking perspective. Human Movement Science,2007,26:617–656
    [5] Carlotta Mummolo, Joo H. Kim. Passive and dynamic gait measures for biped mechanism:formulation and simulation analysis. Robotica, doi:10.1017/S0263574712000586
    [6] McGeer, T. Passive dynamic walking with knees. Proceedings of the IEEE Conference onRobotics and Automation,1990,2:1640-1645
    [7] McGeer, T. Passive bipedal running. Royal Society of London Proceedings Series B,1990,240:107-134
    [8] Mariano Garcia, Anindya Chatterjee, Andy Ruina, Michael Coleman. The simplest walkingmodel: stability, complexity, and scaling. Journal of Biomechanical Engineering,1998,120(2):281-288
    [9] Michael J, Coleman, Anindya Chatterjee, Andy Ruina. Motions of a rimless spoked wheel: asimple3D system with impacts. Dynamics and Stability of Systems,1997,12(3):139-160
    [10] Coleman M, A Ruina. An Uncontrolled Walking Toy That Cannot Stand Still. PhysicalReview Letters,1998,80(16):3658
    [11] Coleman M. A stability study of a three dimensional passive dynamic model of humangait[Ph.D. Thesis]. New York: Cornell University,1998
    [12] Garcia M. Stability, Chaos, and Scaling Laws: Passive–Dynamic Gait Models [Ph D Thesis].USA: Cornell University,1998
    [13] Collins S H, M Wisse, A Ruina. A three-dimensional passive dynamic walking robot with twolegs and knees. The International Journal of Robotics Research,2001,20:607-615
    [14] A Ruina, J E Bertram, M Srinivasan. A collisional model of the energetic cost of support workqualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior inrunning and the walk-to-run transition. Journal of Theoretical Biology,2005,237:170-192
    [15] M W Gomes, A Ruina. Walking model with no energy cost. Physical Review E,2011,83(0329013Part1)
    [16] A L Schwab, M Wisse. Basin of attraction of the simplest walking model. ASME InternationalConference on Noise and Vibration,2001, Pennsylvania
    [17] M Wisse, A L Schwab, R Q V Linde. A3D passive dynamic biped with yaw and rollcompensation. Robotica,2001.19(03):275-284
    [18] M Wisse. Three additions to passive dynamic walking; actuation, an upper body, and3Dstability. Humanoid Robots,20044th IEEE/RAS International Conference,2004
    [19] M Wisse, A L Schwab. Skateboards, bicycles, and3D biped walking machines; Velocitydependent stability by means of lean-to-yaw coupling. International Journal on RoboticsResearch,2005,24(6):417-429
    [20] M Wisse, D G E Hobbelen, R J J Rotteveel, S O Anderson, G J Zeglin. Ankle springs insteadof arc-shaped feet for passive dynamic walkers. IEEE International conference on HumanoidRobots,2006, Genua, Italy
    [21] M Wisse, D G E Hobbelen, A L Schwab. Adding an upper body to passive dynamic walkingrobots by means of a bisecting hip mechanism. IEEE Transactions on Robotics,2007,23(1):112-123
    [22] A D Kuo. Stabilization of lateral motion in passive dynamic walking. The InternationalJournal of Robotics Research,1999,18:917-930
    [23] R Tedrake, T W Zhang, M Fong, H S Seung. Actuating a simple3D passive dynamic walker.Proceedings of IEEE International Conference on Robotics and Automation,2004, NewOrleans, LA, USA
    [24] S Collins, A Ruina, R Tedrake, M Wisse. Efficient bipedal robots based on passive-dynamicwalkers. Science,2005,307:1082-1085
    [25] Alexander R M. Walking made simple. Science.2005,308:58-59
    [26] Kuo A D. Harvesting energy by improving the economy of human walking. Science,2005,309:1686-1687
    [27] Gong Xun, Tian Yantao, Liu Dejun. On Three-dimensionalModel of BipedWalking Robot.Proceedings of the29th Chinese Control Conference,2010, Beijing, China
    [28] Jianfei Li, Yantao Tian, Xiaoliang Huang, Hongshuai Chen. Foot shape for passive dynamickneed biped robot. Proceedings of the2010IEEE International Conference on Robotics andBiomimetics,2010, Tianjin, China
    [29] Liu Dejun, Tian Yantao, Gong Xun, Jiang Hong.3D model of a simple hipped bipedal robotand tts stable walking. Proceedings of the30th Chinese Control Conference,2011, Yantai,China
    [30]刘丽梅,田彦涛,李建飞,侯至丞,黄孝亮.被动行走机器人变路况切换控制.控制与决策,2011,8:1203-1208
    [31]刘德君,田彦涛.双足步行机器人能量成型控制.控制理论与应用,2012,29(10):1301-1308
    [32]刘爱莲.欠驱动步行机器人三维建模及侧向稳定性分析与控制[硕士学位论文].长春:吉林大学,2012
    [33] Yan Huang, Bram Vanderborght, Ronald Van Ham, Qining Wang. Step length and velocitycontrol of a dynamic bipedal walking robot with adaptable compliant joints. IEEE/ASMETransactions on Mechatronics,2013,18(2):598-611
    [34] Yan Huang, Qining Wang, Baojun Chen, Guangming Xie and Long Wang, Modeling and gaitselection of passivity-based seven-link bipeds with dynamic series of walking phases.Robotica,2012,30:39–51
    [35]段文杰,王琪,王天舒.圆弧足被动行走器非光滑动力学仿真研究.力学学报,2011,4:765-774
    [36]郭闻昊,王琪,王天舒.髋关节含库伦摩擦被动行走器动力学建模与仿真研究.工程力学,2012,1:214-220
    [37]毛勇,王家廞,贾培发,韩灼.双足被动步行研究综述.机器人,2007,29(3):274-280
    [38]柳宁,李俊峰,王天舒.简单被动行走模型仿真及不动点的吸引盆计算.力学与实践,2008,1:18-22
    [39]柳宁,李俊峰,王天舒.双足模型步行中的倍周期步态和混沌步态现象.物理学报,2009,6:3772-3779
    [40] Ning, L., Junfeng L, Tianshu W. The effects of parameter variation on the gaits of passivewalking models: simulations and experiments. Robotica,2009.27(04):511-528
    [41]苏学敏,赵明国,张楫,董浩.被动行走周期性步态不动点搜索的新算法.清华大学学报:自然科学版,2009,8:1109-1112
    [42]付成龙,黄元林,王健美,陈恳.半被动双足机器人的准开环控制.机器人,2009,31(2):110-117
    [43]张瑾,王天舒.考虑接触滑移的被动行走器行走步态研究.机械工程学报,2011.47(13):16-22
    [44]李立国,赵明国,张乃尧.平面双足机器人虚拟斜坡行走步态生成算法研究.机器人,2009,1:77-81
    [45]赵明国,董浩,张乃尧.双足机器人虚拟斜坡行走的抗扰能力研究.机器人,2010,32(6):773-780
    [46]胡运富,赵杰,朱延河,臧希喆.双足被动行走模型局部稳定性分析.哈尔滨工业大学学报,2010,9:1485-1490
    [47]胡运富,朱延河,吴晓光,赵杰.简单双足被动行走模型仿真和分析.哈尔滨工业大学学报,2010,3:490-499
    [48]倪修华,陈维山,刘军考,石胜君.弹簧刚度对被动步行的稳定性影响.力学学报,2010,3:541-547
    [49]胡运富.无膝双足被动机器人的运动特性和稳定性研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2009
    [50] Kentarou Hitomi, Tomohiro Shibata, Yutaka Nakamura, Shin Ishii. Reinforcement learningfor quasi-passive dynamic walking of an unstable biped robot. Robotics and AutonomousSystems,2006,54:982–988
    [51] M Omer, Reza Ghorbani, Hun-ok Lim, Atsuo Takanishi. Simulation of semi-passive dynamicwalking for biped walking robot. Proceedings of the2008IEEE International Conference onRobotics and Biomimetics Bangkok,2008, Thailand
    [52] K Mitobe, M Satoh, G Capi. A ZMP control of a powered passive dynamic walking robot.World Automation Congress,2010
    [53] Xiang Luo, Wenlong Xu. Planning and control for passive dynamics based walking of3Dbiped robots. Journal of Bionic Engineering,2012,9:143–155
    [54] Hassène Gritli, Nahla Khraief, Safya Belghith. Chaos control in passive walking dynamics ofa compass-gait model. Communications in Nonlinear Science and Numerical Simulation,2013,18(8):2048-2065
    [55] Goswami, A, B Thuilot, B Espiau. A study of the passive gait of a compass-like biped robot:symmetry and chaos. The International Journal of Robotics Research,1998,17:1282-1301
    [56] Yonggwon Jeon, Youn-sik Park, Youngjin Park. Global stability analysis for plane limit cyclewalking models with feet and actuation. SICE Annual Conference,2010
    [57] Kwan M, M Hubbard. Optimal foot shape for a passive dynamic biped. Journal of TheoreticalBiology,2007,248(2):331-339
    [58] R Prasanth Kumar, Jungwon Yoon, Christiand, Gabsoon Kim. The simplest passive dynamicwalking model with toed feet: a parametric study. Robotica,2009,27:701–713
    [59] Jesper Adolfsson, Harry Dankowicz, Arne Nordmark.3D passive walkers: finding periodicgaits in the presence of discontinuities. Nonlinear Dynamics,2001,24:205–229
    [60] Kazuhiro Nakatani, Yasuhiro Sugimoto, Koichi Osuka. Demonstration and analysis ofquadrupedal passive dynamic walking. Advanced Robotics,2009,23:483–501
    [61] Elena Borzova, Yildirim Hurmuzlu. Passively walking give-link robot. Automatica,2004,40:621–629
    [62] Chyou T, Liddell GF, Paulin MG. An upper-body can improve the stability and efficiency ofpassive dynamic walking. Journal of Theoretical Biology,2011,285(1):126–135
    [63] Aoi S, K Tsuchiya. Bifurcation and chaos of a simple walking model driven by a rhythmicsignal. International Journal of Non-Linear Mechanics,2006.41(3):438-446
    [64] Narukawa T, Yokoyama Kazuto, Takahashi Masaki, Yoshida Kazuo. A simple3Dstraight-legged passive walker with flat feet and ankle springs. IEEE/RSJ InternationalConference on Intelligent Robots and Systems,2008
    [65] Safa AT, MG Saadat, M Naraghi. Passive dynamic of the simplest walking model: Replacingramps with stairs. Mechanism and Machine Theory,2007,40(7):1027-1034
    [66] Parsa Nassiri Afshar, Lei Ren. Dynamic stability of passive bipedal walking on rough terrain:A preliminary simulation study. Journal of Bionic Engineering,2012,9:423–433
    [67]高海平,王琪,房杰.蛙式打夯机的单边约束多体系统动力学建模与数值模拟.机械工程学报,2010,17:68-72
    [68]彭慧莲,王琪,庄方方.含摩擦滑移铰平面多刚体动力学的HLCP方法.力学学报,2010,5:943-950
    [69]曹洁,吕敬,王琪.含滚阻摩擦平面多体系统的建模和数值方法.北京航空航天大学学报,2012,3:410-415
    [70] Johnson K L. Contact Mechanics. Cambrige: Cambrige University Press.1992
    [71] Hunt K H, Crossley F R E. Coeficient of restitution interpreted as damping in vibroimpact.Journal of Applied Mechanics,1975,42(2):440-445
    [72] T W Lee, A C Wang. On the dynamics of intermittent-motion mechanisms. part l: dynamicmodel and response. Journal of Mechanical Design,1983,105(3):534-540
    [73]金栋平,胡海岩,吴志强.基于Hertz接触模型的柔性梁碰撞振动分析.振动工程学报,1998,1:49-54
    [74]刘丽兰,刘宏昭,吴子英,王史民.机械系统中摩擦模型的研究进展.力学进展,2008,38(2):201-213
    [75] Armstrong B, Dupont P, Canudas de Wit C. A survey of models, analysis tools andcompensation methods for the control of machines with friction. Automation,1994,30(7):1038-1183
    [76] Mariano Garcia, Anindya Chatterjee, Andy Ruina. Efficiency, speed, and scaling oftwo-dimensional passive dynamic walking. Dynamics and Stability of Systems,2000,15(2):75-99
    [77] M J Kurz, Timothy N Judkinsb, Chris Arellanoa, Melissa Scott-Pandorfa. A passive dynamicwalking robot that has a deterministic nonlinear gait. Journal of Biomechanics,2008,41(6):1310-1316
    [78] Jae-Sung Moon, Mark W Spong. Classification of periodic and chaotic passive limit cyclesfor a compass-gait biped with gait asymmetries. Robotica,2011,29:967–974
    [79] Qingdu Li, Xiao-Song Yang. New walking dynamics in the simplest passive bipedal walkingmodel. Applied Mathematical Modelling,2012,36(11):5262–5271
    [80] C. S. Hsu. A Theory of Cell to Cell Mapping Dynamical Systems. Journal of AppliedMechanics,1980,47(4):931-939
    [81]刘恒,虞烈,谢友柏. Poincare型胞映射分析方法及其应用.力学学报,1999,1:91-99
    [82]刘信安,王宗笠,蒋启华,肖维平,张环.胞映射基本理论与算法实现.计算机与应用化学,2000,17(5):427-435
    [83] James A Norris, Anthony P Marsh, Kevin P Granata, Shane D Ross. Revisiting the stability of2D passive biped walking: Local behavior. Physica D,2008,237(23):3038-3045
    [84] Q Wu, N Sabet. An experimental study of passive dynamic walking. Robotica,2004,22:251–262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700