双足机器人拟人步态规划与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双足机器人具有较高地避障行走能力,能够实现在各种不同复杂地面上行走,在仿人双足机器人技术产业发展中具有广阔的应用前景。研究双足机器人拟人步态,使其实现稳定、快速、拟人行走,具有重要的理论意义和实用价值。
     本文研究了仿生机构的双足机器人稳定拟人行走步态的关键技术,主要通过研制仿生机构的双足机器人,深入研究双足行走步态稳定性、拟人步态规划与控制方法等。
     本文分析了人的下肢机构自由度分配及关节驱动方式,设计了具有14自由度仿生机构的双足机器人HEUBR 1。基于人的踝关节运动机理,设计了一种二自由度空间并联机构,应用于双足机器人踝关节设计中。针对串联踝关节运动的不平衡性,优化设计了双足机器人并联踝关节机构,使双足机器人并联踝关节的运动速度和驱动功率峰值均较为平稳,通过在ADAMS中仿真实验,研究优化后并联踝关节的运动性能。
     分析了零力矩点(ZMP,Zero Moment Point)、压力中心点(COP,Center Of Pressure)的相互关系,得到了在双足机器人与水平地面无粘性力和无吸附力作用下双足机器人的ZMP即为COP的结论。针对拟人步态中支撑面的多种变化,提出了支撑区域描述方法,实现对多点接触时支撑多边形的区域描述;结合ZMP/COP、COG在支撑面内的位置,提出了基于ZMP/COP、COG的综合稳定性判据,通过仿真分析表明比传统的ZMP稳定性判据更能准确地评价步态的稳定性。
     分析了人的多种行走步态,提出了双足机器人按不同行走速度下的六种步态形式,研究了六种步态的膝关节转角、角速度、驱动力矩、足底支撑面变化及稳定裕度,分析六种步态对应的行走能耗比关系,比较了各种步态的优缺点及适用范围。针对传统的双足机器人采用无足趾屈膝步态行走,提出拟人步态规划方法,在空间三个平面上规划关键步态参数,采用三次样条拟合方法得到对应参数下的连续轨迹。通过调整腿长和足部角度参数可模拟人的多种行走步态,调整关键姿态下踝关节角度参数,能够保证双足机器人稳定行走。
     分析了传统精确跟踪COG轨迹和ZMP轨迹等步态控制方法,结合人在行走时ZMP平稳移动的特性,提出了一种移动可伸缩倒立摆模型,在约束平面内分析ZMP与COG的运动关系。提出无需精确跟踪期望的ZMP轨迹,但应在有效稳定范围内主动调整ZMP实现对COG轨迹跟踪的控制策略。提出了采用移动可伸缩倒立摆模型中伸缩杆驱动力补偿多杆模型中关节驱动力矩,实现了步态补偿控制。
     在双足机器人HEUBR 1样机的实验平台上,实现不同步幅下多种步态的稳定行走,比较了三种步态膝关节角度、角速度、驱动力矩、足趾关节转角变化,以及足底压力值、步态的稳定裕度,实验表明了二自由度并联踝关节运动性能的改善,步态的综合稳定性判据的准确性,验证了拟人步态规划与控制方法的可行性。
Biped robot is more capable of avoid-obstacle walking, and can walk on allkinds of complicated terrains, so it has wide application prospects in the industryof humanoid biped robot technology. There is very important theoreticalsignificance and practical value in the studying the humanoid gait of biped robot,and making it suitable of humanoid walking satbly and fast.
     This paper mainly study the key technology in the gait of humanoid walkingof humanoid biped robot. And this dissertation makes the study through theresearch of bionic mechanism of biped robot, the stablity of biped waiking gait,the planning of humanoid gait and the control method of it.
     This paper makes analysis of the freedom distribution and the driving modeof joint in human's low limbs, and has disigned the biped robot HEUBR_1 withbionic mechanism of 14 DOF. Based on the mechanism of human's ankle jointmovement, this paper disigned a new kind of parallel mechanism with 2 DOF, andapplied it in the design of joint in the biped robot. Considering the imbalancecharacter of series ankle motion, this dissertation optimized the design withparallel ankle joint mechanism in the biped robot, and made the motion velocityand the peak value of driving powerot of the parallel ankle joint mechanism in thebiped robot more stable. Through the analysis of simulation experiment in theADAMS, this paper studied the motion performance of the optimized parallelankle joint mechanism.
     This paper analyzes the relationship between Zero Moment Point(ZMP) andCenter Of Pressure(COP), and makes the conclusion that the ZMP of biped robotis the COP of biped robot under the condition that there is no viscous force andadsorption force between the biped robot and horizontal ground. According to thedifferences of the supporting surface in the gait of humanoid walking, this paperproposes description method of supporting surface, fulfills the region descriptionsof support polygon under the condition of multipoint contact; based on thecomprehensive consideration of the position of ZMP/COP and COG in thesupporting surface, this paper proposes criterion for comprehensive stabilitywhich is based on the consideration of ZMP/COP and COG, and the result ofsimulation experiment shows that this method is better than traditional criterionfor comprehensive stability in the evaluation of the gait's stability.
     This paper analyzes several kinds of human's walking gaits, then proposesthe 6 different kinds of biped robot's gait under different walking velocity, andanalyzes the rotation angle of joint, angular velocity, driving torque, the change ofsupporting surface footplate and the stability margin under the 6 different gaits.And this paper analyzes the corresponding energy consumption ratio of waikingof different walking gait, then compares scope of application, advantages anddisadvantages of different gaits. Comparing to the non-toe genuflex gait oftraditional biped robot, this paper proposes the planning method of humanoid gait,and plans the key parameter of gait in 3 dimensions, then uses the cubic splinefitting method to abtain the continuous path corresponding to certain parameters.By adjusting the length of leg and the angle of foot, it can simulate several kindsof human's walking gait. By adjusting the angle of ankle joint under key attitude,it can make sure that the biped robot walk stably.
     This paper analyzes the traditional methods of gait control, such as trackingthe COG trajectory and tracking the ZMP trajectory, then compares the stablewalking character of human's walking. Based on these reseaches, this paperproposes an inverted pendulum model with the charater of mobile and scalable,and analyzes the relationship between the movement of ZMP and COG inconstraint plane. Besides, this paper proposes a new control strategy which needsno accurate tracking of the expected ZMP trajectory but should actively adjust theZMP to track the COG trajectory in effective stable range. This paper presents anew method to fulfill the control of gait compensation by using the driving forceof telescopic handle in the inverted pendulum model with the charater of mobileand scalable to compensate the driving torque of joint in the multi-bar model.
     Based on the experimental platform of biped robot HEUBR_1, this paperimplements stable walking of different gait under different stride frequency, thecompares the angle of knee joint, angular velocity, driving torque, the change oftoe joint's angle, plantar pressure and stability margin of the gait of three differentgaits. The results show that there is big improvement in the walking of biped robotwhen using the parallel ankle joint with 2 DOF, and more accurate criterion forthe comprehensive stability of different gait, then prove feasibility of planning forhumanoid gait and control method.
引文
[1] http://www.humanoid.rise.waseda.ac.jp/booklet/katobook.html
    [2] Y. Ogura, H. Aikawa, H. Lim, A. Takanishi. Development of a Human-like Walking Robot Having Two 7-DOF Legs and a 2-DOF Waist. Proceedings of the IEEE International Conference on Robotics & Automation, New Orieans,LA.2004:134-139P
    [3] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. Lim, A. Takanishi. Development of a New Huamanoid Robot WABIAN-2. Proceedings of IEEE International Conference on Robotics and Automation, Orlando, Florida. 2006: 76-81P
    [4] Y. Ogura, T. Kataoka, H. Aikawa, K. Shimomura, H. Lim, A. Takanishi. Evaluation of Various Walking Patterns of Biped Humanoid Robot. Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain. 2005: 603-608P
    [5] Y. Ogura, K. Shimomura, H. Kondo, A. Morishima, T. Okubo, S. Momoki, H. Lim, A. Takanishi. Human-like Walking with Knee Stretched, Heel-contact and Toe-off Motion by a Humanoid Robot. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Beijing, China. 2006: 3976-3981P
    [6] K. Nishiwaki, S. Kagami, J. J. Kuffner, M. Inaba, H. Inoue. Humanoid 'JSK-H7': Research Platform for Autonomous Behavior and Whole Body Motion. Proceedings of The Third IARP International Workshop on Humanoid and Human Friendly Robotics, Tsukuba, Japan. 2002: 2-9P
    [7] S. Kagami, M. Mochimaru, Y Ehara, N. Miyata, K. Nishiwaki, T. Kanade, H. Inoue. Measurement and Comparison of Human and Humanoid Walking. Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan. 2003: 918-922P
    [8] K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue. Toe Joints that Enhance Biped and Full-body Motion of Humanoid Robots. Proceedings of the IEEE International Conference on Robotics & Automation, Washington, DC,USA. 2002: 3105-3110P
    [9] http://www.honda.co.jp/robot/
    [10] K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka. The Development of Honda Humanoid Robot. Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium.1998: 1321-1326P
    [11] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura. The intelligent ASIMO: system overview and integration. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland. 2002: 2478- 2483P
    [12] J. Chestnutt, M. Lau, G. Cheung, J. Kuffher, J. Hodgins, T. Kanade. Footstep Planning for the Honda ASIMO Humanoid. Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain. 2005: 629-634P
    [13] Y. Kuroki, B. Blank, T. Mikami, P. Mayeux, et al. Motion Creating Systemfor A Small Biped Entertainment Robot. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada. 2003: 1394-1399P
    [14] M. Fujita, Y. Kuroki, T. Ishida, et al. A Small Humanoid Robot SDR-4X for Entertainment Applications. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2003: 938-943P
    [15] http://www.sony.net/SonyInfo/QRIO/top_nf.html
    [16] http://www.kawada.co.jp/ams/hrp-2/index.html
    [17] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, et al. Humanoid Robot HRP-2. Proceedings of the IEEE Intermational Conference on Robotics & Automation, New Orleans, LA. 2004: 1083-1090P
    [18] K. Akachi, K. Kaneko, N. Kanehira, et al. Development of Humanoid Robot HRP-3P. Proceedings of the 5th IEEE/RAS International Conference on Humanoid Robots. 2005: 50-55P
    [19] Y. Zheng, J. Shen. Gait synthesis for the SD-2 biped robot to climb sloping surface. IEEE Transactions on Robotics and Automation. 1990, 6(1): 86-96P
    [20] http://www.ai.mit.edu/projects/humanoid-robotics-group/
    [21] J. Kim, I. Park, J. Lee, M. Kim, B. Cho, J. Oh. System Design and Dynamic Walking of Humanoid Robot KHR-2. Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain. 2005: 1431-1436P
    [22] J. Oh, D. Hanson, W. Kim, et al. Design of Android type Humanoid Robot Albert HUBO. Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Beijing, China. 2006: 1428-1433P
    [23] S. Lohmeier, K. Loftier, M. Gienger, H. Ulbrich, F. Pfeiffer. Computer System and Control of Biped "Johnnie". Proceedings of IEEE International Conference on Robotics and Automation, New Orieans, LA. 2004:4222-4227P
    [24] M. Gienger, K. Loffler, F. Pfeiffer. Towards the Design of a Biped Jogging Robot. Proceedings of the IEEE International Conference on Robotics & Automation, Seoul, Korea. 2001: 4140-4145P
    [25] F. Pfeiffer, K. Lofflier, M. Gienger. The Concept of Jogging JOHNNIE.Proceedings of the IEEE International Conference on Robotics & Automation, Washington, DC, USA. 2002:3129-3135P
    [26] T. Buschmann, S. Lohmeier, H. Ulbrich, F. Pfeiffer. Dynamics Simulation for a Biped Robot: Modeling and Experimental Verification. Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida. 2006: 2673-2678P
    [27] M. Gienger, K. Loffler, F. Pfeiffer. A Biped Robot that Jogs. Proceedings of the IEEE International Conference on Intelligent Robotics and Automation,San Francisco, CA. 2000: 3334-3339P
    [28] B. Verrelst, R. Ham, B. Vanderborght, F. Daerden, et al. The Pneumatic Biped "Lucy" Actuated with Pleated Pneumatic Artificial Muscles.Autonomous Robots. 2005,18(2): 201-213P
    [29] B. Espiau, P. Sardain. The Anthropomorphic Biped Robot BIP2000.Proceedings of the IEEE International Conference on Robotics & Automation, San Francisco, CA. 2000: 3996-4001P
    [30] T. McGeer. Passive Dynamic Walking. The International Journal of Robotics Research. 1990, 9(2): 62-82P
    [31] 张永学,麻亮,强文义,傅佩琛.基于地面反力的双足机器人期望步态轨迹规划.哈尔滨工业大学学报.2001,15(6):734-736页
    [32] 王强,纪军红,强文义,傅佩琛.基于自适应模糊逻辑和神经网络的双足机器人控制研究.2001,11(7):76-78页
    [33] 马宏绪,张彭,张良起.两足步行机器人动态步行的步态控制与实时时位控制方法.机器人.1998,20(1):1-8页
    [34] 绳涛,马宏绪,王越.仿人机器人未知地面行走控制方法研究.华中科技大学学报.2004,32:161-163页
    [35] Z. Peng, Q. Huang, X. Zhao, T. Xiao, K. Li. Online Trajectory Generation Based on Off-line Trajectory for Biped Humanoid. Proceedings of IEEE International Conference on Robotics and Biomimetics, Shenyang, China.2004: 752-756P
    [36] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai., N. Koyachi, K. Tanie.Planning Walking Patterns for a Biped Robot. IEEE Transactions on Robotics and Automation. 2001, 17(3): 280-289P
    [37] Q. Huang, Z. Peng, W. Zhang, L. Zhang, K. Li. Design of Humanoid Complicated Dynamic Motion Based on Human Motion Capture.Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005: 3536-3541P
    [38] Q. Huang, Y. Nakamura. Sensory Reflex Control for Humanoid Walking.IEEE Transactions on Robotics. 2005, 21(5): 977-984P
    [39] 姜山,程君实,陈佳品,包志军.基于遗传算法的两足步行机器人步态优化.上海交通大学学报.1999,33(10):1280-1283页
    [40] L. Liu, J. Wang, K. Chen, J. Zhao, D. Yang. The biped humanoid robot THBIP-Ⅰ. Proceedings of the International Workshop on Bio-Robotics and Teleoperation, Beijing, China. 2001: 164-167P
    [41] M. Vukobratovi(?). Zero Moment Point, Thirty Five Years of Its Life.International Journal of Humanoid Robotics. 2004, 1 (1): 157-173P
    [42] P. Sardain, G. Bessonnet. Forces Acting on a Biped Robot Center of Pressure-Zero Moment Point. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans. 2004, 34(5): 630-637P
    [43] 余蕾斌,曹其新,孙毅军.基于压应力中心的仿人机器人离散轨迹运动控制.上海交通大学学报.2007,41(8):1263-1266页
    [44] C. Yin, A. Albers, J. Ottnad, R H(a|¨)uβler. Stability Maintenance of a Humanoid Robot under Disturbance with Fictitious Zero-Moment Point (FZMP). Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005:3149-3156P
    [45] 殷晨波,周庆敏,徐海涵,杨敏.基于虚拟零力矩点FZMP的拟人机器人行走稳定性仿真.系统仿真学报.2006,18(9):2593-2597页
    [46] A. Goswami. Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point. The International Journal of Robotics Research. 1999,18(6): 523-533P
    [47] A. Goswami. Foot rotation indicator (FRI) point: A new gait planning toolto evaluate postural stability of biped robots. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit,Michigan. 1999: 47-52P
    [48] K. Harada, S. Kajita, K. Kaneko, H. Hirukawa. Pushing Manipulation by Humanoid considering Two-Kinds of ZMPs. Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan. 2003:1627-1632P
    [49] K. Harada, S. Kajita, K. Kaneko, H. Hirukawa. ZMP Analysis for Arm/Leg Coordination. Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, Nevada. 2003:75-81P
    [50] 林玎玎,刘莉,赵建东,陈恳.双足步行机器人的ZMP-CoP检测及研究.机器人.2004 26(4):368-379页
    [51] Q. Huang, S. Kajita, N. Koyachi, K. Kaneko, K. Yokoi, H. Arai, K.Komoriya, K. Tane. A High Stability, Smooth Walking Pattern for a Biped Robot. Proceedings of IEEE International Conference on Robotics & Automation, Detroit, Michigan. 1999: 65-71P
    [52] B. So, J. Choi, B. Yi, W. Kim. A new ZMP constraint equation with application to motion planning of humanoid using kinematic redundancy.Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005: 4021-4027P
    [53] J. Kim, W. Chung, Y. Youm, B. Lee. Real-time ZMP compensation method using null motion for mobile manipulators. Proceedings of the IEEE International Conference on Robotics & Automation, Washington DC, USA.2002: 1967-1972P
    [54] 彭朝琴,付永领,赵克,唐志勇.基于不稳定度的仿人型机器人步态规划方法.北京航空航天大学学报.2007,33(18):949-953页
    [55] S. Takao, H. Ohta, Y. Yokokohji, T. Yoshikawa. Function Analysis of Human-like Mechanical Foot, using Mechanically Constrained Shoes.Proceedings of the IEEE/RSJ International Conference on Intelligengt Robots and Systems, Sendai, Japan. 2004: 3847-3852P
    [56] 刘莉,汪劲松,陈恳,杨东超,赵建东.基于六维力/力矩传感器的拟人机器人实际ZMP检测.机器人.2001,23(5):459-466页
    [57] A. Kalamdani, C. Messom, M. Siegel. Tactile Sensing by the Sole of the Foot: Part Ⅰ: Apparatus and Initial Experiments Toward Obtaining Dynamic Pressure Maps Useful for Stabilizing Standing, Walking, and Running of Humanoid Robots. Proceedings of the IEEE International Workshop on Haptic Audio Visual Environments and their Applications, Ottawa, Canada.2006: 114-120P
    [58] S. Kagami, M. Mochimaru, Y. Ehara, N. Miyata, K. Nishiwaki, T. Kanade,H. Inoue. Measurement and comparison of humanoid H7 walking with human being. Robotics and Autonomous Systems. 2004, 48:177-187P
    [59] K. Erbatur, A. Okazaki, K. Obiya, T. Takahashi, A. Kawamura. A Study on the Zero Moment Point Measurement for Biped Walking Robots. Proceedings of the 7th International Workshop on Advanced Motion Control,Maribor, Slovenia. 2002:431-436P
    [60] H. Masato, K. Joho, I. Zasshi. Biped Humanoid Robot ASIMO. Journal of the Institute of Image Information and Television Engineers. 2003, 57(1):43-49P
    [61] 包志军.仿人型机器人运动特性研究.上海交通大学博士论文.2000
    [62] 纪军红.HIT-Ⅲ双足步行机器人步态规划研究.哈尔滨工业大学博士论文.2001
    [63] X. Zhao, Q. Huang, Z. Peng, K. Li. Kinematics Mapping and Similarity Evaluation of Humanoid Motion Based on Human Motion Capture.Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan. 2004: 840-845P
    [64] 付成龙,陈恳.五杆四驱动平面双足机器人动态步态规划与非线性控制.机器人.2006,28(2):206-212页
    [65] S.N. Napoleon, M. Sampei. Balance Control Analysis of Humanoid Robot based on ZMP Feedback Control. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland. 2002: 2437-2442P
    [66] S. Kajita, F. Kanehiro, K. Kaneko, et al. Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point. Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan. 2003:14-19P
    [67] J. G. Juang. Fuzzy neural network approaches for robotic gait synthesis.IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics.2000, 30(4): 594-601P
    [68] M. Cao, A. Kawamura. A Design Method of Neural Oscillatory Networks for Generation of Humanoid Biped walking Patterns. Proceedings of International Conference on Robotics and Automation. 1998: 2357-2362P
    [69] J. Yamaguchi, E. Soga, A. Takanishi. Development of a Biped Humanoid Robot Control method of Whole Body Cooperative Dynamic Biped Walking.Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan. 1999: 368-374P
    [70] K. Nagasaka, M. Inaba, H. Inoue. Dynamic Walking Pattern Generation for Humanoid Robot based on Optimal Gradient Method. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. 1999:908-913P
    [71] R. Kurazume, S. Tanaka, M. Yamashita, K. Yoneda. Straight Legged Walking of a Biped Robot. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005:3095-3101P
    [72] M.伍科布拉托维奇著,马培荪,沈乃熏译.步行机器人和动力型假肢.科技出版社,1983
    [73] G. Capi, M. Yokata, K. Mitobe. A New Humanoid Robot Gait Generation based on Multiobjective Optimization. Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, Monerey, California,USA. 2005: 450-454P
    [74] L. Hu, C. Zhou, Z. Sun. Estimating Biped Gait Using Spline-Based Probability Distribution Function With Q-Learning. IEEE Transactions on Industrial Electronics. 2008, 55(3): 1444-1452P
    [75] A. Takanishi, M. Tochizawa, I. Kato. Realization of Dynamic Walking Stabilized by Truck Motion under Known External Force. The 4th Symposium on Intelligent Mobile Robot. 1988:15-20P
    [76] S. Kajita, T. Yamaura, A. Kobayashi. Dynamic Walking Control of a Biped Robot along a Potential Energy Conserving Orbit. IEEE Transactions on Robotics and Automation. 1992, 8(4): 431-438P
    [77] S. Hong, Y. Oh, Y. Chang, B. You. An Omni-directional Walking Pattern Generation Method for Humanoid Robots with Quartic Polynomials.Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA. 2007: 4207-4213P
    [78] K. Erbatur, O. Kurt. Humanoid Walking Robot Control with Natural ZMP References. Proceedings of the IEEE Industrial Electronics, 32nd Annual Conference, France. 2006:4100-4106P
    [79] K. Mitobe, G. Capi, Y. Nasu. A new control method for walking robots based on angular momentum. Mechatronics. 2004,14:163-174P
    [80] A. Goswami, V. Kallem. Rate of change of angular momentum and balance maintenance of biped robots. Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA. 2004: 3785-3790P
    [81] 徐凯,陈恳,刘莉,杨东超.基于六维力/力矩传感器和关节力矩的仿人机器人步态补偿算法.机器人.2006,28(2):213-218页
    [82] 麻亮,纪军红,强文义,傅佩琛.基于力矩传感器的双足机器人在线模糊步态调整器设计.控制与决策.2000,15(6):734-743页
    [83] K. Nishiwaki, S. Kagami, J. Kuffner, et al. Online Humanoid Walking Control System and a Moving Goal Tracking Experiment. Proceedings of the IEEE International Conference on Robotics and Automation, Taipei,Taiwan. 2003: 911-916P
    [84] J.H. Park, H. C. Cho. An On-Line Trajectory Modifier for the Base Link of Bioed Robots To Enhance Locomotion Stability. Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA.2000: 3353-3358P
    [85] J.H. Park, H. Chung. Hybrid Control of Biped Robots to Increase Stabbility in Locomotion. Journal of Robotic Systems. 2000, 17(4): 187-197P
    [86] J. H. Park. Impedance Control for Biped Robot Locomotion. IEEE Transcations on Robotics and Automation. 2001, 17(6): 870-882P
    [87] J. H. Park, H. Chung. Hybrid Control of Biped Robots Using Impedance Control and Computed-Torque Control. Proceedings of the IEEE International Conference on Intelligent Robotics and Automation, Detroit,Michigan. 1999: 1365-1370P
    [88] F. M. Silva, J. A. Tenreiro Machado. Towards Force Interaction Control of Biped Walking Robots. Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Sendai, Japan. 2004: 2568-2573P
    [89] W. T. Miller III. Real-Time Neural Network Control of a Biped Walking Robot. IEEE Control System. 1994, 14(1): 41-48P
    [90].Miyakoshi, G. Taga, Y. Kuniyoshi, A. Nagakubo. Three dimensional biped stepping motion using neuraloscillators-towards humanoid motion in the real world. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, B. C., Canada. 1998: 84-89P
    [91] G. Endo, J. Nakanishi, J. Morimoto, G. Cheng. Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO. Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain. 2005: 596-602P
    [92] L. Righetti, A. J. Ijspeert. Programmable Central Pattern Generators: an application to biped locomotion control. Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida.2006: 1585-1590P
    [93] J. Morimoto, J. Nakanishi, G. Endo, et al. Poincar(?)-Map-Based Reinforcement Learning for Biped Walking. Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain.2005: 2381-2386P
    [94] C. Fu, J. Wang, Y. Huang, K. Chen. Section-Map Stability Criterion for Biped Robots Part Ⅱ: Applications and Experiments. Proceedings of the IEEE International Conference on Mechatronics and Automation, Harbin,China. 2007: 1535-1540P
    [95] M. Wisse, A. L. Schwab, R. Q. Van der Linde, F. C. T. Van der Helm. How to keep from falling forward: elementary swing leg action for passive dynamic walkers. IEEE Transactions on Robotics. 2005, 21 (3): 393-401P
    [96] 窦瑞军,马培荪,谢玲.两足机器人步态的参数化设计及优化.机械工 程学报.2002,38(4):36-39页
    [97] X. Lei, J. Pan, J. Su. Humanoid Robot Locomotion. Proceedings of the Forth International Conference on Machine Learning and Cybernetics,Guangzhou, China. 2005: 882-887P
    [98] K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue. Toe joints that Enhance Biped and Fullbody Motion of Humanoid Robots. Proceedings of IEEE International Conference on Robotics and Automation, Washington,DC. 2002: 3105-3110P
    [99] Y. Ogura, H. Aikawa, H. Lim, A. Takanishi. Development of a Human-like Walking Robot Having Two 7-DOF Legs and a 2-DOF Waist. Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA. 2004: 134-139P
    [100] Y. Ogura, T. Kataoka, K. Shimomura, H. Lim, A. Takanishi. A Novel Method of Biped Walking Pattern Generation with Predetermined Knee Joint Motion. Proceedings of IEEE International Conference on Intelligent Robots and Systems, Sendal, Japan. 2004:2831-2836P
    [101] M. Guihard, P. Gorce. Biorobotic foot model applied to BIPMAN robot. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. 2004:6491-6496P
    [102] H. Takemura, A. Khiat, H. Iwama. Study of the Toes Role in Human Walk by Toe Elimination and Pressure Measurement System. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. 2003, 3:2569-2574P
    [103] T. Takahashi, A. Kawamura. Posture control using foot toe and sole for biped walking robot "Ken". Proceedings of the 7th International Workshop on Advanced Motion Control, Maribor, Slovenia. 2002: 437-442P
    [104] G. Gabrielli, T. H. von Karman. What price speed? Mechanical Engineering. 1950, 72(10): 755-781P
    [105] W. Schiehlen. Energy-Optimal Design of Walking Machines. Multibody System Dynamics. 2005,13: 129-141P
    [106] 吴伟国,郎跃东,梁风.类人猿型机器人“GOROBOT”的可变ZMP双足动步行仿真.系统仿真学报.2007,19(17):4000-4003页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700