石榴园节肢动物群落动态分析及害虫与天敌之间的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在对大笨子石榴园进行节肢动物群落系统调查的基础上,用群落分析方法分析了石榴园节肢动物群落结构及其时间、空间动态变化,并利用灰色系统、生态位、聚集强度等数学方法分析了石榴园主要害虫与其天敌的相互关系,为石榴园害虫的综合防治提供理论依据。
     根据石榴园节肢动物群落中物种的营养和取食的关系将总群落划分为植食类亚群落、捕食类亚群落、寄生-中性类亚群落。2008年共调查到节肢动物82种,分属于56科;节肢动物总群落的优势度为0.5256,各亚群落的优势度为植食类(0.7313)>寄生-中性类(0.3531)>捕食类(0.2081);节肢动物总群落优势集中性为0.2893,各亚群落的优势集中性分别为植食类(0.5447)>寄生-中性类(0.2433)>捕食类(0.1500);节肢动物总群落的多样性指数在7月17日最高,均匀度指数在3月27日最高。2009年春-夏季共调查到节肢动物34种,分属于32科;节肢动物总群落的多样性指数在5月23日最高,均匀度指数在4月1日最高。
     2008年石榴园节肢动物总群落的各项指标均表现为波浪型变化,通过对2008年石榴园节肢动物总群落的多样性指数与其它指标进行通经分析,结果得出其决定系数为R=0.9940,剩余通径系数Pe=0.0774,石榴园节肢动物群落多样性指数与均匀度关系密切(相关系数r=0.9796),均匀度越大,多样性指数也越大,表现出密切的相关性;与优势度和优势集中性的关系越大,相应群落的多样性指数就越小;优势度对群落的直接作用并不大,为-0.3035,它的主要作用是通过物种数和均匀度的作用表现出来的。
     利用2008年石榴园节肢动物群落多样性指标作为群落聚类分析的指标进行聚类分析,当聚类距离d=1.68时,可以把总群落聚为4类;当聚类距离d=1.46时,可将植食类亚群落分为5类;当聚类距离d=1.83时,可将捕食类亚群落分为5类。利用有序样本的最优分割法对2008年石榴园节肢动物总群落进行分析,得出总群落随时间的最优分割为2008年3月27日;4月10日-5月8日;5月22日-9月11日;9月25日-11月6日4个阶段。植食类亚群落的时间的最优分割为为4月10日-4月24日;5月8日-5月22日;6月5日-9月11日;9月25日-11月6日。捕食类亚群落的时间的最优分割为3月27日;4月10日-5月8日;5月22日-7月17日;7月31日-11月6日。
     利用群落结构的物种数S、个体数N、优势集中性指数C、Pielou均匀度J、优势度D、物种丰富度R和多样性指数H′进行主成分的分析,得出这7个主分量的特征值及其贡献率。总群落中第二主分量的累计贡献率为93.2203%,植食类亚群落中第二主分量的累计贡献率为94.7354%,捕食类亚群落中第二主分量的累计贡献率为89.0818%。
     采用灰色关联度分析的方法、生态位分析的方法和空间格局聚集强度指数分析的方法分析石榴园主要害虫与其天敌在数、时、空方面的关系,综合排序得出:棉蚜的主要天敌是异色瓢虫、中华草蛉和八斑球腹蛛;小绿叶蝉主要天敌是粽管巢蛛、三突花蟹蛛和草间小黑蛛;黄刺蛾的主要天敌是粽管巢蛛、锥腹肖蛸和八斑球腹蛛;扁刺蛾的主要天敌是锥腹肖蛸、八斑球腹蛛和粽管巢蛛;小袋蛾的主要天敌是三突花蟹蛛、粽管巢蛛和异色瓢虫。棉蚜种群聚集均数λ值大于2,其聚集是本身原因引起的,而小绿叶蝉、黄刺蛾、扁刺蛾和小袋蛾的λ值小于2,其聚集是环境中某些因子引起的。
     对2008年和2009年春-夏季石榴园棉蚜及其主要捕食性天敌在数量、时间、空间格局等方面进行分析,综合排序的结果是2008年春-夏季棉蚜主要的捕食性天敌依次是异色瓢虫、八斑球腹蛛、黑带食蚜蝇、锥腹肖蛸和三突花蟹蛛;2009年春-夏季棉蚜主要的捕食性天敌依次是异色瓢虫、黑带食蚜蝇、粽管巢蛛、锥腹肖蛸和中华草蛉。两年春-夏季主要的天敌均有异色瓢虫、黑带食蚜蝇、锥腹肖蛸。2008年秋季棉蚜主要的捕食性天敌依次是中华草蛉、异色瓢虫、粽管巢蛛、三突花蟹蛛和草间小黑蛛。两年春-夏季石榴园中棉蚜数量之间差异不显著(t=1.1369,tt0.05),其余天敌数量之间差异均不显著。2008年秋季和2009年春-夏季之间八斑球腹蛛差异显著(t=3.0858, t>t0.05),其余差异不显著,两年春-夏季和2008年秋季棉蚜与其捕食性天敌之间差异均不显著。
Based on the thorough investigation, the dynamics of the arthropod communities in pomegranate fields and interaction of main insects with its natural enemies were studied by meas of community analysis, path analysis, greysystematic analysis, ecological niche analysis, and aggregation level index. These provided theory foudation for IPM.
     In 2008, the arthropod community in pomegranate fields was divided into several sub-communities, which were phytophages, predators, parastitoids and neutralities. The results were showed 82 species of arthropod belonging to 56 famlies, and relative abundance of the arthropod community were 0.5256. The relative abundance of phytophages sub-communities were 0.7313;predators were 0.2081;parastitoids and neutralities were 0.3531. The dominant concentration of the arthropod community were 0.2893, phytophages(0.5447)> parastitoids and neutralities(0.2433)> predators(0.1500), then the arthropod community were highest: the diversity index were in 7.17,evenness index were in 3.27. In 2009 spring-summer season, the arthropod community in pomegranate fields were 34 species belonging to 56 famlies. Then the arthropod community were highest: the diversity index were in 5.23,evenness index were in 4.1.
     The relationship between diversity indexes and other ecological indexes in every communities were analyzed by Path analysis, the most relative with evenness (0.9796), which showed the higher evenness, the higher diversity indexes .
     Total community and phytophage, predacious sub-community in 2008 were analyzed by clustering. The result: The total community was divided into 4 clusters when d is 1.68; the phytophage sub-community was divided into 5 clusters when d is 1.46; the predacious was divided into 5 clusters when d is 1.83. The clustering result of the optimization partitions in the arthropod total communities in 2008 was 3.27, 4.10-5.8, 5.22-9.11, 9.25-11.6 ; phytophage sub-community: 4.10-4.24, 5.8-5.22, 6.5-9.11, 9.25-11.6; predacious sub-community: 3.27, 4.10-5.8, 5.22-7.17, 7.31-11.6.
     Diversity indexes (individuls, species, dominant concentrtion, pielou evenness, dominance, speicies richness and hill divesity) of arthropod communities were analyzed by principal component analtsis , in the second principal component, the contribution of arthropod community, phytophagous sub-community and predacious sub-community was 93.2203%、94.7354%、89.0818% respectively.
     Studied on the relationships of the number, time and space of the major pests and their natural enemies using the correlation analysis, ecological niche analysis and spatial pattern of aggregation intensity index analysis, the result indicated that the order of the main natural enemies of Aphis gossypii was Harmonia axyridis, Chrysopa sinica and Theridion octomaculatum; Cnidocampa flavescens: Clubiona japonicola, Misumenops tricuspidatus, Erigonidium graminicolum; Empoasca flavescens : C. japonicola, Tetragnatha maxillosa and T. octomaculatum; Thosea sinensis: Tetragnatha maxillosa, T. octomaculatum, C. japonicola; Cryptothelea minuscula: M. tricuspidatus, C. japonicola, H. axyridis. Gathering averages of A. gossypii of major five pests were more than 2 due to the aggregation nature of the insect, while those of C. flavescens, E. flavescens, T. sinensis and C. minuscula was less than 2 due to the certain environmental factors.
     The synthetic ranking result indicated that the order of main enemies of A. gossypic in spring-summer season was H. axyridis, T. octomaculatum, E. fallaeids,P. japonica and M. tricuspidatus in 2008; The order of main natural enemies of A. gossypic in spring-summer season was H. axyridis, E. fallaeids,C. japonicola, P. japonica and C. sinica in 2009. The order of main natural enemies was H. axyridis, E. fallaeids and P. japonica in the two years. The order of main natural enemies of A. gossypic in autumn season was C. sinica, H. axyridis, C. japonicola, M. tricuspidatus and E. graminicola. The numbers of A. gossypic between the two years in pomegranate orchard was compared using T-test (t= 1.1369, tt0.05)between the two yesrs in pomegranate orchard, there were significant differences in the numbers of T. octomaculatum (t=3.0858, t>t0.05)between autumn season in 2008 and spring-summer season in 2009, the rest were no significant difference. The numbers of the rest natural enemies were no significant difference. The numbers of A. gossypic and its predatory natural enemies were no significant difference among spring-summer season in the two years and in autumn season in 2009.
引文
[1]孙儒泳.李庆芬.牛翠娟等.基础生态学[M].北京:高等教育出版社,2002,137~138
    [2]丁岩钦,戈峰.中国昆虫生态学五十年(1949-1999)[J].昆虫知识, 2000, 37(1): 18~23.
    [3]邹运鼎,王弘法.农林昆虫生态学[M].合肥:安徽科技出版社, 1987, 91~157; 271~296.
    [4]万方浩,陈常铭.综防区与化防区害虫-天敌群落组成多样性研究[J].生态学报,1986,6(2):159~170
    [5]农荣贵,张永强.稻田害虫和捕食性节肢动物群落结构和动态[J].蛛形学报, 1998, 7 (1): 74~80.
    [6]郝树广,张孝羲,程遐年.稻田节肢动物群落优势功能集团的垂直分布、数量动态及天敌作用估计[J].应用生态学报, 2000, 11 (1): 103~107.
    [7]师光禄,曹挥,席银宝,等.枣园节肢动物群落优势功能集团的空间时序动态及其相关性[J].林业科学, 2003, 39 (4): 78~83.
    [8]蒋金炜,马继盛,陈俊炜,等.引黄稻区节肢动物群落的季节特征[J].河南农业大学学报, 1994, 28 (4): 344~360.
    [9] Heong, L. K. et al. Athropod community structure of rice ecosystem in Philippines[J]. Bull. Entom. Res. 81: 407~416.
    [10]张古忍,张文庆,古德祥.稻田主要节肢类捕食者群落的结构和动态.中山大学学报, 1995, (2): 1991, 33~40.
    [11]袁忠林,沈长朋,傅建祥.萝卜田节肢动物群落生态位研究[J].山东农业大学学报(自然科学版), 2000, 31(3): 294~296.
    [12]刘金文.青菜田节肢动物群落及其时间生态位初探[J].福建农业学报, 2004, 19(3): 152~155.
    [13] Way, M. E. The role of biodiversity in the dynamics and management of insect pests of tropical irrigated rice-a review[J]. Bull. Entom. Res. 1995, 84: 567~587.
    [14] MacArthur R H. Fluctuation of animal populations and a measure of community stability[J]. Ecology,1995,36: 533~536
    [15] MacArthur R H,Environmental factors affecting bird species diversity[J]. Amer. Natur. 1964,98: 387~397
    [16] WilliamsⅢL,Geostatistical description of the spatial distribution of Limonius californicus(Coleoptera: Elateridae)wireworms in the northwestern United States, with comments on sampling[J]. Eviron. Entomol. 1992,21(5): 983~995
    [17]王成树,陈树仁.蔬菜害虫及其天敌昆虫群落多样性和相关性研究[J].生物多样性,1999,7(2):106~111
    [18]郭线茹,尹新明.桃树昆虫群落的时间结构研究[J].河南农业大学学报,2000,34(2):146~149
    [19]王春义,夏敬源,崔金杰.北疆不同类型棉田节肢动物群落结构与多样性[J].棉花学报,2004,16(2):112~116
    [20]高宝嘉,申曙光.园林昆虫群落时间结构及动态研究[J].生态学报,1998,18(2):193~197
    [21]王有年,苗振旺,李登科等.不同管理枣林粘虫天敌功能团的组成和动态[J].生态学报,2008,28(3):1158~1165
    [22] McIntosh R P. Concept and terminology of homogeneity and heterogeneity in ecology[M]. In:Kolasa J, Pichett S T A(eds.), Ecological Heterogeneity. Ecological Studies 867, Berlin: springer-verlag,1991,24~26
    [23] May R M. Models for single population[M]. In: May R M (ed.), Theoretical Ecology. Oxford: Blackwell Scientific Publications,1976,5~29
    [24] MacArthur R M, Wilson E, O. The theory of island biogegraohy[M]. Princeton: Princeton University Press, 1967, 56~61
    [25] Leibold M A.The niche concep trevisited: mechanistic models and community context[J] . Ecology, 1995,76(5):1371~1382
    [26]尚玉昌.现代生态学中的生态位理论[M].生态学进展, 1988,5(2):77~84
    [27]杨效文,马继盛.生态位有关术语的定义及计算公式评述[J].生态学杂志,1992,11(2):44~49,35
    [28]黄英姿.生态位理论研究中的数学方法[J].应用生态学报,1994,5(3):331~337
    [29]张光明,谢寿昌.生态位概念演变与展望[J].生态学杂志,1997,16(6):46~51
    [30] Abrams R. Some comments on measuring niche overlap.Ecology,1980,61:44~49
    [31] Colwell R K, Futuyma D J.On the measuremen to fniche breadth and overlap[J]. Ecology, 1971, 52:567~576
    [32] Hansky I. Somecomments on the measurementof nichemetrics[J]. Ecology , 1978,59: 168~174
    [33] Macarthur R H, Levins R. The limiting similarity, convergence and divergence of coexistingspecies[J]. The American Naturalist, 1967, 101: 377~385
    [34] Hull L A et.Impact of four synthetic pyrethroids on major natural enemies and pests of apple in Pennsylvnia[J]. Econ, Entomol, 1983, 76(1): 122~130
    [35]Johnson D J. Spatial autocorrelation,spatial modeling,and improvement in grasshopper survey methodology[J]. Can Ent, 1989, 61(21): 579~588
    [36]高宝嘉,张执中.封山育林对昆虫群落结构及多样性稳定性影响的研究[J].生态学报,1992,12(1):1~7
    [37]唐祖庭.昆虫分类学(第一版)[M].中国林业出版社,1989,54~57
    [38]湖南省林业厅主编.湖南森林昆虫图鉴[M].湖南科学技术出版社,1992,78~80
    [39]黄复生.海南森林昆虫[M].北京:科学出版社,2002,97~100
    [40]蔡邦华.昆虫分类学[M],科学出版社,1993,12~16
    [41]牟吉元,李照会,郑方强等.苹果园主要害虫及天敌群落结构和生态控制的研究[J].上海农业大学学报,2003 17,28(3):253~261
    [42] Sherratt T N et al. A metapopulation approach to modeling the long-term impact of pesticides on ivertebrates[J]. Appl.Ecol,1993,30: 696~705
    [43] William W M. Diversity,complexity,stability and pest control,J. Appl.Ecol,1975,12: 795~807
    [44]周夏芝,李磊,音正兵等.桃一点叶蝉及其天敌种群时空生态位研究[J].安徽农业大学学报,2003,30(2):115~118
    [45]葛绍奎,李典谟.棉铃虫成虫种群空间结构的研究[J].生态学报.2000,20(3):485~489
    [46]金翠霞,吴亚.群落多样性测定及其应用的探讨[J].昆虫学报,1981,24(1):28~34
    [47]刘昕,何惠勇.春季草坪害虫群落种类丰富度与多样性研究[J].草原与草坪,2001,1:32~35
    [48]袁哲明,李方一,胡湘粤等.基于地统计学的二化螟种群时间格局分析[J].应用生态学报,2006,17(4):673~677
    [49]马宁远,王惠卿,张伟等.基于地统计学的新疆棉田烟粉虱危害动态和时空分布[J].生态学报,2008,28(6):2254~2262
    [50]张蓉,冷允法,朱猛蒙等.基于地统计学和GIS的苜蓿斑蚜种群空间结构分析和分布模拟[J].应用生态学报, 2007, 18(11):2580~2585
    [51]张勇,刘来福,徐汝梅.蒙特卡罗方法研究集合种群动态[J].北京师范大学学报,2008,44(1):32~38
    [52]罗志义.上海佘山地区棉田节肢动物多样性分析及杀虫剂对多样性的影响[J].生态学报,1982,2(3):255~256
    [53] Heong K L ET AL. Arthropod community structure of rice ecosystem in the Philippines[J]. Bull, Entomol, Res,1991,81: 407~416
    [54]朱传经.棉田捕食性群落结构的研究[J].昆虫天敌,1994,16(1):28~35
    [55]邹承鲁.生物学发展趋势[J].科学时报.总1739期,第3版,1999.23~26
    [56]周国法,徐汝梅,李天生.昆虫种群动态时空回归预测方法及应用研究[J].生态学报, 1999, 19(4): 464~467.
    [57]邹运鼎,耿继光.棉蚜与其天敌种群分布格局的关系[J].应用生态学报, 1995, 6(2): 172~175.
    [58]邹运鼎,唐世湖.龟纹瓢虫成虫对于棉蚜的搜索行为及棉蚜应急反应[J].安徽农学院学报, 1991, 18(1): 8~14.
    [59]侯景儒.地质统计学理论方法[M].北京:地质出版社, 1990.
    [60]毕守东,邹运鼎.棉蚜及龟纹瓢虫空间格局的地学统计研究[J].应用生态学报, 2000, 11(3): 421~424.
    [61]李典谟,丁岩钦.关于昆虫空间结构的集中概率分布[J].昆虫知识, 9(5): 310-317.
    [62]张润杰,周强,陈翠贤,等.普通克立格法在昆虫生态学中的应用[J].应用生态学报, 2003, 14(1): 90~92.
    [63]张润杰,周强.褐飞虱田间种群空间结构分析和空间分布模拟[J].西南农业大学学报,1998,20(5):450~455
    [64]张润杰,古德祥.褐飞虱迁入格局与主害代发生的模拟预测[J].西南农业大学学报,1998,20(5):465~471
    [65]邬祥光.昆虫生态学的常用数学分析方法[J].农业出版社,1985,343~470,644~680.
    [66]丁岩钦.谈害虫种群的生态控制[J].生态学报,1976,19(2):129~141
    [67]赵志模,周新远.生态学引论—害虫综合防治的理论及应用[M].重庆:科学技术文献出版社重庆分社,1984
    [68]周国法,徐汝梅.生物地理统计学——生物种群时空分析的方法及其应用[M].北京:科学出版社,1998
    [69] Haddock J D et al. Seasonal changes in soil arthropod species diversity as affected by perturbat in three successional communities in northeastern Indiana Proc[J]. Indiana Acad. Sci, 1976,86: 467~473
    [70] Lester P J et al.The effects of refuge size and number on acarine predator-prey dynamics in a pesticide-disturbed apple orchard[J]. Appl. Ecol, 1998, 35: 323~331
    [71] Strong D R. Time and the number of herbivore species: the pest of sugarcane[J]. Ecology, 1977, 58: 167~175
    [72]尤民生,吴中孚.福州郊区稻田节肢动物群落的结构和动态[J].福建农学院学报, 1992, 21(1): 56~62
    [73]庞宝平.麦田昆虫群落的时间结构[J].昆虫知识,1993, 30(5): 263~266
    [74]朱传经.棉田捕食性群落结构的研究[J].昆虫天敌,1994,16(1): 28~35
    [75]邹运鼎,周夏芝,毕守东.草间小黑蛛与桃一点叶蝉之间的数量关系[J].安徽农业大学学报,2003,30(3):231~23
    [76]邹运鼎,毕守东,周夏芝等.桃一点叶蝉及草间小黑蛛空间格局的地学统计学研究[J].应用生态学报,2002,13(12): 1645~1648
    [77]邹运鼎,毕守东,周夏芝等.桃园害虫及天敌群落动态研究[J].应用生态学报,2003,14(5):717~720
    [78]邹运鼎.害虫管理中的天敌评价理论与应用[M].北京,中国林业出版社, 1997, 27~90.
    [79]赵鹏,付文锋,赵燕红,邹运鼎,等.不同播期辣椒和番茄上烟粉虱和捕食性天敌之间的关系[J].生态学报, 2009, 29(10): 5455~5462.
    [80]付文锋,赵鹏,陶金昌,邹运鼎,等.番茄田烟粉虱与其天敌的时空关系[J].中国农业大学学报, 2009, 14(4): 77~83.
    [81]王晓翠,徐玉蕊,邹运鼎,等.三种蔷薇科果树小绿叶蝉及其捕食性天敌种群动态的比较[J].生态学报, 2010, 30(3): 1~8.
    [82]徐玉蕊,王晓翠,邹运鼎,等.砀山酥梨梨网蝽与其天敌关系动态分析[J].南京农业大学学报, 2010, 15(3)
    [83]赵学娟,徐玉蕊,邹运鼎,等.不同年份油桃园三种主要害虫与其天敌的关系[J].生态学报, 2010, 30(20)
    [84]吴亚,金翠霞.稻田蜘蛛群落结构及其动态的初步研究[J].生态学杂志, 1986, 5(4): 6~11
    [85]吴亚,金翠霞.高寒草甸土壤动物生态系统的结构及昆虫的某些特征[J].生态学报,1982,2 (2):151~159
    [86]石根生,张孝羲.单季稻区蜘蛛群落的研究—多样性,优势度,排序和聚类[J].中国水稻科学, 1991, 5(3): 114~120
    [87]邹运鼎,耿继光.异色瓢虫成虫的限域搜索行为[J].应用生态学报,1996, 7(1): 56~60
    [88]邹运鼎,耿继光.饥饿对七星瓢虫捕食作用的影响[J].生态学报, 1999, 19(1): 113~117
    [89]郭依泉.桔园昆虫群落季节格局研究[J].西南农业大学学报,1987,9(1):27~32.
    [90]王勇,张汉鹄,邹运鼎.茶园蜘蛛、昆虫群落动态的研究[J].生态学报,1991,11(2):135 ~138
    [91]董全.西方生态学近况[J].生态学报,1996,16(3): 314~323
    [92] Odum E P.生态学基础[M].孙儒泳,钱国桢,林浩然,等译.北京:人民教育出版社,1981,18~79
    [93]冯玉增,陈德均.石榴优良品种与高效栽培技术[M].郑州,河南科学技术出版社, 2000:242~246
    [94]张育平,秦雪峰,王国昌.石榴园昆虫群落结构及多样性研究[J].安徽农业科学,2006,34(13):3108~3109
    [95]唐振海,陈永法.石榴主要病虫害的发生及综合防治[M].北京:中国林业出版社,1999
    [96]李磊,邹运鼎,毕守东,等.安徽怀远县石榴园节肢动物群落结构[J].安徽农业大学学报, 2004, 31(1): 42~45
    [97]李磊,邹运鼎,娄志安,等.皖鲁两省秋季石榴园害虫、天敌群落动态及其空间格局[J].安徽农业大学学报, 2003, 30(1): 235~239
    [98]邹运鼎,李磊,毕守东,等.石榴园节肢动物群落多样性与其它指标间关系的通径分析[J].安徽农业大学学报, 2004, 31(1): 123~126
    [99]李磊,邹运鼎,毕守东,等.棉蚜和草间小黑蛛种群空间结构格局的地学统计学研究[J].应用生态学报, 2004, 15(6): 1043~1046
    [100]马世骏主编.英汉农业昆虫学词汇[M].北京:农业出版社.1983,29~49
    [101]中国农作物病虫图谱编绘组.中国农作物病虫图谱[M].农业出版社,1992,25~116
    [102]吴时英.城市森林病虫害图谱[M].上海:上海科技出版社.2005,33~68
    [103]邱强.中国果树病虫害原色图谱[M].河南:河南科技出版社.2004,25~63
    [104]赵志模,郭依泉.群落生态学原理与方法[M].科技文献出版社,1990,147~279
    [105]裴鑫德.多元统计分析及其应用[M].北京:北京农业大学出版社.1990,44~59
    [106]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社. 2002,12~132
    [107]杨德.试验设计与分析[M].北京:中国农业出版社.2002.12,49~95
    [108] May R M.Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261: 459
    [109] Gary A. Polis Stability is woven by complex webs[J]. Nature, 1998,395: 744~745
    [110] McCann K, Hastings A & Haxel G R. Weak trophic interactions and the balance of nature. Nature,1998,395:794~798
    [111]尤民生.稻田节肢动物群落的聚类分析[M].青年生态学者论丛(二),北京:中国科学技术出版社,1992,223~227
    [112]李孟楼,郭新荣,谢恩魁等.森林害虫治理策略的变革及其新课题[M].西北林学院学报,1988,13(3):87~91
    [113]邹运鼎,李昌根,毕守东等.群落结构参数对葡萄园节肢动物群落作用的比较[J].应用生态学报,2006,17(6):1075~1080
    [114]邓聚龙.灰色系统理论教程[M].武汉,华中科技大学出版社, 1990, 33~84
    [115] Levins R. Evolution in changing environments. Princeton University Press, 1968
    [116]张金屯.植被数量生态学方法[M].北京:科学技术出版社,1995
    [117] Blackith, R.E. Nearest-neighbour distance measurements for the estimation of animal populations[J]. Ecology, 1958,39,147~150
    [118]秦玉川,管致和.山楂叶螨,苹果全爪螨及其捕食性天敌生态研究Ⅲ:微气候生态位.生态学报,1995,12(2):128~133
    [119]秦玉川,蔡宁华.山楂叶螨、苹果全爪螨及其捕食性天敌生态位的研究-时间与空间生态位[J].生态学报, 1991, 11(4): 331~337
    [120]毕守东,邹运鼎,陈高潮,等.影响棉蚜种群数量的优势种天敌的灰色系统分析[J].应用生态学报, 2000, 11(3): 417~422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700