用户名: 密码: 验证码:
农田景观廊道对捕食性天敌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田生态系统可以理解为是一个较大的景观区域,包括各种不同的作物生境和非作物生境。景观多样性如何影响作物生境和非作物生境的生物多样性和物种扩散是我们亟待解决的问题。廊道在很大程度上影响着斑块间的物种、物质和能量的交流,在农业景观中建立合理的生态廊道对于生物多样性的保护将起到积极作用。本研究主要通过比较不同类型的景观廊道是否影响捕食性天敌在农业生态系统中迁移扩散,评估是否有可能通过人为调控一些因素增加捕食性天敌种群的多度和控害能力。主要研究结果如下:
     1微景观廊道对捕食性天敌的影响
     试验表明,不同类型廊道中的捕食性天敌具有相似的种类和优势种,通过对不同类型廊道的捕食性天敌结构特征的多样性指数、均匀性指数和优势集中性指数进行比较发现,多样性指数、均匀性指数和优势集中性指数均没有明显差异。从时间动态上来看,四种类型廊道的捕食性天敌特征指数的变化趋势相似。从移动方向上看,虽然蜘蛛种群有水稻生长前期迁向水稻田;水稻生长中期,迁移活动活跃;水稻成熟和收获期,迁回杂草田的趋势,但并没有显著差异。步甲种群在时序动态看同样没有显著差异。从廊道类型上看,各个时期杂草廊道内蜘蛛种群数量高于其他类型的廊道,但只在个别调查日期存在显著差异,表明杂草廊道对捕食性天敌的保育有一定的促进作用。
     2区域景观廊道对捕食性天敌的影响
     试验表明植物物种多样性较高,植被结构较复杂,受人为干扰的程度较轻的廊道蜘蛛个体丰富度较高。植被结构的简单化和人为干扰都可能影响蜘蛛的数量和多样性。对步甲来说,物理阻隔可能会影响步甲的种类和数量,但对多样性指数、均匀性指数和优势集中性指数影响不大。从方向上看,捕食性天敌在作物生境和非作物生境间双向移动,并没有表现出明显的差异,说明捕食性天敌对生境的选择没有明显的偏好。
     通过典范相关分析(CCA)发现,不同的蜘蛛种类与廊道网络指标有不同的相关关系,廊道密度、环度、线点率和连通度的变化只影响少数蜘蛛物种。步甲的种类和数量与廊道网络指标的关系不大。这说明蜘蛛和步甲的运动能力较强,对廊道格局的响应并不明显。
     本研究通过研究农业景观两个尺度水平下廊道的类型、结构、功能和动态变化,对由廊道连通的源—汇生境斑块之间捕食性天敌群团(蜘蛛和步甲)物种和多度的影响;通过物种和多度阐明不同廊道类型和方向对蜘蛛和步甲迁移的影响。最后,通过农业景观廊道的优化配置来调节主要害虫种群发展动态、稻田天敌群落的重建与发展过程及加强天敌对主要害虫的控制效果,明确有利于保护和增强农业景观中天敌作用的景观廊道类型和布局,增强自然天敌的持续控制作用,发挥天敌对主要害虫种群的“生态控制”作用,这将成为害虫管理对策的一种新途径。
An agroecosystem can be understood as a large, landscaped area, which includes a variety of crop habitats and non-crop habitats. Landscape diversity affects the non-crop habitat biodiversity and species migration, which are center issues of landscape ecology. At different scales, corridors can affect the exchanges of species, matter and energy between patches. The inclusion of a reasonable ecological corridor for biodiversity conservation and the implementation of an ecologically based pest management system in the agricultural landscape can play active roles in promoting these exchanges. This study compared different types of landscape corridors that affect the movements of predators in agricultural ecosystems at two scales and assessed the impacts of man-made factors on the abundances of predators and beneficial species for controlling insect pests. The results were as follows:
     1 Effects of fine scale landscape corridors on predators
     At the fine scale, we set up three replicate micro-landscape plots, which included weed patches and rice field patches, connected with four different types of corridors. We found that the different types of corridors had similar predator groups and dominant species. There were no significant differences in the diversity indices, evenness indices or dominant concentration indices of spiders and carabid predator groups between the different corridors. At different times, the predatory characteristics indices were also similar for the four types of corridors. When comparing the direction of movement, during the early growing season of rice plants, spider groups mostly moved to the rice paddy field patches from the weed patches. In the middle of the growing season, the migration activities in both directions (form rice patches to weed patches, or the converse) were very high. When rice maturation and harvesting were occurring, the predatory spiders returned to the weed patches. However, there were no significant differences in spider species composition and diversity. The population dynamics of carabid beetles exhibited similar trends to the spider groups. According to the corridor types, weed corridors had more spider species and greater spider abundances than other type of corridors. There were significant differences at some time points in spider species and abundance, indicating that weed corridors protected predators to some extent.
     2 Effects of regional landscape corridors on predators
     At the regional scale, we selected 6 agricultural landscapes within a 110-m radius that contained different corridors, such as roads for tractor plowing, weedy edges and weedy streams. Every circle agricultural landscape had a different corridor density, circuitry and ratio of node/line, and connectivity. The results show that a higher plant species diversity, more complex vegetation structure and lower extent of human disturbance in a corridor results in a higher abundance of spiders. Simplifications of the vegetation structure and intensive human disturbances may reduce the species composition and abundance of spiders. Physical barriers may affect the species composition and abundance of carabid beetles, but they had little effect on the diversity indices, evenness indices and dominant concentration indices. Judging from their directions of movement between the crop habitats and non-crop habitats, predators did not have significant differences in their species richness and abundance, indicating that predators had no obvious preference for habitat choice. Canonical Correspondence Analysis (CCA) was used to identify correlations between the landscape corridor network structures and the species composition of spiders and carabid beetles. Our results showed that different corridor network structure had different effect on species of spiders and carabid beetles. Indices reflecting the complexity of a corridor network structure, such as the corridor density, had close relationships with the abundance of some spider species such as Lycosa pseudoannulata and Plexippus setipes, whereas the ratio of node/line, connectivity and circuitry correlated with the abundance of other spider species, such as Ummeliata insecticeps, Gnathonarium gibberum, Erigone prominens and Tetragnatha nitens. The corridor density, ratio of node/line, connectivity and circuitry positively correlated with axis 1 of the CCA. Abundance of carabid beetle species such as Chlaenius circumdatus, Stenolophus sp. 1, Stenolophus sp. 2, Harpalus sp. 2 and Dischissus sp. 1 were positively correlated with the ratio of node/line, connectivity and circuitry of corridors. Our results also indicate that the method of CCA analysis was a suitable method to quantitatively assess the relationships between predator species and corridor network structures.
引文
Altieri M A, Nicholls C I. Biodiversity and pest management in agroecosystems [M]. New York: Food Products Press, 2004.
    Arellano L, León-Cortés J L, Ovaskainen O. Patterns of abundance and movement in relation to landscape structure - a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico [J]. Landscape Ecology, 2008, 23: 69-78.
    Baudry J. Effects of landscape structure on biological communities: The case of heterogenous network landscape.In: Brandt J, Agger P, eds. Methodology in landscape ecological research and planning.Volume I [M]. Roskilde Academic Press, 1984, 209-256.
    Baum K A, Haynes K J, Dillemuth F P, Cronin J T. The matrix enhances the effectiveness of corridors and stepping stones [J]. Ecology, 2004, 85: 2671-2676.
    Beier P, Lee S.“In My Experience" A Checklist for Evaluating Impacts To Wildlife Movement Corridors [J]. Wildlife Society Bulletin, 1992, 20: 434-440.
    Beier P, Reed F. Noss. Do habitat corridors provide connectivity? [J]. Conservation Biology, 1998, 6: 1241-1252.
    Berggren A, Birath B, Kindvall O. Effect of corridors and habitat edges on dispersal behavior, movement rates, and movement angles in Roesel’Bush-Cricket(Metrioptera roeseli) [J]. Conservation Biology, 2002, 16: 1562-1569.
    Boatman N. Field Margins: Integrating agriculture and conservation [C]. Surrey: British Crop Protection Council, 1994, 404.
    Burel F, Baudry J. Landscape structure effects on carabid beetles spatial patterns in western France [J]. Landscape Ecology, 1989, 2(4): 215-226.
    Burel F. Ecological consequences of landscape abandonment on carbide beetles distribution in two contrasted grassland areas[C]: options Mediterranean’s-Series Seminars. 1991, 15: 111-119.
    Cardinale B J, Harvey C T, Gross K. Biodiversity and biocontrol: Emergent impacts of a multi-enemy assemblage on pest suppression [J]. Ecology, 1998, 79: 2143-2152.
    Chiverton P A. The creation of within-field overwintering sites for natural enemies of cereal aphids [C]. Brighton Crop Protection Conference-Weeds, 1989, 3: 1093-1096.
    Collinge S K. Effects of grassland fragmentation on insect species loss, colonization, and movement patterns [J]. Ecology, 81: 2211-2226.
    Cox G W, Atkins M D. Agricultural Ecology [M]. Freeman, San Francisco, CA, 1979, 721.
    Dambach C A. Ecology of crop field borders [M]. Ohio State University Press, Columbus, OH, 1948.
    Debinski D M, Holt R D. Habitat fragmentation experiments: a global survey and overview [J]. Conservation Biology, 2000, 14: 342-355.
    De Snoo G R. Unsprayed field margins: Effects on environment, biodiversity and agricultural practice [J]. Landscape and Urban Planning, 1999, 46: 151-160.
    Diekotter T, Billetera R, Crist T O. Effects of landscape connectivity on the spatial distribution of insect diversity in agricultural mosaic landscapes [J]. Basic and Applied Ecology, 2008, 9: 298-307.
    Dixon J D, Oli M K, Wooten M C. Effectiveness of a regional corridor in connecting two Florida black bear populations [J]. Conservation Biology, 2006. 20: 155-162.
    Erik O, Smith H G. Do corridors promote dispersal in grassland butterflies and other insects? [J]. Landscape Ecology, 2007, 23(1): 27-40.
    Forman R, Godron M. Landscape Ecology [M]. New York: wiley, 1986.
    Frank T, Nentwig W. Ground dwelling spiders (Araneae) in sows weed strips and adjacent fields [J]. Acta Oecologia, 1995, 16: 179-193.
    Fried J H, Levey D J, Hogsette J A. Habitat corridors function as both drift fences and movement conduits for dispersing flies [J]. Oecologia, 2005, 143: 645-651.
    Haddad N M. Corridor and distance effects on interpatch movements: a landscape experiment with butterflies [J]. Ecological Applications, 1999, 9: 612-622.
    Haddad N M. Corridor length and patch colonization by a butterfly, Junonia coenia [J] .Conservation Biology, 2000, 14(3): 738-745.
    Haddad N M, Baum K. An experimental test of corridor effects on butterfly densities [J]. Ecological Applications, 1999, 9: 623-633.
    Haddad N M, Tewksbury J J. Low quality habitat corridors as movement conduits for two butterfly species [J]. Ecological Applications, 2005, 15: 250-257.
    Harrison R L. Toward a theory of inter-refuge corridor design [J]. Conservation Biology, 1992, 6(2): 293.
    Hilty J A, Mernlender A M. Use of riparian corridors and vineyards by mammalian predators in Northern California [J]. Conservation Biology, 2004, 18(1): 126-135.
    Hobbs R J. The role of corridors in conservation: Solution or bandwagon? [J]. trends in Ecology and Evolution, 1992, 7: 389-392.
    Juan A, Vassilias A T, Leonardo A. South Florida greenways: a conceptual framework for the ecological reconnectivity of the region [J]. Landscape and Urban Planning, 1995, (33): 247-266.
    Kareiva P. Population dynamics in spatially complex environments: theory and data [J]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 1990, 330: 175-190.
    Kareiva P. The spatial dimension in pest–enemy interactions [M].In Critical Issues in Biological Control (M.Machauer, L.E. Ehler and J. Roland, eds). Intercept Press, Andover, UK, 1990, 13-226.
    Landis D A. Arthropod sampling in agricultural landscapes: ecological considerations [M]. In: Pedgo L P, Buntin G D eds. Boca Raton: Handbook of Sampling Methods for Arthropods in Agriculture. CRC Press, 1994, 714.
    Landis D A, Marino P C. Parasitiod communities of pest Lepidoptera in agricultural landscapes: Theory, reality and implications for biological control [J]. Bulletin of the Ecological Society of America, 1996, 77(3): 250.
    La Polla V N, Barrett G W. Effects of corridor width and presence on the population dynamics of the meadow vole (Microtus pennsylvanicus) [J]. Landscape Ecology, 1993, 8: 25-37.
    Le Coeur D, Baudry J, Burel F. Field margins plant assemblages: Variation partitioning between local and landscape factors [J]. Landscape and Urban Planning, 1997, 37: 57-71.
    Lenvins R, Wilson M. Ecological theory and pest management [J]. Annual Review of Entomology, 1979, 25: 75-84.
    Lesar C D, Unzicker J D. Soybean spiders: Species composition, population densities and vertical distribution. Illinois Natural History Survey [J]. Biological Notes, 1978, 107: Ubana, IL Levey D J. Effects of landscape corridors on seed dispersal by birds [J]. Science, 2005, 309: 146-148.
    Lindenmayer D B, Nix H A. Ecological Principles for the Design of Wildlife Corridors [J]. Conservation Biology, 1993, 7 (3): 627-630.
    Lys J A, Nentwig W. Augmentation of beneficial arthropods by strip-management.4.surface activity, movements and density of abundant carabid beetles in a cereal field [J]. Oecologia, 1992. 92: 373-382.
    Marshall J, Braudry J, Burel F. Field boundary habitats for wildlife, crop, and environmental protection [J]. Landscape Ecology in Agroecosystems Management, Washingtion, D.C: CRC Press, 2002, 219-248.
    Newbold J D, Erman D C, Roby K B. Effects of logging on macro invertebrates in streams with and without buffer strips [J]. Canadian Journal of Fisheries and Aquatic Science, 1980, 37: 1076-1085.
    Nicholls C I, Parrella M P, Altieri M A. Reducing the abundance of leafhoppers and dispersal insect biodiversity within a northern California organic vineyard [J]. Landscape Ecology, 2000, 16: 133-146.
    Nentig W. Augmentation of beneficial arthropods by strip management.1.Succession of predaceous arthropods and long-term change in the ratio of phytophagous and predaceous species in a meadow [J]. Oecologia, 76: 597-606.
    Noss R F. Corridors in real landscape: a reply to Simberloff and Cox [J]. Conservation Biology, 1987, (1): 159-164.
    Orrock J L, Danielson B J, Burns M J, Levey D J. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation [J]. Ecology, 2003, 84: 2589-2599.
    Orrock J L, Damschen E I. Corridors cause differential seed predation [J]. Ecological Applications, 2005, 15: 793-798.
    Rodriguez M A, Hawkins B A. Diversity, function and stability in parasitoid communities [J]. Ecology Letters, 2000, 3: 35-40.
    Rohling J. Corridors of Green [J]. Wildlife in North Carolina, 1998, 5: 22-27.
    Schmidt M H, Thies C, Tscharntke T. Landscape context of arthropod biological control [J]. Ecological engineering for pest management, 2004, 55-63.
    Smith D S, Hellmund P C. Ecology of greenways: design and function of linear conservation areas [M]. University of Minnesota Press, Mineapolis, 1993, 58-64.
    SoulèM E, Gilpin M E. The theory of wildlife corridor capability [M]. In: Saunders D A and Hobbs R Jeds. Nature conservation: the role of corridors.Surrey Beatty and Sons. Australia: Chipping Norton, NSW, 1991, 3-8.
    Swift M J, Anderson J M. Biodiversity and ecosystem function in agroecosystems [M]. In: Schultze Eeds. Biodiversity and Ecosystem Function. New York: Springer, 1993, 57-83.
    Tewksbury J J, Levey D J, Haddad N M, Sargent S, Orrock J L, Weldon A, Danielson B J, Brinkerhoff J, Damschen E I, Townsend P. Corridors affect plants, animals, and their interactions in fragmented landscapes [J]. Proceedings of the National Academy of Sciences 2002, 99: 12923-12926.
    Thomson M J. Cores and Corridors-The Importance of a Green System in Southern Ontario. Federation of Ontario Naturalists Richlefs, R. E. Community diversity: relative roles of local and regional processes [J]. Science, 1987, 235: 167-171.
    Turner M G. Spatial and temporal analysis of landscape patterns [J]. Landscape Ecology, 1990, 4(1): 21-30.
    Turner M G, Gardner R H, O’Neill R V. Landscape Ecology in Theory and Practice: Pattern and Process [M]. New York: Spinger, 2001.
    Theuerkauf J, Rouys S. Do Orthoptera need human land use in Central Europe? The role of habitat patch size and linear corridors in the Bia?owie?a Forest, Poland [J]. Biodiversity and Conservation, 2006, 15: 1497-1508.
    Thiele H. Carabid beetles in their environments [M]. Springer Verlag. New York, 1977.
    Thies C, Tsharntke T. Landscape structure and biological control in agroecosystems [J]. Science, 1999, 285: 8953-895.
    Thomas M B, Wrattenh S D. Ecosystem diversification to encourage natural enemies of cereal aphids[C]. In: Pests and diseases. British Crop Protection Conference, England, 1990, 691-696.
    Van Emden H F. The role of uncultivated land in the biology of crop pests and beneficial insects [J]. Scientific Horticulture, 17: 121-136.
    Wallin H. Spatial and temporal distribution of some abundant carabid beetles (Coleoptera: Carabidae) in cereal fields and adjacent habitats [J]. Pedobiologia, 1985, 28(1): 19-34.
    Way M J, Heong K L. The role of biodiversity in the dynamics and management of insect pests oftropical irrigated rice- a review [J]. Bulletin of Entomological Research, 1994, 84: 567-587.
    蔡婵静,周志翔,陈芳.武汉市绿色廊道景观格局[J].生态学报, 2006, 26 (9): 2996-3004.
    丁岩钦.害虫种群生态管理[J].生态学报, 1993, 13(2): 99-105.
    董兆克,杨龙,张润志.捕食性步甲在玉米与牧草之间的迁移[J].中国生物防治, 2009, 25(2): 102-106
    冯钟琪.中国蜘蛛原色图鉴[M].长沙:湖南科学技术出版社, 1990.
    胡敦孝,宇振荣,韩纯儒.湖北潜江农田景观中步甲和蜘蛛的群落结构[J].昆虫学报, 1998, 41: 91-96.
    黄邦侃.福建昆虫志(第六卷)[M].福州:福建科学技术出版社, 2002.
    高光彩,付必谦.步甲作为指示生物的研究进展[J].昆虫知识, 2009, 46(2): 216-222.
    古德祥,张古忍,张文庆,邱道寿,温瑞贞.稻田蜘蛛群落的重建与其种库的相关性[J].蛛形学报, 1999, 8(2): 89-94.
    李鸿兴,隋敬之,周士秀,周勤,孙洪国.昆虫分类检索[M].北京:农业出版社, 1987.
    李绍石,周社文,刘晖,周尚泉,范丙阳.双季稻区景观多样性对保蛛控虱的影响1.景观元素格局与蜘蛛种群周年动态的关系[J].植保技术与推广, 1999, 19(4): 10-12.
    李正玲,陈明勇,吴兆录.生物保护廊道研究进展[J].生态学杂志, 2009, 28(3): 523-528.
    李正跃, Altieri M A,朱有勇.生物多样性与害虫综合治理[M].北京:科学出版社, 2009.
    李志胜,黄顶成,徐敦明,刘雨芳,侯有明,尤民生.稻田周围杂草地生境节肢动物群落的物种丰富度、优势度及多样性[J].福建农林大学学报(自然科学版), 2003, 32(4): 425-529.
    刘其全,姚凤銮,郑云开,林胜,尤民生.武夷山稻田生境越冬节肢动物群落的物种组成[J].华东昆虫学报, 2007, 16(1): 30-35.
    刘雨芳,汪琼,张古忍,古德祥,陈东.稻田生态系统中杂草地捕食性节肢动物群落研究[J].湘潭师范学院学报(自然科学版), 2003, 3(25): 72-76.
    刘雨芳,张古忍,古德祥.利用改装的吸虫器研究稻田节肢动物功能团[J].植物保护, 1999, 25(6): 39-40.
    刘雨芳,古德祥,张古忍.广东双季稻区杂草地和稻田中捕食性节肢动物的群落动态[J].昆虫学报, 2003, 46(5): 591-597.
    刘云慧,李良涛,宇振荣.农业生物多样性保护的景观规划途径[J].应用生态学报, 2008, 19(11): 2538-2543.
    刘志龙,王连生,杜一新.捕食性天敌在单季稻田与非稻田生境间的迁移规律及其保护利用[J].浙江农业学报, 1999, 11 (6): 344-348.
    卢涛,马克明,傅伯杰,倪红伟.三江平原沟渠网络结构对区域景观格局的影响[J].生态学报, 2008, 28(6): 2746-2752.
    吕海燕,李政海,李建东,宋国宝.廊道研究进展与主要研究方法[J].安徽农业科学, 2007, 35(15): 4480-4482, 4484.
    毛润乾,张文庆,张古忍.稻田稻飞虱卵寄生蜂群落的重建和维持[J].昆虫学报, 2002, 45(1): 96-101.
    宋大祥.中国农区蜘蛛[M].北京:农业出版社, 1987.
    宋大祥,颜亨梅,朱明生.梵净山和张家界地区蜘蛛群落结构及多样性研究[J].蛛形学报, 1992, 1(1): 47-57.
    王智.拟环纹豹蛛的生物生态学研究[J].昆虫学报, 2007, 50(9): 927-932.
    吴琼梅.烟稻邻作对水稻主要害虫及天敌功能团的影响[D].福建:福建农林大学, 2008.
    尤民生,刘雨芳,侯有明.农田生物多样性与害虫综合治理[J].生态学报, 2004, 24(1): 117-122.
    俞晓平,胡萃, Heong K L.稻田生态系统中飞虱、叶蝉及其天敌的种群动态和相互关系[J].科技通报, 1997, 13(4): 205-210.
    俞晓平,胡萃, Heong K L.非作物生境对害虫及其天敌的影响[J]. 1996, 12(13): 130-133.
    俞晓平,吕仲贤,陈建明.水稻害虫及天敌在生境间迁移的监测方法和原理[J].浙江农业学报, 1999, 11(6): 325-332.
    俞晓平,郑徐松,徐红星.拟水狼蛛在两种生境间的迁移规律[C].中国昆虫学会2000年学术年会. 2000.
    宇振荣,胡敦孝,王建武.试论农田边界的景观生态功能[J].生态学杂志, 1998, 17(3): 53- 58.
    浙江动物志编辑委员会.浙江动物志(蜘蛛类)[M].杭州:浙江科学技术出版社,1991.
    郑国,杨效东,李枢强.西双版纳地区六种林型地表蜘蛛多样性比较研究[J].昆虫学报, 2009, 52(8): 875-884.
    郑许松,俞晓平,吕仲贤,陈建明.稻飞虱天敌在菱白田与水稻田之间的迁移规律[J].浙江农业大学, 1999, 11(6): 339-343.
    钟觉民.昆虫分类图谱[M].南京:江苏科学技术出版社, 1985.
    中国科学院动物研究所.天敌昆虫图册[M].浙江农业大学,北京:科学出版社, 1978.
    朱强,俞孔坚,李迪华.景观规划中的生态廊道宽度[J].生态学报, 2005, 25(9): 2406-2412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700