飞行器多自由度耦合摇滚运动数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摇滚是现代战斗机大攻角运动下的常见问题,是一种以大振幅自由滚转为主,同时耦合如俯仰、侧滑、沉浮等自由度的复杂运动,密切关系到飞行器的作战效能和飞行包线,是飞行器在选型设计阶段就需要重点关注的动态稳定性问题之一。国内外对飞行器大攻角摇滚现象及其蕴含的物理机理极为关注,开展了大量的研究,但目前仍有大量的问题亟待解决。摇滚现象本质上是多自由度耦合的运动,但从国内外已发表的文献看来,采用单自由度假设的研究占绝大多数,直接研究多自由度耦合摇滚现象的文献十分少见。本文针对飞行器的动态摇滚现象,通过耦合求解N-S方程组和欧拉刚体动力学方程组,数值模拟飞行器不同自由度耦合条件下的非定常摇滚运动过程,研究大攻角摇滚特性及非定常复杂流动机理。
     首先,耦合求解流体运动方程组和飞行器刚体动力学方程组建立飞行器多自由度耦合运动数值模拟的高效计算方法和软件。①根据摇滚运动的特点,分析运动的主要自由度,建立耦合运动的非定常动力学模型;②基于有限体积法采用二阶迎风型NND格式和含双时间步的LU-SGS方法离散流动控制方程组,基于刚性动网格技术,耦合求解流动控制方程组和刚体动力学方程组,发展适用于复杂飞行器多自由度耦合摇滚运动的数值模拟软件;③基于MPI环境发展并行算法,提高计算效率;④采用典型算例对发展的软件进行分类考核,计算结果和相关文献的实验结果或数值模拟结果吻合,验证了方法及软件的可靠性。
     其次,针对战斗机大攻角俯仰运动时的横侧向稳定性问题,研究细长三角翼强迫俯仰、自由滚转的耦合运动特性。结果表明:俯仰运动的存在,使得滚转运动不能形成极限环形式的等幅振荡;俯仰/滚转耦合将导致三角翼升力显著降低,对机动飞行安全不利,还将导致三角翼横向稳定性变差。此外,多种敏感因素对俯仰/滚转耦合运动特性具有显著影响:转动惯量影响三角翼滚转运动的频率特性,转动惯量越小,频率越高;轴承的机构阻尼影响双自由度运动的振幅,阻尼越大振幅越小,当阻尼过大时,可能观察不到机翼的自由滚转现象;实验观察到三角翼强迫俯仰、自由滚转耦合运动过程中表征滚转停滞状态的台阶状曲线,是湍流、转动惯量以及轴承摩擦等多种影响因素共同作用的结果。
     再次,针对动态特性研究中自由度相似的问题开展自由状态下细长三角翼滚转/侧滑双自由度和滚转、侧滑及沉浮三自由度耦合运动的研究。对滚转/侧滑双自由度耦合运动的研究表明:滚转运动表现为极限环形式的周期性等幅摇滚振荡,侧滑与摇滚同频率,反相位,具有左滚右侧滑、右滚左侧滑的耦合运动机制;与单自由度翼摇滚相比,耦合摇滚振幅更大,频率更低,摇滚分岔攻角显著减小,可能出现单自由度滚转运动稳定,而滚转/侧滑双自由度耦合运动不稳定的情况,因此,应将自由度相似作为动态特性研究中重要的相似准则予以满足。对滚转、侧滑及沉浮三自由度耦合运动的研究表明:重力显著小于垂向气动力时,三角翼可能因爬升而改出摇滚;重力显著大于垂向气动力时,三角翼快速下沉导致名义攻角增大,摇滚振幅呈现出先快速增大,再在涡破裂影响下减小的变化过程;重力和垂向气动力相当时,三角翼呈现上浮、下沉交替的运动。在垂向气动力和重力相当的情况下,沉浮运动幅度较小,三自由度的耦合运动可简化为滚转/侧滑两自由度的耦合运动,若质量很大,则三角翼侧滑的效应也可以被忽略,运动可进一步简化为单自由度摇滚,因此单自由度摇滚是本质上多自由度耦合运动在特定条件下的合理性简化假设。
     最后,针对战斗机全机摇滚背景开展复杂翼体外形单自由度摇滚运动特性研究。“气动弹簧”式非对称振荡的前体分离集中涡与破裂机翼涡的非线性复杂干扰是维持翼体外形大幅度摇滚的主要流动机理,在多涡流结构的强相互干扰下,复杂翼体外形不能形成规则的等幅摇滚振荡(如单三角翼摇滚),振幅存在明显波动,可能伴有间歇、猝发特征,应当关注平均滚转振幅的变化。复杂翼体外形的动态摇滚特性受到部件构型和布局的影响:前体截面形状的影响极为显著,严重影响翼体模型的横向动态稳定性;尾翼能够对翼体摇滚起到一定的动态稳定性作用,稳定的程度与尾翼的布局有关;与简单三角翼的静态特性不同,机翼前缘形状的变化对翼体外形动态摇滚运动特性的影响较小。
Rock is a universal problem of modern combat aircraft maneuvering in high angleof attack, it is a complex motion which is dominated by large amplitude free-roll andcoupled with pitch, sideslip and vertical movement. Rock has significant influence oncombat effectiveness and envelope, and is treated as a key problem that should be fixedin designing phase. A lot of researches focus on rock phenomenon and its mechanism,but many problems are still need to be solved. Rock is a motion essentially coupled withmultiple degrees of freedom (DOF), but in literature, researches on the assumption ofsingle DOF are in absolutely dominant, it is seldom investigated with multiple DOFssimultaneously. This paper concerns with dynamic coupling rock of aircraft, solves N-Sequations and Euler rigid body dynamic equations by coupling method, numericallysimulates the unsteady rock motion in multiple DOFs, and investigates the motioncharacteristics and complex flow mechanism of aircraft in high angle of attack.
     Firstly, high performance numerical simulation method and relevant software areestablished by sequentially solving the flow control equations and rigid body dynamicequations in a coupling way.①In terms of the characteristics of rock motion, analysesof main movement freedoms are conducted, and then the unsteady dynamic model ofcoupling motions is constructed.②The2nd-order, upwind, finite volume NNDscheme and LU-SGS method with dual time steps are employed to discretize the flowcontrol equations, based on rigid dynamic mesh technology, a coupling method isemployed to solve the flow control equations and rigid body dynamic equations, thedynamic simulation software suitable for multiple DOFs motion of complicate aircraftis developed consequently.③Parallel algorithm based on MPI environment isdeveloped for higher efficiency.④Typical validating examples are employed toassess the method and software developed in this paper, and the outcomes show goodagreement with relevant experimental or reference results.
     Secondly, investigation of the coupling characteristics of slender delta wing incombined force-pitch and free-roll motion focus on the the transverse/lateral stabilitiesof combat aircraft pitching maneuver in high angle of attack. Results show: thehysteresis of pitching motion lags the variations of roll amplitudes, no limit cycle rolloscillation is observed; the coupling effect of pitch and roll motion leads to significantlydecrease of lift force, which is harmful to maneuvering safety and worsens thetransverse stabilities of delta wings. Additionally, the investigation shows that severalsensitive factors have profound influence on the characteristics of coupling motion inpitching and rolling: the moment of inertial affects the roll frequency, the smaller rollmoment of inertial, the higher roll frequency; the structural damp of bearing affects the amplitudes, the larger structural damp, the smaller roll amplitudes, enough large dampeven eliminates the rock phenomenon of delta wing; the plateau curve of roll angleobserved in experiment is result of the collaboration of turbulence, moment of inertialand bearing friction, et al.
     Thirdly, numerical investigation of the characteristics of double DOFs motion incombined free-roll and free-sideslip and three DOFs motion in combined roll, sideslipand vertical movement are conducted focusing on the DOFs similarity in dynamicproblem. Results show: motion in combined free-roll and free-sideslip behaves asperiodic limit cycle oscillation, sideslip is observed to oscillate with roll in the samefrequency and opposite phase, the coupling mechanism of roll and sideslip can bedescribed as right sideslip with left roll and left sideslip with right roll; compared withthe single DOF wing rock, larger roll amplitudes, lower roll frequencies and smallerbifurcation attack angle are observed in double DOFs motion, which indicates apossibility that the delta wing is stable in single DOF wing rock, but unstable incombined roll and sideslip wing rock, therefore, DOFs similarity should be take as animportant similarity rule to be satisfied in dynamic characteristics researches. Theinvestigation of three DOFs motion in combined roll, sideslip and vertical movementshows: when the gravity is obviously lower than the vertical force, the delta wing rockmay eliminate owing to fiercely climb up; when the gravity is obviously larger than thevertical force, the swift sinking of delta wing lead to an increase of nominal attack angle,as a result, the roll amplitudes may significantly decrease with the increasing dampeffect of vortex burst; when the gravity and vertical force are comparative, small rangeof climbing up and sinking may emerge sequentially. In the case of gravity is equivalentto vertical force, the movement in vertical direction could be neglected, then the threeDOFs motion can be simplified to double DOFs motion in combined roll and sideslip, ifa large mass of delta wing is enforced, the coupling motion can be further simplified tosingle DOF wing rock, that is to say single DOF wing rock is a rational simplification ofessentially multiple DOFs motion in some special conditions.
     Finally, investigation of single DOF wing/body rock phenomenon on the ground ofcomplicate combat aircraft is conducted. The nonlinearly interaction between theunsymmetrical oscillating fore-body vortexes and the burst vortical flow on wings is themechanism which sustains the roll amplitudes of wing/body configuration. Under thestrong interactions among vortexes, no regular roll oscillation (such as slender singledelta wing) is built. The history curves of roll angle are accompanied with amplitudesfluctuation, even with intermittent and abrupt characteristics, thus the averageamplitudes should be concerned with. Additionally, the results show that thecharacteristics of wing/body rock phenomenon are influenced by the local configuration:the influence of fore-body configuration is primary, it has profound influence ontransverse stabilities; to some extent, tail wings enforce the dynamic stabilities of static stabilities of simple delta wings, the influences of leading edge of wing on thewing/body dynamic characteristics are secondary, no obvious impact is observed.
引文
[1] Nelson R C, Pelletier A. The unsteady aerodynamics of slender wings andaircraft undergoing large amplitude maneuvers [J]. Progress in AerospaceSciences,2003,39:185-248.
    [2]李文杰,钱开耘,古雨田.HTV-2项目取得重大进展[J].飞航导弹,2010(9):29-32.
    [3]牛文,车易.DARPA完成HTV-2飞行器第二次试飞[J].飞航导弹,2011(9):9-9.
    [4] Forsythe J R, Woodson S H. Unsteady CFD Calculations of Abrupt Wing StallUsing Detached-Eddy Simulation [R]. AIAA2003-0594,2003.
    [5] Green B E, Ott J D. F/A-18C TO E WING MORPHING STUDY FOR THEABRUPT WING STALL PROGRAM [R]. AIAA2003-0925,2003.
    [6] Hall R M, Woodson S H. Introduction to the abrupt wing stall program [J].Journal of Aircraft,2004,41(3):425-435.
    [7] R. M. Hall, Woodson S H, Chambers J R. Overview of the abrupt wing stallprogram [J]. Progress in Aerospace Sciences,2004,40:417-452.
    [8] Green B E, Ott J D. F/A-18C to E Wing Morphing Study for theAbrupt-Wing-Stall Program [J]. Journal of Aircraft,2005,42(3):617-626.
    [9] Hall R M. Introduction: Abrupt Wing Stall Program, Part2[J]. Journal ofAircraft,2005,42(3):577-577.
    [10] R. M. Hall, Woodson S H, Chambers J R. Accomplishments of theAbrupt-Wing-Stall Program [J]. Journal of Aircraft,2005,42(3):653-660.
    [11] NATO/RTO/AVT Task Group AVT-080. Vortex Breakdown over Slender DeltaWings [C]. RTO TECHNICAL REPORT: TR-AVT-080,2009.
    [12] Brandon J M, Nguyen L T. Experimental Study of Effects of Forebody Geometryon High Angle-of-Attack Stability [J]. Journal of Aircraft,1988,25(7):591-597.
    [13] Erickson G E, Brandon J M. LOW-SPEED EXPERIMENTAL STUDY OF THEVORTEX FLOW EFFECTS OF A FIGHTER FOREBODY HAVINGUNCONVENTIONAL CROSS-SECTION [R]. AIAA85-1798,1985.
    [14] Ericsson L E. Time History Effects on a Rolling65Deg Delta-Wing-BodyConfiguration [R]. AIAA97-3645,1997.
    [15] Ericsson L E, Beyers M E. Forebody flow control at conditions of naturallyoccurring separation asymmetry [J]. Journal of Aircraft,2002,39(2):252-261.
    [16] Orlik-Rückemann K J. Aerodynamic aspects of aircraft dynamics at high anglesof attack [J]. Journal of Aircraft,1983,20(9):737-752.
    [17] Ericsson L E. Slender Wing Rock Revisited [J]. Journal of Aircraft,1993,30(3):352-356.
    [18] Katz J. Wing/vortex interactions and wing rock [J]. Progress in AerospaceSciences,1999,35:727-750.
    [19]杨云军,崔尔杰,周伟江.细长翼大攻角多自由度运动特性失稳运动[J].气体物理——理论与应用,2006,1(1):30-34.
    [20] Ross A J, Nguyen L T. Some observations regarding wing rock oscillations athigh angles of attack [R]. AIAA88-4371,1988.
    [21] Hwang C, Pi W S. Investigation of steady and fluctuating pressures associatedwith the transonic buffeting and wing rock of a one-seventh scale model of theF-5A aircraft [R]. NASA CR-3061,1978.
    [22] Hwang C, Pi W S. Some observations on the mechanism of aircraft wing rock [J].Journal of Aircraft,1979,16(6):366-373.
    [23] Ericsson L E. Various Sources of Wing Rock [J]. Journal of Aircraft,1990,27(6):488-494.
    [24]陶洋,范召林,赵忠良等.方形截面导弹动态摇滚特性研究[J].实验流体力学,2009,23(2):50-53.
    [25]陶洋,袁先旭,范召林等.方形截面导弹摇滚特性数值研究[J].空气动力学学报,2010,28(3):285-290.
    [26] Lamont P J. Pressures around an inclined ogive cylinder with laminar,transitional, or turbulent separation [J]. AIAA Journal,1982,20(11):1492-1499.
    [27] Lamont P J. The effect of Reynolds number on normal and side forces on ogivecylinders at high incidence [R]. AIAA85-1799,1985.
    [28]荣臻,邓学蓥,王兵等.前体涡诱导双极限环摇滚流动特性的实验研究[J].实验流体力学,2010,24(3)19-24.
    [29]达兴亚,陶洋,赵忠良.基于预估校正和嵌套网格的虚拟飞行数值模拟[J].航空学报,2012,33(6):1-7.
    [30] Ericsson L E. CHALLENGES IN HIGH-ALPHA VEHICLE DYNAMICS [J].Progress in Aerospace Sciences,1995,31:291-334.
    [31] Gursul I. Review of Unsteady Vortex Flows over Slender Delta Wings [J].Journal of Aircraft,2005,42(2):299-319.
    [32] Gursul I. Recent developments in delta wing aerodynamics [J]. AeronauticalJournal,2004,108(7):437-452.
    [33] Gursul I, Allan M R, Badcock K J. Opportunities for the integrated use ofmeasurements and computations for the understanding of delta wingaerodynamics [J]. Aerospace Science and Technology,2005,9(3):181-189.
    [34] Gursul I, Wang Z, Vardaki E. Review of flow control mechanisms ofleading-edge vortices," Progress in Aerospace Sciences,2007,43(7-8):246-270.
    [35]刘伟,杨小亮,张涵信等.大攻角运动时的机翼摇滚问题研究综述[J].力学进展,2008,38(2):214-228.
    [36] Verhaagen N G, Jenkins E N, Kern S B. A STUDY OF THE VORTEX FLOWOVER A76/40-deg DOUBLE-DELTA WING [R]. AIAA95-0650,1995.
    [37] Hummel D. ON THE VORTEX FORMATION OVER A SLENDER WING ATLARGE ANGLES OF INCIDENCE [R]. AGARD-CP-247,1979.
    [38] Thomas J L, Kris S T, Anderson W K. Navier-Stokes Computations of VorticalFlows Over Low-Aspect-Ratio Wings [J]. AIAA Journal,1990,28(2):205~212.
    [39] zg ren M, Sahin B, Rockwell D. Vortex structure on a delta wing at high angleof attack [J]. AIAA Journal,2002,40(2):285-292.
    [40] Shih C, Ding Z. Vortex interaction of a delta-wing flowfield [J]. AIAA Journal,2003,41(2):314-316.
    [41] Yang J S. Numerical study of flow characteristics due to interaction between apair of vortices in a turbulent boundary layer [J]. Journal of Mechanical Scienceand Technology,2006,20(1):147-157.
    [42]庞勇,张树海,张涵信.跨声速三角翼旋涡破裂过程的数值模拟[J].空气动力学学报,1999,17(2):195-202.
    [43] Kandil O A, Kalisch M, Kandil H A. UNSTEADY TRANSONIC FLOWAROUND A DELTA WING UNDERGOING PITCHING AND ROLLINGOSCILLATIONS [R]. AIAA94-1887,1994.
    [44] Sheta E F, Kandil O A. Effect of dynamic rolling oscillations on twin-tail buffetresponse [J]. Journal of Sound and Vibration,2002,252(2):261-280.
    [45] Milanovic I M, Kalkhoran I M. Measurements of leading-edge vortices on a75degrees delta planform wing at M2center dot5[J]. Aeronautical Journal,2002,106(1055):39-49.
    [46] Delery J M. Robert Legendre and Henri Werle: Toward the Elucidation ofThree-Dimentional Separation [J]. Annual Review of Fluid Mechanics,2001.
    [47] Fujii K. Progress and future prospects of CFD in aerospace—Wind tunnel andbeyond [J]. Progress in Aerospace Sciences,2005,41:455-470.
    [48]阎超.CFD:成就、困惑与展望[R].中国第一届近代空气动力学与气动热力学会议论文集[C].北京:国防工业出版社,2007.
    [49] Arasawa T, Fujii K, Miyaji K. High-order compact difference scheme applied todouble-delta wing vertical flows [J]. Journal of Aircraft,2004,41(4):953-957.
    [50] Luedeke H, Leicher S. Unsteady CFD analysis of a delta wing fighterconfiguration by Delayed detached eddy simulation [M]. Advances in HybridRans-Les Modelling,2008.
    [51] Mitchell A M, Morton S A, Forsythe J R, et al. Analysis of Delta-Wing VorticalSubstructures Using Detached-Eddy Simulation [J]. AIAA Journal,2006,44(5):964-972.
    [52]陈龙,伍贻兆,夏健.基于非定常低速预处理和DES的三角翼数值模拟[J].南京航空航天大学学报,2011,43(2):159-164.
    [53] Hummel D. The Second International Vortex Flow Experiment (VFE-2).Hermann Schlichting-100Years [M]. Notes on Numerical Fluid Mechanics andMultidisciplinary Design,2009,102:105-129.
    [54] Gad-el-Hak M, Blackwelder R F. The Discrete Vortices from a Delta Wing [J].AIAA Journal,1985,23(6):961–962.
    [55] Payne F M, Ng T T, Nelson R. C. Experimental Study of the Velocity Field on aDelta Wing [R]. AIAA1987-1231,1987.
    [56] Cipolla K M, Rockwell D. Small-Scale Vortical Structures in Cross Flow Planeof a Rolling Delta Wing [J]. AIAA Journal,1998,36(12):2276-2278.
    [57] Gad-el-Hak M, Blackwelder R. F. Control of the Discrete Vortices from a DeltaWing [J]. AIAA Journal,1987,25(8):1042-1049.
    [58] Visbal M R, Gordnier R E. On the Structure of the Shear Layer Emanating froma Swept Leading Edge at Angle of Attack [R]. AIAA2003-4016,2003.
    [59] Riley A J, Lowson M V. Development of a Three-Dimensional Free Shear Layer[J]. Journal of Fluid Mechanics,1998,369:49–89.
    [60] Lowson M V. Visualization Measurements of Vortex Flows [J]. Journal ofAircraft,1991,28(5)320–327.
    [61] Gordnier R E, Visbal M R. Unsteady Vortex Structure over a Delta Wing [J].Journal of Aircraft,1994,31(1):243-248.
    [62] Rediniotis O K, Stapountzis H, Telionis D P. Vortex Shedding over Delta Wings[J]. AIAA Journal,1990,28(5):944-946.
    [63] Rediniotis O K, Stapountzis H, Telionis D P. Periodic Vortex Shedding overDelta Wings [J]. AIAA Journal,1993,31(9):1555-1562.
    [64] Akcayoglu A. Flow past confined delta-wing type vortex generators [J].Experimental Thermal and Fluid Science,2011,35(1):112-120.
    [65]阎超,李亭鹤,黄贤禄.三角翼上分离及涡流的数值模拟[J].力学进展,2001,31(2):227-244.
    [66] Agrawal S, Barnett R M Robinson B A. Numerical investigation of vortexbreakdown on a delta wing [J]. AIAA Journal,1992,30(3):584~591.
    [67] Ericsson L E. Prediction of Vortex Breakdown Effects on a Rolling Delta Wing
    [R]. AIAA94-1883,1994.
    [68] Menzies M A, Kandil O A Kandil H A. Forced rolling oscillation of a65°deltawing in transonic vortex-breakdown flow [R]. AIAA95-1771,1995.
    [69] S. G rtz, Rizzi A Munukka K. COMPUTATIONAL STUDY OF VORTEXBREAKDOWN OVER SWEPT DELTA WINGS [R]. AIAA99-3118,1999.
    [70]肖志祥,陈海昕,符松等.三角翼大迎角非对称旋涡破裂数值模拟[J].计算物理,2005,22(3):221-226.
    [71] Morton S. Detached-Eddy Simulations of Vortex Breakdown over a70-DegreeDelta Wing [J]. Journal of Aircraft,2009,46(3):746-755.
    [72] Li X L, Yang Y, Jiao J. Analysis of Shock and Vortex Breakdown Behavior inUnsteady Transonic Flow on a Slender Delta Wing [R]. Proceedings of2010Asia-Pacific International Symposium on Aerospace Technology,2010.
    [73] Breitsamter C. Unsteady flow phenomena associated with leading-edge vortices[J]. Progress in Aerospace Sciences,2008,44(1):48-65.
    [74] Lucca-Negro O, O'Doherty T. Vortex breakdown: a review [J]. Progress inEnergy and Combustion Science,2001,27:431-481.
    [75] Pelletier A, Nelson R C. AN EXPERIMENTAL STUDY OF STATIC ANDDYNAMIC VORTEX BREAKDOWN ON SLENDER DELTA WINGPLANFORMS [R]. AIAA94-1879,1994.
    [76] Kandil O A, Kandil H A. Pitching oscillation of a65-degree delta wing intransonic vortex-breakdown flow [R]. AIAA94-1426,1994.
    [77] Lü Z Y, ZHU L G. Study on Forms of Vortex Breakdown over Delta Wing [J].CHINESE JOURNAL OF AERONAUTICS,2004,17(1):13-16.
    [78]吕志咏,祝立国,张明禄.三角翼前缘涡破裂形式及特性研究[J].力学学报,2006,38(1):113-118.
    [79]陈兰,王晋军.三角翼前缘涡轴向速度的数值模拟研究[J].中国科学E辑:技术科学,2009,36(9):1144-1151.
    [80] Huang X Z, Hanff E S. Prediction of Leading-Edge Vortex Breakdown on aDelta Wing Oscillating in Roll [R]. AIAA92-2677,1992.
    [81] Arena A S, Nelson R C. Unsteady Surface Pressure Measurements on a SlenderDelta Wing Undergoing Limit Cycle Wing Rock [R]. AIAA91-0434,1991.
    [82] Arena A S, Nelson R C. Experimental Investigation on Limit Cycle Wing Rockof Slender Wings [J]. Journal of Aircraft,1994,31(5):1148–1155.
    [83] Konstadinopoulos P, Mook D T, Nayfeh A. H. Subsonic Wing Rock of SlenderDelta Wings [R]. AIAA85-0198,1985.
    [84] Ericsson L E. The Fluid Mechanics of Slender Wing Rock [J]. Journal of Aircraft,1984,21(5):322-328.
    [85]杨云军,崔尔杰,周伟江.细长三角翼摇滚运动数值研究[J].空气动力学学报,2007,25(1):34-44.
    [86] Nguyen L T, Yip L P, Chambers J R. Self-Induced Wing Rock of Slender DeltaWings [R]. AIAA81-1883,1981.
    [87] Levin D, Katz J. Dynamic Load Measurements with Delta Wings UndergoingSelf-induced Roll-Oscillations [R]. AIAA82-1320,1982.
    [88] Levin D, Katz J. Dynamic Load Measurements with Delta Wings UndergoingSelf-Induced Roll Oscillations [J]. Journal of Aircraft,1984,21(1):30-36.
    [89] Ng T T, Malcolm G N, Lewis L C. Experimental Study of Vortex Flows overDelta Wings in Wing-Rock Motion [J]. Journal of Aircraft,1992,29(4):598-603.
    [90] Ericsson L E. Flow Complexities of Slender Wing Rock [J]. Journal of Aircraft,2000,37(5):920-923.
    [91]刘伟.细长机翼摇滚机理的非线性动力学分析及数值模拟方法研究[D].博士学位论文,长沙:国防科学技术大学研究生院,2004.
    [92] Polhamus E C. Predictions of Vortex Lift Characteristics by a Leading EdgeSuction Analogy [J]. Journal of Aircraft,19718(4):193-199.
    [93] Ericsson L E. Sources of High Alpha Vortex Asymmetry at Zero Sideslip [J].Journal of Aircraft,1992,29(6):1086-1090.
    [94] Ericsson L E, King H C. Rapid Prediction of High-Alpha UnsteadyAerodynamics of Slender-Wing Aircraft [J]. Journal of Aircraft,1992,29(1):85-92.
    [95] Ericsson L. Wing rock analysis of slender delta wings, review and extension [R].AIAA95-0317,1995.
    [96] Ng T T, Suárez C J, Kramer B R. Forebody Vortex Control for Wing RockSuppression [J]. Journal of Aircraft,1994,31(2):298-305.
    [97] Ericsson L E. Analytic Prediction of the Maximum Amplitude of Slender WingRock [J]. Journal of Aircraft,1989,26(1):35-39.
    [98] Ericsson L E. Analysis of the Effect of sideslip on Delta Wing Roll TrimCharacteristics [R]. AIAA96-0788,1996.
    [99] Ericsson L E. Wing Rock of Slender Delta Wing in Light of RecentInvestigations [R]. AIAA98-0498,1998.
    [100] Ericsson L E. FLOW PHYSICS OF SLENDER WING ROCK--THECOMPLETE STORY [R]. AIAA99-0141,1999.
    [101] Ericsson L E. Surprising Developments in the Search of Analytic Means forPrediction of Slender Wing Rock [R]. AIAA2002-0712,2002.
    [102] Ericsson L E, Beyers M E. THE CHALLENGE OF DETERMINING COMBATAIRCRAFT WING ROCK THROUGH SUBSCALE TESTING [R]. AIAA2003-0735,2003.
    [103] Taylor G S, Gursul I, Greenwell D I. Investigation of support interference inhigh-angle-of-attack testing [J]. Journal of Aircraft,2003,40(1):143-152.
    [104] Taylor G S, Gursul I. Support interference for a maneuvering delta wing [J].Journal of Aircraft,2005,42(6):1504-1515.
    [105] Gresham N T, Wang Z, Gursul I. Vortex Dynamics of Free-to-Roll Slender andNonslender Delta Wings [J]. Journal of Aircraft,2010,47(1):292-302.
    [106] Gresham N T, Wang Z, Gursul I. Effect of Slenderness Ratio on Free-to-RollWing Aerodynamics [J]. Journal of Aircraft,2011,48(3):1112-1116.
    [107] Vardaki E, Wang Z, Gursul I. Flow reattachment and vortex re-formation onoscillating low-aspect-ratio wings [J]. AIAA Journal,2008,46(6):1453-1462.
    [108]唐敏中,王铁,张伟等.低速三角翼滚摆试验研究[J].空气动力学学报,1997,15(4):436-443.
    [109]夏雪湔,刘日之,杨晓峰.细长三角翼摇滚非定常流动特性[J].北京航空航天大学学报,1998,24(2):185-188.
    [110]杨晓锋,赵小虎,刘日之.细长三角翼的摇滚特性[J].空气动力学学报,2000,18(1):111-114.
    [111] Pelletier A. A STUDY OF THE NONLINEAR AERODYNAMICCHARACTERISTICS OF A SLENDER DOUBLE-DELTA WING INROLL[D]. Ph.D Thesis, Department of Aerospace and Mechanical EngineeringNotre Dame, University of Notre Dame, Indiana,1998.
    [112] Arena A S, Nelson R C. A Discrete Vortex Model for Predicting Wing Rock ofSlender Wings [R]. AIAA92-4497,1992.
    [113] Gainer T G. A Discrete-Vortex Method for Studying the Wing Rock of DeltaWings [R]. Hampton, Virginia, NASA/TP-2002-211965,2002.
    [114] Tewari A. NONLINEAR OPTIMAL CONTROL OF WING ROCKINCLUDING YAWING MOTION [R]. AIAA2000-4251,2000.
    [115] Go T H, Ramnath R V. Analytical theory of three-degree-of-freedom aircraftwing rock [J]. Journal of Guidance Control and Dynamics,2004,27(4):657-664.
    [116] Menzies M A. UNSTEADY, TRANSONIC FLOW AROUND DELTA WINGSUNDERGOING COUPLED AND NATUREAL MODES RESPONSE--AMULTIDISCIPLINARY PROBLEM [D]. Ph.D Thesis, AEROSPACEENGINEERING, OLD DOMINION UNIVERSITY,1996.
    [117] Kandil O A, Menzies M A. Coupled rolling and pitching oscillation effects ontransonic shock-induced vortex-breakdown flow of a delta wing [R]. AIAA96-0828,1996.
    [118] Kandil O A, Menzies M A. Effective control of computationally simulated wingrock in subsonic flow [R]. AIAA97-0831,1997.
    [119] Chaderjian N M, Schiff L B. Navier-Stokes Prediction of Large-AmplitudeForced and Free-to-Roll Delta-Wing Oscillations [R]. AIAA94-1884,1994.
    [120] Chaderjian N M, Schiff L B. Navier-Stokes Analysis of a Delta Wing in Staticand Dynamic Roll [R]. AIAA95-1868,1995.
    [121]刘伟,张涵信.细长机翼摇滚的数值模拟及物理特性分析[J].力学学报,2005,37(4):385-392.
    [122] Liu W, Zhang H X, Zhao H Y. Numerical Simulation and PhysicalCharacteristics Analysis for SlenderWing Rock [J]. Journal of Aircraft,2006,43(3):858-861.
    [123]张涵信,刘伟,谢昱飞等.后掠三角翼的摇滚及其动态演化问题[J].空气动力学学报,2006,24(1):5-9.
    [124] Etkin B.大气飞行动力学[M].北京:科学出版社,1979.
    [125] Pelletier A, Nelson R C. Dynamic behavior of an80°/65°double-delta wing inroll [R]. AIAA98-4353,1998.
    [126]陶洋,范召林赵忠良.80°/65°双三角翼摇滚特性风洞实验研究[J].实验力学,2009,24(2):171~175.
    [127] Yoshinaga T, Otaka S. Tate A. Wing Rock of Double Delta Wings [R]. AIAA2001-4078,2001.
    [128] Ueno M, Matsuno T, Nakamura Y. UNSTEADY AERODYNAMICS OFROLLING THICK DELTA WING WITH HIGH ASPECT RATIO [R]. AIAA98-2520,1998.
    [129] Matsuno T, Nakamura Y. Self-Induced Roll Oscillation of45Degree DeltaWings [R]. AIAA2000-0655,2000.
    [130] Matsuno T Yokouchi S Nakamura Y. THE EFFECT OF LEADING-EDGEPROFILE ON SELF-INDUCED OSCTLLATION OF45-DEGREE DELTAWINGS [R]. AIAA2000-4004,2000.
    [131] Hüschler S. Wing rock of nonslender delta wings [R]. University of Bath,Research Project Report,2003.
    [132] McClain A. Aerodynamics of nonslender delta wings [D]. Master Thesis,Department of Mechanical Engineering, University of Bath, Bath U.K.,2004.
    [133] Gresham N T, Wang Z, Gursul I. Low Reynolds number aerodynamics offree-to-roll low aspect ratio wings [J]. Experiments in Fluids,2010,49(1):11-25.
    [134] Ericsson L. Wing Rock of Non-Slender Delta Wings [R]. AIAA2000-0137,2000.
    [135] Ericsson L E, Beyers M E. ANALYSIS OF SELF-INDUCED ROLLOSCILLATIONS OF A45-DEGREE DELTA WING [R]. AIAA2003-0737,2003.
    [136] Gursul I, Gordnier R, Visbal M. Unsteady aerodynamics of nonslender deltawings [J]. Progress in Aerospace Sciences,2005,41(7):515-557.
    [137] Vardaki E, Gursul I. Vortex Flows on a Rolling Nonslender Delta Wing [R].AIAA2004-4729,2004.
    [138] Yaniktepe B, Rockwell D. Flow structure on a delta wing of low sweep angle [J].AIAA Journal,2004,42(3):513-523.
    [139] Wang J J, Zhang W. Experimental investigations on leading-edge vortexstructures for flow over non-slender delta wings [J]. Chinese Physics Letters,2008,25(7):2550-2553.
    [140] Gordnier R E, Visbal M R, Gursul I. Computational and ExperimentalInvestigation of a Nonslender Delta Wing [J]. AIAA Journal,2009,47(8):1811-1825.
    [141] Zhang P F, Wang J J, Liu Y, et al. Effect of Taper Ratio on AerodynamicPerformance of Cropped Nonslender Delta Wings [J]. Journal of Aircraft,2009,46(1):320-325.
    [142] Erickson G E. Water Tunnel Flow Visualization and Wind Tunnel Data Analysisof the F/A-18[R]. NASA CR-165859,1982.
    [143] Lovell D A. Military vortices [R]. the NATO air vehicle technology conference,Loen, Norway,2001.
    [144] Fisher D F, Frate J H, Richwinc D M. In-Flight Flow VisualizationCharacteristics of the NASA F-18High Alpha Research Vehicle at High Anglesof Attack [R]. NASA TM-4193,1990.
    [145] Johnson S A, Fisher D F. Water-Tunnel Study Results of a TF/A-18and F/A-18Canopy Flow Visualization [R]. NASA TM-101705,1990.
    [146] Frate J H, Fisher D F, Zuniga F A. In-Flight Flow Visualization with PressureMeasurements at Low Speeds on the NASA F-18High Alpha Research Vehicle
    [R]. NASA TM-101726,1990.
    [147] Napolitano M R, Spagnuolo J M. Determination of the Stability and ControlDerivatives of the NASA F/A-18HARV Using Flight Data [R]. NASACR-194838,1993.
    [148] Liebst B S, DeWitt B R. WING ROCK SUPPRESSION IN THE F-15AIRCRAFT [R]. AIAA97-3719,1997.
    [149] Huang X Z, Hanff E S. HYSTERESIS AND BIFURCATION ANALYSIS OF AFIGHTER AND A DELTA WING AT HIGH INCIDENCE [R]. AIAA2002-4714,2002.
    [150] Owens D B, Capone F J, Hall R M, et al. Free-To-Roll Analysis of Abrupt WingStall on Military Aircraft at Transonic Speeds [R]. AIAA-2003-0750,2003.
    [151] Owens D B, McConnell J K, Brandon J M. Transonic Free-to-Roll Analysis ofthe F-35(Joint Strike Fighter) Aircraft [J]. Journal of Aircraft,2006,43(3):608-615.
    [152] Morton S A, Cummings R M, Kholodar D B. High Resolution TurbulenceTreatment of F/A-18Tail Buffet [J]. Journal of Aircraft,2007,44(6):1769-1775.
    [153] Morton S A, McDaniel D R, Cummings R M. F-16XL Unsteady Simulations forthe CAWAPI Facet of RTO Task Group AVT-113[R]. AIAA2007-0493,2007.
    [154] Sherer S E, Visbal M R, Gordnier R E, et al.1303Unmanned Combat AirVehicle Flowfield Simulations and Comparison with Experimental Data [J].Journal of Aircraft,2011,48(3):1005-1019.
    [155] Bowers A H, Pahle J W, Wilson R J, et al. An Overview of the NASA F-18HighAlpha Research Vehicle [R]. NASA TM-4772,1996.
    [156] Ericsson L E, Beyers M E. High-Alpha Aerodynamics of a Slender TaillessAircraft Configuration [R]. AIAA2002-0094,2002.
    [157] Morton S A, Steenman M B, Cummings R M, et al. DES GRID RESOLUTIONISSUES FOR VORTICAL FLOWS ON A DELTA WING AND AN F-18C [R].AIAA2003-1103,2003.
    [158] Owens D B, Capone F J, Hall R M, et al. Transonic Free-to-Roll Analysis ofAbrupt Wing Stall on Military Aircraft [J]. Journal of Aircraft,2004,41(3):474-484.
    [159] Owens D B, McConnell J K, Brandon J M, et al., Transonic Free-To-RollAnalysis of the F/A-18E and F-35Configurations [R]. AIAA2004-5053,2004.
    [160] Cummings R M, Morton S A, McDaniel D R. Experiences in accuratelypredicting time-dependent flows [J]. Progress in Aerospace Sciences,2008,44:241-257.
    [161] Erickson G E, Brandon J M. ON THE NONLINEAR AERODYNAMIC ANDSTABILITY CHARACTERISTICS OF A GENERIC CHINE-FOREBODYSLENDER-WING FIGHTER CONFIGURATION [R]. AIAA87-2617,1987.
    [162] Brandon J M, Nguyen L T. EXPERIMENTAL STUDY OF EFFECTS OFFOREBODY GEOMETRY ON HIGH ANGLE OF ATTACK STATIC ANDDYNAMIC STABILITY [R]. AIAA86-0331,1986.
    [163] Pauley H, Ralston J, Dickes E. Experimental Study of the Effects of ReynoldsNumber on High Angle of Attack Aerodynamic Characteritstics of ForebodiesDuring Rotary Motion [R]. NASA CR-195033,1995.
    [164] Fisher D F, Cobleigh B R, Banks D W, et al. REYNOLDS NUMBER EFFECTSAT HIGH ANGLES OF ATTACK [R]. AIAA98-2879,1998.
    [165] Wang B, Deng X Y, Ma B F, et al. Effects of tip perturbation and wing locationson rolling oscillation induced by forebody vortices [J]. Acta Mechanica Sinica,2010,26(5):787-791.
    [166]王兵,邓学蓥,马宝峰等.前体涡诱导机翼摇滚的人工转捩技术研究[J].空气动力学学报,2010,28(5):525-535.
    [167] Wang B, Deng X Y, Ma B F, et al. Modeling of Wing Rock Using FrequencySpectrum Analysis to Free-to-Roll Time History [J]. Journal of Aircraft,2011,48(3):805-811.
    [168] Saad A A, Liebst B S, Gordnier R E. Fluid mechanism of wing rock fordconfigurations with chine-shaped forebodies [J]. Journal of AerospaceEngineering,2002,15(4):125-135.
    [169] Dean J P, Morton S A, McDaniel D R, et al. Efficient high resolution modelingof fighter aircraft with stores for stability and control clearance [R]. AIAA2007-1652,2007.
    [170] G rtz S, McDaniel D R, Morton S A. Towards an efficient aircraft stability andcontrol analysis capability using high-fidelity CFD [R]. AIAA2007-1053,2007.
    [171] Schütte A, Einarsson G, Raichle A, et al. Numerical simulation of maneuveringaircraft by aerodynamic [R]. AIAA2007-1070,2007.
    [172] Jeans T L, McDaniel D R, Cummings R M. Aerodynamic Analysis of a GenericFighter Using Delayed Detached-Eddy Simulation [J]. Journal of Aircraft,2009,46(4):1326-1339.
    [173] Schütte A, Einarsson G, Raichle A, et al. Numerical Simulation of ManeuveringAircraft by Aerodynamic, Flight-Mechanics, and Structural-Mechanics Coupling[J]. Journal of Aircraft,2009,46(1):53-64.
    [174] Viswanathan A, Klismith K, Forsythe J R, et al. Detached-eddy simulationaround a rotating forebody [R]. AIAA2003-0263,2003.
    [175] Saephan S, Dam C P, Fremaux C M, et al. Simulation of flow about rotatingforebodies at high angles of attack [J]. Journal of Aircraft,2004,41(6):1298-1305.
    [176]明宝印,毕建国,邢晓岚等.国外空空导弹发展的新特点[J].飞航导弹,2011(4):55-59.
    [177]宫朝霞,王蕾.国外空空导弹发展综述[J].飞航导弹,2011(4):60-67.
    [178]樊会涛.第五代空空导弹的特点及关键技术[J].航空科学技术,2011(3):1-5.
    [179] Saad A A. SIMULATION AND ANALYSIS OF WING ROCK PHYSICS FORA GENERIC FIGHTER MODEL WITH THREE DEGREES-OF-FREEDOM
    [D]. Ph.D Thesis, Air Force Institute of Technology, Air University, Dayton,Ohio,2000.
    [180] Saad A A, Liebst B S. Computational simulation of wing rock in threedegrees-of-freedom for a generic fighter with chine-shaped forebody [J].Aeronautical Journal,2003,107(1067):49-56.
    [181]贾区耀.天空飞行与地面风洞实验动态气动相关性研究[J].实验流体力学,2006,20(4):87~93.
    [182]贾区耀,杨益农,陈农.天空飞行与地面风洞实验动态气动相关中的雷诺数影响[J].实验流体力学,2007,21(4)91~96.
    [183]张伟,陈晓东,唐敏中.飞机模型俯仰一滚摆耦合复杂流场测试系统设计[J].哈尔滨工业大学学报,2002,34(6):869~873.
    [184]唐敏中,张伟,何宏丽.俯仰-滚摆耦合复杂流场试验研究[J].空气动力学学报,2001,19(1):47-55.
    [185] Kowal H J, Vakili A D. An investigation of unsteady vortex flow for apitching-rolling70-deg delta wing [R]. AIAA98-0416,1998.
    [186]郭迪龙,杨国伟,康宏琳等.三角翼受迫俯仰滚转耦合运动的气动特性研究[J].空气动力学学报,2007,25(1):65-69.
    [187]高娜,陈宝,刘景飞.三角翼受迫俯仰滚转运动气动特性的数值模拟研究[J].气动研究与实验,2010,28(1):1-6.
    [188]黄达,吴根兴.飞机偏航-滚转耦合运动非定常空气动力实验[J].南京航空航天大学学报,2005,37(4):408-411.
    [189]黄达.飞行器大振幅运动非定常空气动力特性研究[D].博士学位论文,南京:南京航空航天大学,2007.
    [190] Ahmed A, Worley J C. Yaw-Roll Coupled Oscillations of a Slender DeltaWing
    [R]. AIAA2008-0366,2008.
    [191]杨云军,崔尔杰,周伟江.细长三角翼滚转/侧滑耦合运动的数值研究[J].航空学报,2007,28(1):14-19.
    [192] Chapman D R. Computational Aerodynamics Development and Outlook [J].AIAA Journal,1979,17(12):1293-1313.
    [193] Ghia U. An Essential Tool for Computational Fluid Dynamics: Numerical GridGeneration–An Overview [R]. AIAA99-3710,1999.
    [194] Baker T J. Mesh generation: Art or science?[J]. Progress in Aerospace Sciences,2005,41(1):29-63.
    [195] Deng X G. Extending the High-Order WCNS-E-5Scheme to Complex Gridswith Characteristic-Based Interface Conditions [J]. AIAA Journal,2010,48(12):2840-2851.
    [196] Deng X G. Geometric Conservation Law and Applications to High-Order FiniteDifference Schemes with Stationary Grids [J]. Journal of Computational Physics,2011,230(4):1100-1115.
    [197]安效民,徐敏,陈士橹.二阶时间精度的CFD/CSD耦合算法研究[J].空气动力学学报,2009,27(5):547-552.
    [198]粟长江.高超声速飞行器多自由度动态特性研究[D].硕士学位论文,长沙:国防科学技术大学研究生院,2010.
    [199]蔡天星.基于CFD/CSD耦合的飞行器气动弹性研究[D].博士学位论,西安:西北工业大学研究生院,2012.
    [200] Yoshinaga T, Nakaji T, Horikawa T. Effect of Vertical Strake on the Wing Rockof80deg Delta Wing [R]. AIAA2004-5367,2004.
    [201]展京霞,王晋军,李亚臣.Gurney襟翼对大后掠三角翼气动特性影响的实验研究[J].兵工学报,2004,25(3):363-367.
    [202] Meng X S, Qiao Z D, Gao C. EFFECT OF DORSAL FIN ON THE STABILITYOF VORTICES OVER A DELTA WING [J]. Modern Physics Letters B,2010,24(13):1389-1392.
    [203] Walton J, Katz J. Reduction of Wing Rock Amplitudes Using Leading-EdgeVortex Manipulations [R]. AIAA92-0279,1992.
    [204] Khan M J, Ahmed A. Response of Vortex Breakdown Induced Wing Rock toPitching&Plunging [R]. AIAA2004-4732,2004.
    [205] Cummings R M, Morton S A, Siegel S G. Computational Simulation andExperimental Measurements for a Delta Wing with Periodic Suction andBlowing [J]. Journal of Aircraft,2003,40(5):923-931.
    [206]阎超,周禹,谢子贤等.三角翼后缘喷流对前缘涡破裂位置的影响[J].空气动力学学报,2009,27(5):561-565.
    [207] Kyriakou M, Missirlis D, Yakinthos K. Numerical modeling of the vortexbreakdown phenomenon on a delta wing with trailing-edge jet-flap [J].International Journal of Heat and Fluid Flow,2010,31(6):1087-1095.
    [208] Riou J, Garnier E, Basdevant C. Blowing Effects on the Separated Flow over aModerately Swept Missile Fin [J]. AIAA Journal,2011,49(2):269-278.
    [209] LEE E M. CONICAL EULER SIMULATION AND ACTIVE SUPPRESSIONOF DELTA WING ROCKING MOTION [R]. NASA TM-102683,1990.
    [210] Lee-Rausch E M, Batina J T. Conical Euler Analysis and Active RollSuppression for Unsteady Vortical Flows About Rolling Delta Wings [R]. NASATP-3259,1993.
    [211] Xin M, Balakrishnan S N. CONTROL OF WINGROCK MOTION USING ANEW SUBOPTIMAL CONTROL METHOD [R]. AIAA2003-5313,2003.
    [212] Calise A J, Shin Y, Johnson M D. A Comparison Study of Classical and NeuralNetwork Based Adaptive Control of Wing Rock [R]. AIAA2004-5320,2004.
    [213]赵海洋.返回舱动态稳定性物理机理分析及被动/主动控制方法研究[D]博士学位论文,长沙:国防科学技术大学研究生院,2007.
    [214] Harten A. High resolution schemes for hyperbolic conservation laws [J]. Journalof Computational Physics,1983,49:357-393.
    [215] Harten A, Engquist B, Osher S, et al. Uniform High order EssentialNon-oscillatory Schemes [J]. Journal of Computational Physics,1987,71:231-303.
    [216]张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报,1988,6(2):143-165.
    [217] Liou M S, Steffen C J. A new flux splitting scheme [J]. Journal of ComputationalPhysics,1993,107:23-39.
    [218] Liou M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,129:364-382.
    [219] Liou M S. Ten years in the Making--AUSM Family [R]. AIAA2001-2521,2001.
    [220] Mavriplis D J, Darmofal D, Keyes D, et al. Petaflops Opportunities for theNASA Fundamental Aeronautics Program [R]. AIAA2007-4084,2007.
    [221] Darrigol O. Between Hydrodynamics and Elasticity Theory: The First FiveBirths of the Navier-Stokes Equation [M]. Springer-Verlag,2002.
    [222] Shen Q, Zhang H X. A New Upwind NND Scheme for Euler Equations and ItsApplication to the Supersonic Flow [R]. Proceedings of Asia Workshop on CFD,Sichuan, China,1994.
    [223] Sweby P K. High Resolution Schemes Using Flux Limiters for HyperbolicConservetion Laws [J]. SIAM J. Numer. Anal,1984,21:995-1011.
    [224] Anderson W K, Thomas J L, Leer B V. A Comparison of Finite-Volume FluxVector Splitting for Euler Equations. AIAA85-0122,1985.
    [225]袁先旭.非定常流动数值模拟及飞行器动态特性分析研究[D].博士学位论文,绵阳:中国空气动力研究与发展中心研究生部,2002.
    [226]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [227] Yoon S, Jameson A. A Lower-Upper symmetric Gauss-Sediel method for theEuler and Navier-Stokes Equations [J]. AIAA Journal,1988,26(5):1025-1026.
    [228] Jameson A. Time Dependent Calculations Using Multigrid with Application toUnsteady Flows past Airfoils and Wings [R]. AIAA91-1596,1991.
    [229] Gaitonde A L. A Dual-time Method for the Solution of the Unsteady EulerEquations [J]. Aeronautical Journal,1994.
    [230] Sungho K, McCroskey W J. Computations of Unsteady Separating Flows over anOscillating Airfoil [J]. AIAA Journal,1997, vol.35(7):1235-1238.
    [231] Obayashi S. Algorithm and Code Development for Unsteady Three-DimensionalNavier-Stokes Equations [R]. NASA-CR-195774,1994.
    [232] Pierce N A, Alonso J J. Efficient Computation of Unsteady Viscous Flows by anImplicit Preconditioned Multigrid Method [J]. AIAA Journal,1988,36:401-408.
    [233]陈亮中.双三角翼非定常分离流动的数值模拟研究[D].博士学位论文,绵阳:中国空气动力研究与发展中心研究生部,2009.
    [234]牟斌.流动控制数值模拟研究[D].博士学位论文,绵阳:中国空气动力研究与发展中心研究生部,2006.
    [235] Moin P, Kim J. Tackling Turbulence With Supercomputer [J]. ScientificAmerican,1997,276(1):62-68,.
    [236]邓小兵.不可压缩湍流大涡模拟研究[D].博士学位论文,绵阳:中国空气动力研究与发展中心研究生部,2007.
    [237] Spalart P R, Allmaras S R. A One-Equatlon Turbulence Model for AerodynamicFlows [R]. AlAA92-0439,1992.
    [238] Menter F R. Two-equation eddy-viscosity turbulence models for engineeringapplications [J]. AlAA Journal,1994,32(8):1598-605.
    [239] Baldwin B, Barth T J. A one-equation turbulence transport model for highReynolds number wall-bounded flows [R]. AIAA Paper91-0610,1991.
    [240] Kral L D. Recent experience with different turbulence models applied to thecalculation of flow over aircraft components [J]. Progress in Aerospace Sciences,1998,34(7-8):481-541.
    [241] Wilcox D C. Reassessment of the scale-determining equation for advancedturbulence models [J]. AIAA Journal,1988,26(11):1299-1310.
    [242] Jones W P, Launder B. E. The calculation of low-Reynolds-number phenomenawith a two-equation model of turbulence [J]. Int J Heat Mass Transfer,1973,16:1119-1130.
    [243]都志辉.高性能计算之并行编程技术——MPI并行程序设计[M].北京:清华大学出版社,2001.
    [244]钱翼稷.空气动力学[M].北京:北京航空航天大学出版社,2004.
    [245] Harris C D. Two-Dimensional Aerodynamic Characteristics of the NACA0012Airfoil in the Langley8-Feet Transonic Pressure Tunnel [R]. NASA TM-81927,1981.
    [246] Caradonna F X, Tung C. Experimental and Anlytical Studies of a ModelHelicopter Rotor in Hover [R]. NASA TM-81232,1981.
    [247] Steger J L, Lomax H. Transonic Flow About Two Dimension Airfoils byRelaxation Procedures [J]. AIAA Journal,1972,10(1):49-54.
    [248] Lohner R H, Parikh P. Generation of Three Dimensional Instructured Grids bythe Advancing Front Methods [J]. International J. Numer. Methods Fluids,1988,8:1135-1149.
    [249]郭永怀.边界层理论讲义[M].合肥:中国科学技术大学出版社,2008.
    [250]陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002.
    [251] Wieghardt K, Tillmann W. ON THE TURBULENT FRICTION LAYER FORRISING PRESSURE [R]. NACA TM-1314,1951.
    [252]赵学端.廖其奠.粘性流体力学[M].北京:机械工业出版社,1983.
    [253]徐华舫.空气动力学基础[M].北京:北京航空学院出版社,1987.
    [254]夏雪湔,邓学蓥.工程分离流动力学[M].北京:北京航空航天大学出版社,1991.
    [255]邓小兵.不可压缩流动的计算研究[D].硕士学位论文,绵阳:中国空气动力研究与发展中心研究生部,2001.
    [256] Alonso J, Martinelli L, Jameson A. Multigrid Unsteady Navier-StokesCalculations with Aeroelastic Applications [R]. AIAA95-0048,1995.
    [257] Landon R H. NACA0012oscillatory and transient pitching [R]. AGARD Report702, in: Compendium of unsteady aerodynamic measurements,1982.
    [258] Batina J T. Unsteady Euler Airfoil Solutions Using Unstructured DynamicMeshes [R]. AIAA89-0115,1989.
    [259] Kandil O A, Abdelhamid Y A. Computation and validation of delta wingpitching up to90deg amplitude [R]. AIAA97-3573,1997.
    [260]毛枚良,邓小刚,向大平.分区对接网格算法的应用研究[J].空气动力学学报,2002,20(2):179-183.
    [261]向大平,邓小刚,毛枚良.低马赫数流动分区并行计算研究[J].空气动力学学报,2002,20(增刊):77-81.
    [262]潘沙.高超声速气动热数值模拟方法及大规模并行计算研究[D].博士学位论文,长沙:国防科学技术大学研究生院,2010.
    [263]胡兆丰,何植岱,高浩.飞行力学--飞机的稳定性和操纵性[M].北京:国防工业出版社,1985.
    [264]孙海生.飞机机翼摇滚低速风洞实验研究[J].流体力学实验与测量,2000,14(4):32-35.
    [265]阎超,桂永丰,黄贤禄等.双三角翼前缘剖面形状对涡运动的影响[J].航空学报,2001,22(3):193-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700