多模式绿色开关电源控制器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效率智能化的绿色电源是任何一个优良的有源电子系统所应具备的。集成了多模式控制和监视保护功能的脉宽调制(PWM)集成电路芯片,是当今开关电源系统的核心部分,优良的PWM控制集成电路芯片可以大大减小了当今开关电源的体积并提高效率和可靠性。
     本文设计了一款多模式高效率高可靠性低干扰的绿色开关电源控制芯片。准谐振(QR)与脉频调制(PFM)联合的工作模式为在非常宽的输出功率范围内实现高转换效率提供了可能。可控脉冲触发(Burst)的待机模式保证在待机情况下功耗小于300mW。准谐振工作模式在提高转换效率的同时减小了电磁干扰。
     为了实现可靠的准谐振工作模式,设计准确的波谷检测电路是十分关键的,因为只有在功率管漏极的电压极低值开启功率开关管(MOSFET)才可以将开启损耗降到最小。在开关电源启动时,负载端的储能电容两端电压为零,相当于一个非常大的负载,可能引起错误的过载过流保护动作。在芯片启动时将过载过流保护屏蔽一段时间可以解决此问题,但是这样做不仅降低了芯片的可靠性,还可能使输入端产生“浪涌电流”造成输入电压波形塌陷使供电质量变差,还带来电磁干扰(EMI)等诸多问题。本文在控制器中设计了一个软启动电路,使开关电源能够在开启的一段时间内逐步提高占空比来给负载电容充电,当负载电容电压达到输出额定电压后,软启动结束并自动切换到正常工作模式。为了提高芯片的稳定性和可靠性,本文还设计了完善的各保护电路,包括过载保护、过压保护、欠压锁定、过流保护、过温保护等,目的是让芯片在任何可预见的恶劣情况下都能使保护电源系统和芯片本身,使之成为一款真正的绿色智能芯片。针对准谐振电流模式开关电源在一定程度上牺牲了电流模式中的电压前馈特性。本文详细分析了问题产生的原因,研究了解决的方法,设计了线电压前馈补偿模块。仿真结果的对比表明,在同一电源系统中,采用加入电压补偿模块的芯片可将原系统0.5%的输入电压调整率降至0.17%以内。电压前馈特性的改善不仅可以提高电源输出的质量,还可以减小滤波电容的大小节约电源成本,而且小的滤波电容对只有无源功率因数矫正(PPFC)的小容量电源提高功率因数也有一定的意义。
Efficient green mode power supplies are indispensable parts in active electronic systems. Integrated circuit with multi-mode control and protect functions is the kernel of the power supply system. Advanced PWM control integrated circuits can obviously reduce the size of today's power supplies and improve their efficiency and reliability.
     In this paper, we designed a highly efficient low-interference green mode switching power supply controller. Multi-mode operation which include Quasi- Resonant, PFM and Burst mode make it possible to achieve high conversion efficiency in a wide range of load. Burst mode ensures that power consumption in standby time is less than 0.3 watt. Quasi-resonant mode can improve the conversion efficiency and reduce the electromagnetic interference at the same time.
     In order to achieve reliable quasi-resonant operation, the design of an accurate valley detection circuit is very critical, Because opening the power MOSFET at time when the MOSFET drain voltage is lowest can minimize opening lose.In switching power supply was activated, the voltage between the two ends of the capacitor in load side is zero, which is equivalent to a very heavy load, may result in false overload or over-current protection. To resolve this problem we can shield the protection for a short time after the system starts, but that not only reduces the reliability of the chip, but also causes "inrush current" at input side, which debase the quality of power line, meanwhile it causes electromagnetic interference (EMI) and many other issues. So we designed a soft-start circuit to charge the load capacitor step by step after the system starts. The soft start process is over when the load capacitor voltage reaches the rated output voltage and the system automatically switches to normal mode.In addition, in order to enhance the stability and reliability of the chip, we designed advanced protection circuits, including overload protection, over-voltage protection, under-voltage lockout, over-current protection, over-temperature protection and so on, They can protect the power supply system and the chip itself in all foreseeable severe environments.To resolve the problem that voltage feed-forward characteristics are sacrificed to some extent in current mode quasi-resonant converters. The cause of the problem is analyzed and a solution is proposed in this paper. A voltage feed-forward compensation module was designed. With this module in chip, the voltage regulation can be reduced to 0.17% from 0.5% in the same power supply system. The improvement of voltage feedforward can not only improve the quality of power output, but also reduce the size of filter capacitors to save manufacturing costs. In small-capacity power supply with only passive power factor correction (PPFC) circuit, a small filter capacitor can also help the system improve power factor.
引文
[1] IEA. STANDBY POWER USE AND THE IEA“1-WATT PLAN”–FACT SHEET. http://www.iea.org/textbase/papers/2005/standby_fact.pdf, 2005-10-11
    [2] IEA. Reducing Standby Power Waste to Less than 1 Watt:A Relevant Global Strategy that Delivers. http://www.iea.org/textbase/papers/2002/globe02.pdf, 2002-11-12
    [3] Energy Star. Energy Star Program Requirements for Single Voltage External AC-DC and AC-AC Power Supplies, Eligibility Criteria (Version 2.0), Draft 1, http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/ eps_prog_reqs_d1v2.pdf, 2008-6-13
    [4] Blue Angel. Efficiency in Europe–The Blue Angel and European energy policy. http:// www.blauer-engel.de/_downloads/newsletter/UmweltzNr18E.pdf, 2007-2-18
    [5] Don Tuite. Energy-Efficiency Standards Around The Globe. http:// electronicdesign .com/Articles/ArticleID/13111/13111.html, 2006-8-3
    [6] Don Tuite.当今电源设计师面临着多个电源能效标准的困惑. http:// www.ed-china.com/ART_8800017301_400011_500009_OT_BF5A3F5D.htm
    [7] EPRI, Ecos. Generalized Test Protocol for Calculating the Energy Efficiency of Internal Ac-Dc and Dc-Dc Power Supplies http://www.80plus.org/manu/psu/ psu_join. aspx, 2008-10-13
    [8]岳宗文.首届“1瓦论坛”推进低待机能耗实施.中国电子报, 2006-6-19
    [9]张莉家.电待机能耗不可小觑“长明灯”悄悄吸食电费.工人日报, 2006-06-21
    [10]中标认证中心.单路输出式交流-直流和交流-交流外部电源节能产品认证技术要求, CSC/T30-2005
    [11] Abraham I. Pressman. Switching Power Supply Design, McGraw Hill, 2nd edition, 1998, 4-9
    [12]张小林,冉建桥,李贤云等.我国开关电源发展的思考.微电子学, 2004, 34(4):402-406
    [13]曾翔君,王晓宝,杨旭等.混合封装IPEM中功率电路的高频环流及其对控制驱动电路的影响.电工电能新技术,2004,23(2):5-8,21
    [14] Gene Heftman. PWM-From a Single Chip To a Giant Industry, Power Electronics Technology, 2005, 50-53
    [15] Mammano R. Switching power supply topology voltage mode vs. current modeTI Design Note 1994, DN-62:1-3
    [16]李宏,焦振宏.一种消除UC1846峰值电流取样信号前沿噪声的电路.电力电子技术,2001,35(3):53-55,61
    [17] Havem.R,何小乐.亚微米BiCMOS工艺技术.微电子技术, 1995,23(6):12-17
    [18]亦光.电源IC发展趋势综述.电子测试,2007,12:4-6
    [19] PI Inc. PI藉EcoSmart技术营造电源管理绿色空间. http://www.powerint. com/green-room, 2006-3-13
    [20] leadtrend Inc.通嘉科技将发表数款符合Energy Star新版标准的节能IC. http://www.leadtrend.com.tw, 2008-5-7
    [21] R. B. Ridley. A new continuous-time model for current-mode control, Power Electron, 1991, 6:271-280
    [22] Jon Harper.准谐振电源设计之探讨.中国集成电路,2008,17(5):46-48
    [23] K. H. Liu, R. Oruganti, F. C. Lee. Quasi-Resonant Converters Topologies and Characteristics. Power Electron,1987,2(1):62-71
    [24]陈静,庄光平.电子产品节能大有可为移动设备节能成市场先机.经济日报, 2007-07-17
    [25]孙新果.要进一步完善平板产业节能国家标准.中国电子报, 2009-03-26
    [26] George C. Chryssis, High-frequency Switching Power Supplies: Theory and Design,NewYork:McGraw-Hill,1995,2-20
    [27]甘鸿坚,严仰光.零电压谐振转换BUCK变换器的仿真分析.南京航空航天大学学报,1998,30(2):164-168
    [28]周志敏.开关电源的分类及应用.电源技术应用,2001,4(3):5-6
    [29]顾晓明,顾亦磊,吴燮华.一种零电压开关有源箝位双管正激变换器.浙江大学学报,2005,39(9):1296-1300
    [30]梁永春,孙林,龚春英等.反激逆变器研究.中国电机工程学报, 2005, 25(24):85-89
    [31]徐峰,常玉春,田小建等. PWM/PFM混合控制DC-DC变换器芯片的设计.微电子学,2006,36(5):662-665
    [32]安鸿峰,吴晓波,陈海等.一种多模式降压型DC-DC变换器的分析与设计.微电子学,2008,38(5):722-726
    [33]杨铭泽,陈锦云.软开关技术综述.中国电工技术学会电力电子学会第八届学术年会论文集[C],深圳:2002
    [34]丁万新,陈东坡,何乐年.用于电压模式的DC-DC转换器的前馈电路.电子器件,2008,31(6):1832-1835
    [35]赵婉婉,冯全源.升压型同步整流功率MOSFET的分析及电路仿真.半导体技术,2007, 32(11):975-979
    [36] PHILIP CTODD. UC3854 Controned Power Factor Correction Circuit Design. Product Application Hand Book. 1999,1995-1996
    [37] Unitrode Inc. UC3842/3/4/5 Provide Low cost Current Mode Control. Unitrode Application note,1998
    [38] Cadence Inc. Cadence Design Systems, Version 4.8, 2002. http://www.Cadence. com
    [39] SYNOPSYS Inc. HSPICE simulation and analysis user guide, 2005. http:// www.Synopsys.com
    [40]钟文耀,郑美珠. CMOS电路模拟与设计-基于Hspice,北京:科学出版社,2007:3-11
    [41] Y. C. Ryu, Y. W. Hwang. A new soft-start method with abnormal over-current protection function for switching power supplies. Electric Machines and Drives (IEMDC), San Antonio, 2005:421-425
    [42] Mengxiong Yang, Ke Jin, Xinbo Ruan etal. Soft Start Strategy for Bi-directional DC-DC Converter.Power Electronics Specialists Conference,PESC,2007: 161-164
    [43]张伟东,何杞鑫.一种适用于准谐振反激式AC/DC控制芯片的波谷电压检测电路.电子器件,2008,31(6):1786-1789

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700