2ME抑制高血压和Up4A诱导胃平滑肌收缩的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分雌激素代谢产物2-甲氧雌二醇治疗DOCA-盐大鼠高血压
     目的:使用低雌激素受体亲和性的雌激素代谢产物治疗高血压,具有降低女性化等副作用的优势。2-甲氧雌二醇(2MEthoxyestradiol,2ME))最早发现于妊娠妇女的尿液中,是雌二醇在细胞色素P450及儿茶酚-O-甲基转移酶等作用下,先羟基化再甲基化形成的一种主要代谢产物。我们先前的研究表明,2ME可以通过内皮依赖机制抑制血管平滑肌增殖和血管收缩。本研究的目的是探讨2ME是否可以治疗大鼠高血压。
     方法:利用单侧肾摘除和注射醋酸脱氧皮质酮,辅以高盐饮食的方法获得高血压大鼠模型—DOCA-盐大鼠。利用tail cuff方法实时监测2ME对DOCA-盐大鼠收缩压变化的影响(在血压升高前注射或在血压升高过程中注射)。使用Power Lab系统测量DOCA-盐大鼠的平均动脉压,并检测2ME对其急性降血压的作用。利用儿茶酚-O-甲基转移酶抑制剂恩他卡朋处理DOCA-盐大鼠,实时监测DOCA-盐大鼠收缩压变化并检测其平均动脉压。
     结果:我们的结果显示,用DOCA处理大鼠,可使其收缩压在3-10周明显上升。而用DOCA和2ME(100-300μg/kg)共同处理大鼠,可阻止大鼠血压上升。2ME处理十周后利用Power Lab Data Acquisition System测得的假手术对照组大鼠平均动脉压为84±16mmHg,DOCA-盐大鼠的平均动脉压为150±9mmHg。使用低剂量或高剂量2ME处理的大鼠,其血压接近假手术对照组。同时使用恩他卡朋抑制内源性2ME生成,并不能明显影响各组大鼠的血压。
     结论:2ME处理可以阻止DOCA-盐大鼠血压升高,显示了2ME在高血压治疗方面的潜在能力。
     第二部分Up4A引起大鼠胃平滑肌收缩的机理
     目的:细胞外核苷ATP和UTP可以诱导胃平滑肌收缩,最近发现尿苷腺苷四磷酸盐(Up4A),是一种可以诱导血管平滑肌收缩的内皮衍生的收缩因子,但它对胃平滑肌是否具有收缩能力尚未可知。我们假设Up4A通过不同机制在胃纵行平滑肌(LM)和胃环行平滑肌(CM)中引发收缩反应。为此检测P2X和P2Y受体拮抗剂,P2X受体激活剂,Rho激酶抑制剂以及环氧合酶抑制齐(IP5I,Suramin, α,β-Me-ATP,Y-27632和吲哚美辛)对Up4A在LM和CM中引发的收缩反应的影响。
     方法:获取大鼠全胃,分离LM和CM,使用organ bath系统测量平滑肌收缩。利用50mM KCl作为收缩基准,使用Up4A产生收缩,再分别使用钙离子通道拮抗剂尼莫地平,IP5I, Suramin,α,β-Me-ATP,Y-27632和吲哚美辛孵育,检测这些药物对Up4A在LM和CM中的收缩是否具有不同的影响。
     合成P2X和P2Y引物,使用RT-PCR检测P2X受体和P2Y受体在大鼠胃平滑肌中的表达状况。
     结果:Up4A可以在LM和CM中引起与ATP和UTP类似的收缩;Up4A对LM和CM的收缩需钙离子通道参与,使用尼莫地平孵育,不能使Up4A诱发LM和CM收缩,IP5I和α,β-Me-ATP对LM和CM中由Up4A引起的收缩并无影响,α,β-Me-ATP本身也不能引起大鼠胃平滑肌收缩;但Y-27632,Suramin和吲哚美辛则能在CM中显著抑制由Up4A引起的收缩,而LM中无此现象。RT-PCR结果显示,P2X1,2,4,5,7以及P2Y1,2,4,6在大鼠胃平滑肌中均有表达。
     结论:Up4A通过细胞外Ca2+可以引发大鼠胃LM和CM的收缩。Up4A在CM中引发的收缩是由suramin敏感的P2Y受体和Rho激酶途径激活介导的。
Part-Ⅰ Estrogen Metabolite2Methoxyestradiol Prevents Hypertension in Deoxycorticosterone Acetate-salt Rats
     Purpose:Our early work showed that the estrogen metabolite2Methoxyestradiol (2ME) inhibits proliferation of vascular smooth muscle cells (SMCs) and vascular contractility through an endothelium-dependent mechanism. The aim of this study was to examine whether2ME prevents the development of hypertension in rats.
     Methods:A hypertensive model was established in uninephrectomized rats using deoxycorticosterone acetate (DOCA)-salt. Blood pressure in response to2ME (treatment up to10weeks or single bolus) was monitored.
     Results:Our results showed that systolic blood pressure, as measured by tail-cuff plethysmography, was significantly increased in conscious rats treated with DOCA-salt for3-10weeks. Co-treatment with2ME (100-300μg/kg), but not dimethyl sulfoxide (DMSO), completely prevented the increase in blood pressure of DOCA-salt rats. After10-week treatment, the mean arterial blood pressure (MABP) of anesthetized rats measured using Power Lab Data Acquisition System was:84±16mmHg in normotensive control rats and150±9mmHg in DOCA-salt rats, which was similar to that of DMSO-treated rats. Treatment with2ME at low or high doses reduced MABP of DOCA-salt rats close to that of control normotensive rats. In addition, MABP of hypertensive DOCA-salt rats was significantly reduced inresponse to a single injection of2ME. Delayed administration of2ME reduced the further increase of blood pressure in DOCA-salt rats. However, inhibition of2ME production by entacapone did not significantly affect blood pressure in either control or DOCA-salt rats.
     Conclusions:2ME treatment prevents the development of hypertension in DOCA-salt rats, implicating a therapeutic potential of2ME in hypertension treatment.
     Part-II The Mechanism of Uridine Adenosine Tetraphosphate Induces Contraction of Circular and Longitudinal Gastric Smooth Muscle
     Purpose:Extracellular nucleotides uridine-50-triphosphate (UTP) andadenosine triphosphate (ATP) induce contraction of gastricsmooth muscle (SM). The dinucleotide uridine adenosine tetraphosphate(Up4A), an endothelium-derived contraction factor, induces vascular SM contraction. Its effect on gastric SM contractions, however, is unknown. We addressed the hypothesis that Up4A induces gastric SM contraction via a mechanism that may differ between circular and longitudinal muscle(CM and LM, respectively).
     Methods:CM and LM were isolated from rat gastric fundus for the measurement of isometric tension.Up4A induced transient contractile responses in both CM and LM, which were similar to those induced by ATP and UTP.
     Results:Up4A failed to induce contraction of either LM or CM in the absence of extracellular Ca2+or in the presence of nimodipine,an inhibitor of voltage-gated Ca2+channels. P2X1,2,4,5and7and P2Y1,2,4and6receptor expression was detected in gastric SM by reverse transcription-polymerase chain reaction.IP5I (a P2X receptor antagonist) anda,p-methylene-ATP(a P2X receptor agonist) had no effect on Up4A-induced contractions of either LM or CM, and α,β-methylene-ATP alone failed to induce a contractile response in either tissue. Suramin(a P2Y receptor antagonist), on the other hand, significantly inhibited Up4A-induced contraction of CM, but not LM.Up4A-induced contraction of CM, but not LM, was also inhibited by pretreatment with Y-27632, an inhibitor of Rho-associated kinase.
     ConcIusions:We conclude that Up4A induces extracellular Ca2+-dependent contractions of rat gastric LM and CM, and Up4A-induced contraction of CM is mediated by suramin-sensitive P2Y receptors and subsequent activation of the Rho associated kinase pathway.
引文
[1]Heagerty AM, Aalkjaer C, Bund SJ, et al. Small artery structurein hypertension. Dual processes of remodeling and growth. Hypertension1993;21:391-7.
    [2]Orshal JM, Raouf AK. Gender, sex hormones, and vascular tone. Am J PhysiolRegul Comp Physiol 2004;286:R233-49.
    [3]Mendelsohn ME, Karas RH. Mechanisms of disease:the protective effects of estrogen on the cardiovascular system. N Engl J Med.1999;340:1801-1811.
    [4]Farhat MY, Lavigne MC, Ramwell PW. The vascular protective effects of estrogen. FASEB J. 1996;10:615-624.
    [5]Mendelsohn ME. Nongenomic, ER-mediated activation of endothelial nitric oxide synthase:how does it work? What does it mean? Circ Res.2000;87:956-960.
    [6]Mendelsohn ME. Nongenomic, ER-mediated activation of endothelial nitric oxide synthase:how does it work? What does it mean? Circ Res.2000;87:956-960.
    [7]Chen Z, Yuhanna IS, Galcheva-Gargova ZI, et al, Mendelsohn ME,Shaul PW. Estrogen receptor a mediates the nongenomic activation ofendothelial nitric oxide synthase by estrogen. J Clin Invest.1999;103:401-406.
    [8]Haynes MP, Sinha D, Strong Russell K, et al. Membrane estrogen receptor engagementactivates endothelial nitric oxide synthase via the PI3-kinase-Akt pathwayin human endothelial cells. Circ Res.2000;87:677-682.
    [9]Simoncini T, Hafezi-Moghadam A, Brazil DP, et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature.2000;407:538-541.
    [10]Gustafsson JA. Estrogen receptor β:getting in on the action? Nat Med.1997;3:493-494.
    [11]Katzenellenbogen BS, Korach KS. A new actor in the estrogen receptordrama:enter ER-b. Endocrinology.1997;1381:861-862.
    [12]Gustafsson JA. Estrogen receptor b:a new dimension in estrogenmechanism of action. J Endocrinol.1999;163:379-383.
    [13]Iafrati MD, Karas RH, Aronovitz M, et al. Estrogen inhibits thevascular injury response in estrogen receptor a-deficient mice. Nat Med.1997;3:545-548.
    [14]Karas RH, Patterson BL, Mendelsohn ME. Human vascular smooth muscle cells contain functional estrogen receptor. Circulation.1994;89:1943-1950.
    [15]Kim-Schulze S, McGowan KA, Hubchak SC, et al. Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells.Circulation.1996;94:1402-1407.
    [16]Register TC, Adams MR. Coronary artery and cultured aortic smoothmuscle cells express mRNA for both the classical estrogen receptor and the newly described estrogen receptor (3. J Steroid Biochem Mol Biol.1998;64:187-191.
    [17]Lubahn DB, Moyer JS, Golding TS, et al. Alteration of reproductive function but not prenatal sexual developmentafter insertional disruption of the mouse estrogen receptor gene. Proc NatlAcad Sci U S A.1993;90:11162-11166.
    [18]Krege JH, Hodgin JB, Couse JF, et al. Generation and reproductivephenotype of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A.1998;95(26):15677-82.
    [19]Karas RH, Schulten H,-Pare G, et al. Effects of estrogen on the vascular injury response in estrogen receptor alpha, beta (double) knockout mice. Circ Res.2001;89(6):534-9.
    [20]Dubey RK, Jackson EK. Estrogen-induced cardiorenal protection:potential cellular, biochemical and molecular mechanisms. Am J Physiol Renal Physiol 2001;280:F365-F388
    [21]Miyauchi T, Masaki T. Pathophysiology of endothelin in the cardiovascular system. Annu Rev Physiol.1999;61:391-415
    [22]Dubey RK, Jackson EK, Keller PJ, et al. Estradiol metabolites inhibit endothelin synthesis by an estrogen receptor-independent mechanism. Hypertension.2001;37(2 Part 2):640-4
    [23]Barrett-Connor E, Bush TL. Estrogen and coronary heart disease in women. JAMA 1991;265:1861-1867.
    [24]Williams JK, Adams MR, Klopfenstein HB. Estrogen modulates responses of atherosclerotic coronary arteries. Circulation.1990;81:1680-1687.
    [25]Hamm TE, Kaplan JR, Clarkson TB, et al. Effects of gender and social behavior on the development of coronary artery atherosclerosis in the cynomolgus monkey. Atherosclerosis. 1983;48:221-233.
    [26]Stampfer MJ, Colditz GA, Willett WC, Manson JE, Rosner B, Speizer FE, Hennekens CH. Postmenopausal estrogen therapy and cardiovascular disease:ten year follow-up from the Nurses Health Study. N Engl J Med.1991;325:756-762.
    [27]Grady D, Rubin SM, Petitti DB, et al. Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med.1992;117:1016-1037.
    [28]Davies MJ, Richardson PD, Woolf N, et al. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J. 1993;69:377-381.
    [29]Davies MJ. Anatomic features in victims of sudden coronary death:coronary artery pathology. Circulation.1992;85(suppl Ⅰ):Ⅰ-19-Ⅰ-24.
    [30]Davies MJ, Woolf N, Rowles P, Richardson PD. Lipid and cellular constituents of unstable human aortic plaque. Basic Res Cardiol.1994;89:I33-I39.
    [31]Falk E. Morphologic features of unstable atherothrombotic plaques underlying acute coronary syndromes. Am J Cardiol.1989;63:114E-120E.
    [32]Falk E. Why do plaques rupture? Circulation.1992;86(suppl Ⅲ):Ⅲ-30-Ⅲ-42.
    [33]Moreno PR, Falk E, Palacios IF, Newell JB, et al. Macrophage infiltration in acute coronary syndromes:implications for plaque rupture. Circulation.1994;90:775-778.
    [34]Okumura K, Yasue H, Matsuyama K, et al. Effect of acetylcholine on the highly stenotic coronary artery:difference between the constrictor response of the infarct-related coronary artery and that of the noninfarct-related artery. J Am Coll Cardiol.1992;19:752-758.
    [35]Bogaty P, Hackett D, Davies G, et al. Vasoreactivity of the culprit lesion in unstable angina. Circulation.1994;90:5-11.
    [36]Barr DP, Russ EM, Eder HA. Protein lipid relationships in human plasma. Am J Med. 1952;11:480-493.
    [37]Matthews KA, Meilahn E, Kuller LH, et al. Menopause and risk factors for coronary artery disease. N Engl J Med.1989;321:641-646.
    [38]Stevenson JC, Crook D, Godsland IF. Influence of age and menopause on serum lipids and lipoproteins in healthy women. Atherosclerosis.1993;98:83-90.
    [39]Soma MR, Osnago-Gadda I, Paoletti R, et al.The lowering of lipoprotein[a] induced by estrogen plus progesterone replacement therapy in postmenopausal women. Arch Intern Med. 1993:153:1462-1468.
    [40]Shewmon DA, Stock JL, Rosen CJ, et al. Tamoxifen and estrogen lower circulation lipoprotein(a) concentrations in healthy postmenopausal women. Arterioscler Thromb.1994; 14:1586-1593.
    [41]Mendoza S, Velasquez E, Osona A, Hamer T, et al. Postmenopausal cyclic estrogen-progestin therapy lowers lipoprotein[a]. J Lab Clin Med.1994;123:837-841
    [42]Walsh BW, Schiff I, Rosner B, et al. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med.1991;325:1196-1204.
    [43]Lafferty FW, Fiske ME. Postmenopausal estrogen replacement:a long-term cohort study. Am J Med.1994;97:66-76.
    [44]Hong MK, Romm PA, Reagan K, et al. Effects of estrogen replacement therapy on serum lipid values and angiographically defined coronary artery disease in postmenopausal women. Am J Cardiol.1992;69:176-178.
    [45]Sacks FM, McPherson R, Walsh BW. Effect of postmenopausal estrogen replacement on plasma Lp(a) lipoprotein concentrations. Arch Intern Med.1994:154:1106-1110.
    [46]D'Amato RJ, Lin CM, Flynn E, et al.2MEthoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci USA.1994;91(9):3964-8.
    [47]Xu X, Roman JM, Issaq HJ, et al. Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal Chem.200715;79(20):7813-21.
    [48]刘颖2-甲氧基雌二醇的研究进展哈尔滨医药2011年第31卷第3期
    [49]Shah JV, Cleveland DW. Waiting for anaphase:Mad2 and the spindle assembly checkpoint. Cell. 2000; 103:997-1000.
    [50]Jordan MA, Toso RJ, Thrower D, et al. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci U S A.1993;90:9552-9556.
    [51]Niculescu AB 3rd, Chen X, Smeets M, et al. Reed SI Effects of p21(Cipl/Wafl) at both the G1/S and the G2/M cell cycle transitions:pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol.1998;18:629-643.
    [52]Stewart ZA, Leach SD, Pietenpol JA. p21(Wafl/Cipl) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol.1999;19:205-215.
    [53]Pribluda VS, Gubish ER Jr, Lavallee TM, et al.2MEthoxyestradiol:an endogenous antiangiogenic and antiproliferative drug candidate. Cancer Metastasis Rev. 2000;19:173-179.
    [54]Barchiesi F, Jackson EK, Gillespie DG, et al. Methoxyestradiols mediate estradiol-induced antimitogenesis in human aortic SMCs. Hypertension.2002;39:874-879.
    [55]Gui Y, Zheng X-L.2MEthoxyestradiol induces cell cycle arrest and mitotic cell apoptosis in human vascular smooth muscle cells. Hypertension.2006;47(2):271-80.353.
    [56]Orshal JM, Khalil RA. Gender, sex hormones, and vascular tone. Am J Physiol Regul Integr Comp Physiol 286:R233-R249,2004.
    [57]Lantin-Hermoso RL, Rosenfeld CR, Yuhanna IS, et al. Estrogen acutely stimulates nitric oxide synthase activity in fetalpulmonary artery endothelium. Am J Physiol Lung Cell Mol Physiol 273:L119-L126,1997.
    [58]Orshal JM, Khalil RA. Gender, sex hormones, and vascular tone. Am JPhysiol Regul Integr Comp Physiol 286:R233-R249,2004.
    [59]Weiner CP, Lizasoain I, Baylis SA, K et al. Induction of calcium-dependent nitric oxide synthases by sexhormones. Proc Natl Acad Sci USA 91:5212-5216,1994.
    [60]Andersen HL, Weis JU, Fjalland B, et al. Effect of acute andlong-term treatment with 17-beta-estradiol on the vasomotor responses inthe rat aorta. Br J Pharmacol 126:159-168, 1999.
    [61]Jiang C, Sarrel PM, Poole-Wilson PA, et al. Acute effect of17-estradiol on rabbit coronary artery contractile responses to endothelin-1. Am J Physiol Heart Circ Physiol 263:H271-H275, 1992.
    [62]Kitazawa T, Hamada E, Kitazawa K, et al. Non-genomicmechanism of 17 beta-oestradiol-induced inhibition of contraction inmammalian vascular smooth muscle. J Physiol 499:497-511, 1997.
    [63]Thomas G, Ito K, Zikic E, et al. Specificinhibition of the contraction of the rat aorta by estradiol 17 beta. J PharmacolExp Ther 273:1544-1550,1995.
    [64]Revankar CM, Cimino DF, Sklar LA, et al. A ransmembrane intracellular estrogen eceptor mediates rapid cell signaling. Science 307:1625-1630,2005.
    [65]Thomas P, Pang Y, Filardo EJ, et al. Identity of an estrogen embrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146:624-632,2005.
    [66]Haas E, Meyer MR, Schurr U, et al. Differential effects ofl7beta-estradiol on function and expression of estrogen receptor alpha.estrogen receptor beta, and GPR30 in arteries and veins of patients withatherosclerosis. Hypertension 49:1358-1363,2007.
    [67]Barchiesi F, Jackson EK, Gillespie DG, et al. Methoxyestradiols mediate estradiol-induced antimitogenesisin human aortic SMCs. Hypertension 39:874-879,2002.
    [68]Zacharia LC, Gogos JA, Karayiorgou M, et al. Methoxyestradiols mediate the antimitogeniceffects of 17beta-estradiol:direct evidence from catechol-O-methyltransferase-knockout mice. Circulation 108:2974-2978,2003.
    [69]Kolodney MS, Elson EL. Contraction due to microtubule disruption isassociated with increased phosphorylation of myosin regulatory lightchain. Proc Natl Acad Sci USA 92:10252-10256, 1995.
    [70]Paul RJ, Bowman PS, Kolodney MS. Effects of microtubule disruptionon force, velocity, stiffness and [Ca2+] in porcine coronary arteries. Am JPhysiol Heart Circ Physiol 279:H2493-H2501, 2000.
    [71]Platts SH, Martinez-Lemus LA, Meininger GA. Microtubule-dependentregulation of vasomotor tone requires Rho-kinase. J Vasc Res 39:173-182,2002.
    [72]Kitazawa T, Hamada E, Kitazawa K, et al. Non-genomicmechanism of 17 beta-oestradiol-induced inhibition of contraction inmammalian vascular smooth muscle. J Physiol 499:497-511,1997.
    [73]Tofovic SP, Maddy H, Jackson EK. Estradiol metabolites attenuate renal andcardiovascular injury induced by chronic angiotensin II administration. Hypertension2003;42:414.
    [74]Tofovic SP, Jackson EK, Mady H.2MEthoxyestradiol attenuates hypertensionand cardiac and vascular remodeling in constricted aorta rat model. J Am SocNephrol 2003;14:620.
    [75]Bonacasa B, Sanchez ML, Rodriguez F, et al.2MEthoxyestradiol attenuates hypertension and coronary vascular remodeling in spontaneously hypertensive rats. Maturitas. 2008;61(4):310-6.
    [76]Watts SW, Rondelli C, Thakali K, et al. Morphological and biochemical characterization of remodeling in aorta and vena cava of DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol.2007;292(5):H2438-H48.
    [77]Kirchner KA, Scanlon PH, Dzielak DJ, et al. Endothelium-derived relaxing factor responses in Doca-salt hypertensive rats. Am J Physiol Heart Circ Physiol.1993;265(3 Pt 2):R568-72.
    [78]Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension:from Goldblatt to genetic engineering. Cardiovasc Res.1998;39(1):77-88.
    [79]Bojo, L., R. A. Lefebvre, et al. Involvement of vasoactive intestinal polypeptide in gastric reflexrelaxation. Eur. J. Pharmacol.236:443-448,1993.
    [80]Furness, J. B., M. Costa. The Enteric Nervous System.New York:Churchill Livingstone,1987.
    [81]Krantis, A., I. Glasgow, A. E. McKay, et al. A method for simultaneous recording and assessmentof gut contractions and relaxations in vivo. Can. J. Physiol.Pharmacol.74: 894-903,1996.
    [82]Otsuguro,K., Ito, S., Ohta, T., et al. Influenceof purines and pyrimidines on circular muscle of therat proximal stomach. Eur. J. Pharmacol.1996:317,97-105.
    [83]Vetri, T., Bonvissuto, F., Marino, A., et al. Nitrergic and purinergic interplay in inhibitorytransmission in rat gastric fundus. Auton. Autacoid Pharmacol.2007;27,151-157.
    [84]Otsuguro, K., Ohta, T., Ito, S., et al. Two types of relaxation-mediating P2 receptors in rat gastric circularmuscle. Jpn. J. Pharmacol.1998:78,209-215.
    [85]Glasgow, I., Mattar, K., Krantis, A. Rat gastroduodenalmotility in vivo:involvement of NO and ATP in spontaneous motor activity. Am. J. Physiol. Gastrointest.Liver Physiol.1998:275, G889-G896.
    [86]Ahn, S. C., Xu, W. X., et al. Effects of purinergic agonists on mechanical and electrical activities of gastric smooth muscle of guinea-pig. J. Smooth Muscle Res.1995:31,407-410.
    [87]Jenkinson, K. M. Reid, J. J. The P(2)-purinoceptorantagonist suramin is a competitive antagonist at vasoactiveintestinal peptide receptors in the rat gastric fundus.Br. J. Pharmacol.2000:130, 1632-1638.
    [88]Jankowski, V., T€olle, M., Vanholder, R.et al. Uridine adenosine tetraphosphate:a novel endothelium-derived vasoconstrictive factor. Nat. Med.2005:11,223-227.
    [89]Matsumoto, T., Tostes, R. C., Webb, R. C. The role of uridine adenosine tetraphosphate in the vascularsystem. Adv. Pharmacol. Sci.2011, ID435132.
    [90]Gui, Y., Walsh.M. P., Jankowski, V., et al. Up4A stimulates endothelium-independentcontraction of isolated rat pulmonary artery. Am.J. Physiol. Lung Cell Mol. Physiol.2008:294, L733-L738.
    [91]Linder, A. E., Tumbri, M., Linder, F. F. P., et al. Uridine adenosine tetraphosphate inducescontraction and relaxation in rat aorta. Vascul. Pharmacol.2008:48,202-207.
    [92]Hansen, P. B., Hristovska, A., Wolff, H., et al. Uridine adenosine tetraphosphateaffects contractility of mouse aorta and decreases bloodpressure in conscious rats and mice. Acta Physiol.2010:200,171-179.
    [93]Gui, Y., Wang, Z., Sun, X., et al. Uridine adenosine tetraphosphate induces contractionof airway smooth muscle. Am. J. Physiol. Lung Cell.Mol. Physiol.2011:301, L789-L794.
    [94]U. Landmesser, B. Hornig, H. Drexler,. Endothelial function:a critical determinant in atherosclerosis? Circulation,vol.109, no.21, supplement 1, pp. Ⅱ27-Ⅱ33,2004.
    [95]M. F'el'etou, P. M. Vanhoutte. Endothelial dysfunctions multifaceted disorder (The Wiggers Award Lecture), American Journal of Physiology, vol.291, no.3, pp. H985-H1002,2006.
    [96]R. O. Cannon Ⅲ, Role of nitric oxide in cardiovasculardisease:focus on the endothelium,. Clinical Chemistry, vol.44,no.8, pp.1809-1819,1998.
    [97]P. M. Vanhoutte, M. Feletou, et al. Endothelium dependent contractions in hypertension, British Journal ofPharmacology, vol.144, no.4, pp.449-458,2005.
    [98]E. H. Tang and P. M. Vanhoutte, "Endothelial dysfunction:a strategic target in the treatment of hypertension?" European Journal of Physiology, vol.459, no.6, pp.995-1004,2010.
    [99]P. M. Vanhoutte, M. Feletou, and S. Taddei, Endotheliumdependentcontractions in hypertension, British Journal ofPharmacology, vol.144, no.4, pp.449-458,2005.
    [100]E. H. Tang and P. M. Vanhoutte, Endothelial dysfunction:a strategic target in the treatment of hypertension? PflugersArchiv European Journal of Physiology, vol.459, no.6, pp.995-1004, 2010.
    [101]M. Barton, Obesity and aging:determinants of endothelialcell dysfunction and atherosclerosis, Pflugers Archiv EuropeanJournal of Physiology, vol.460, no.5, pp.825-837,2010.
    [102]T. Matsumoto, T. Kobayashi, and K. Kamata, Relationshipsamong ET-1, PPARy, oxidative stress and endothelial dysfunctionin diabetic animals, Journal of Smooth Muscle Research,vol. 44, no.2, pp.41-55,2008.
    [103]A. Virdis, L. Ghiadoni, and S. Taddei, Human endothelialdysfunction:EDCFs, Pflugers Archiv, vol.459, no.6, pp.1015-1023,2010.
    [104]D. Versari, E. Daghini, A. Virdis, L. Ghiadoni, et al. Endothelium-dependent contractions and endothelial dysfunctionin human hypertension, British Journal of Pharmacology, vol.157, no. 4, pp.527-536,2009.
    [105]P. M. Vanhoutte, H. Shimokawa, E. H. Tang, et al. Endothelial dysfunction and vascular disease, ActaPhysiologica, vol.196, no.2, pp.193-222,2009.
    [106]E. L. Schiffrin, A critical review of the role of endothelialfactors in the pathogenesis of hypertension, Journal of CardiovascularPharmacology, vol.38, supplement 2, pp. S3-S6.2002.
    [107]Q. Chen, E. E. Kim, K. Elio et al., The Role of tetrahydrobiopterinand dihydrobiopterin in ischemia/reperfusioninjury when given at reperfusion, Advances in PharmacologicalSciences, vol.2010, Article ID 963914,2010.
    [108]G. Burnstock. Purinergic signaling and vascular cell proliferationand death. Arteriosclerosis, Thrombosis, and VascularBiology, vol.22, no.3, pp.364-373,2002.
    [109]G. Burnstock. Dual control of vascular tone and remodellingby ATP released from nerves and endothelial cells. PharmacologicalReports, vol.60, no.1, pp.12-20,2008.
    [110]G. Burnstock. Purinergic regulation of vascular tone andremodelling. Autonomic and Autacoid Pharmacology, vol.29,no.3, pp.63-72,2009.
    [111]L. Erb, Z. Liao, C. I. Seye, and G. A. Weisman, "P2 receptors:intracellular signaling," Pflugers Archiv, vol.452, no.5, pp.552-562,2006.
    [112]Z. Guan, D. A. Osmond, and E. W. Inscho. P2X receptors asregulators of the renal microvasculature. Trends in PharmacologicalSciences, vol.28, no.12, pp.646-652,2007.
    [113]V. Jankowski, M. van der Giet, H. Mischak et al. Dinucleoside polyphosphates:strong endogenous agonists of the purinergic system. BritishJoumal of Pharmacology, vol.157, no. 7, pp.1142-1153,2009.
    [114]D. Erlinge and G. Bumstock. P2 receptors in cardiovascularregulation and disease. Purinergic Signalling, vol.4, no.1, pp.1-20,2008.
    [115]G. Gabriels, K. H. Rahn, E. Schlatter, and M. Steinmetz. Mesenteric and renal vascular effects of diadenosinepolyphosphates (APnA). Cardiovascular Research, vol.56, no.1, pp.22-32, 2002.
    [116]N. A. Flores, B. M. Stavrou, and D. J. Sheridan, The effectsof diadenosine polyphosphates on the cardiovascular system. Cardiovascular Research, vol.42, no.1, pp.15-26,1999.
    [117]B. B. Fredholm, A. P. IJzerman, K. A. Jacobson, et al. International union of basic and clinicalpharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacological Reviews,vol.63, no.1, pp.1-34,2011.
    [118]G. Burnstock. Purine and pyrimidine receptors. Cellular and Molecular Life Sciences, vol.64, no.12, pp.1471-1483,2007.
    [119]S. P. H. Alexander, A. Mathie, and J. A. Peters. Guide toreceptors and channels (GRAC),4th edition. British Journalof Pharmacology, vol.158, supplement 1, p. S1,2009.
    [120]M. P. Abbracchio, G. Bumstock, J. M. Boeynaems et al. International union of pharmacology LVIII:update on theP2Y G protein-coupled nucleotide receptors:from molecularmechanisms and pathophysiology to therapy. PharmacologicalReviews, vol.58, no.3, pp.281-341, 2006.
    [121]I. von K"ugelgen. Pharmacological profiles of cloned mammalianP2Y-receptor subtypes. Pharmacology & Therapeutics.vol.110, no.3, pp.415-432,2006.
    [122]A. Surprenant and R. Alan North. Signaling at purinergicP2X receptors. Annual Review of Physiology, vol.71, pp.333-359,2009.
    [123]Duhant X.Schandene L,Bruyns C,et al. Extracellular adenine nucleotides inhibit the activation of human CD4+T lymphocytes.J Immunol 2002;169:15-21.
    [124]Khakh BS,Burnstock G,Kennedy C,et al.International union of pharmacology. ⅩⅩⅣ.Current status of the nomenclature and properties of P2X receptors and theirsubunits.Pharmacol Rev 2001;53:107-118.
    [125]North RA.Molecular physiology of P2X receptors-Physiol Rev 2002;82:1013-1067.
    [126]Valera S,Hussy N,Evans RJ,et al.A new class of ligand-gated ion channel definedby P2X receptor for extracellular ATP.Nature 1994;371:516-519.
    [127]Lynch KJ,Touma E,Niforatos W,et al.Molecular and functional characterization ofhuman P2X2 receptors.Mol Pharmacol 1999;56:1171-1181.
    [128]Garcia-Guzman M.Stuhmer W,Soto F.Molecular characterization andpharmacological properties of the human P2X3 purinoceptor.Brain Res Mol BrainRes 1997;47:59-66.
    [129]Garcia-Guzman M,Soto F.Gomez-Hernandez JM, et al. Characterization of recombinant human P2X4 receptor reveals pharmacologicaldifferences to the rat receptor.Mol Pharmacol 1997;51:109-118.
    [130]Le KT,Paquet M,Nouel D,Babinski K, et al. Primary structure and expressionof a naturally truncated human P2X ATP receptor subunit from brain and immunesystem.FEBS Lett 1997;418:195-199.
    [131]Urano T,Nishimori H,Han H,et al. Cloning of P2XM,a novel human P2X receptorgene regulated by p53.Cancer Res 1997;57:3281-3287.
    [132]Rassendren F,Buell GN,Virginio C,et al.The permeabilizing ATP rerceptor,P2X7.Cloning and expression of a human Cdna.J Biol Chem 1997;272:5482-5486.
    [133]Boeynaems JM,Communi D,Gonzalez NS et al. Overview of the P2 receptor.Semin Thromb Hemost 2005;31:139-149.
    [134]A. E. Linder,M. Tumbri, F. F. Linder, et al. Uridine adenosine tetraphosphate induces contraction andrelaxation in rat aorta. Vascular Pharmacology, vol.48, no.4-6, pp.202-207, 2008.
    [135]R. F. Bruns. Adenosine antagonism by purines, pteridines andbenzopteridines in human fibroblasts. Biochemical Pharmacology,vol.30, no.4, pp.325-333,1981.
    [136]S. Damer, B. Niebel, S. Czeche et al. NF279:a novel potentand selective antagonist of P2X receptor-mediated responses. European Journal of Pharmacology, vol.350, no.1, pp. R5-R6.1998.
    [137]A. P. Stork and T. M. Cocks. Pharmacological reactivityof human epicardial coronary arteries: phasic and tonicresponses to vasoconstrictor agents differentiated by nifedipine. British Journal of Pharmacology, vol.113, no.4, pp.1093-1098,1994.
    [138]S. Narumiya, T. Ishizaki, and M. Uehata. Use and propertiesof ROCK-specific inhibitor Y-27632. Methods in Enzymology,vol.325, pp.273-284,2000.]
    [139]Y. Gui, M. P. Walsh, V. Jankowski, et al. Up4A stimulates endothelium-independent contraction of isolated rat pulmonary artery. American Journal ofPhysiology, vol.294, no.4, pp. L733-L738,2008.
    [140]M. T"olle,M. Schuchardt, A.Wiedon et al. Differential effectsof uridine adenosine tetraphosphateon purinoceptors in therat isolated perfused kidney. British Journal of Pharmacology,vol.161, no.3, pp.530-540,2010.
    [141]. V.Jankowski, A. Patzak, S. Herget-Rosenthal et al.. Uridineadenosine tetraphosphate acts as an autocrine hormone affectingglomerular filtration rate. Journal of Molecular Medicine,vol.86, no.3, pp.333-340,2008.
    [142]C. M. Chan, R. J. Unwin, M. Bardini et al. Localization ofP2X1 purinoceptors by autoradiography and immunohistochemistryin rat kidneys,. American Journal of Physiology, vol.274, no.4, pp. F799-F804,1998.
    [143]E. W. Inscho, A. K. Cook, J. D. Imig et al. Physiological role for P2X1 receptors in renal microvascularautoregulatory behavior. The Journal of Clinical Investigation,vol.112, no.12, pp.1895-1905,2003.
    [144]P. B. Hansen, A. Hristovska, H. Wolff, et al. Uridine adenosine tetraphosphate affectscontractility of mouse aorta and decreases blood pressure inconscious rats and mice. Acta Physiologica, vol.200, no.2, pp.171-179,2010.
    [145]V. Jankowski, A. A. Meyer, P. Schlattmann et al. Increaseduridine adenosine tetraphosphate concentrations in plasmaof juvenile hypertensives. Arteriosclerosis, Thrombosis, andVascular Biology, vol.27, no.8, pp.1776-1781,2007.
    [146]T. Matsumoto, R. C. Tostes, and R. C. Webb. Uridine adenosinetetraphosphate-induced contraction is increased in renalbut not pulmonary arteries from DOCA-salt hypertensiverats. American Journal of Physiology, vol.301, no.2, pp. H409-H417,2011.
    [147]F. R. Giachini, J. C. Sullivan, V. V. Lima et al. Extracellularsignal-regulated kinase 1/2 activation, via downregulation ofmitogen-activated protein kinase phosphatase 1, mediates sexdifferences in desoxycorticosterone acetate-salt hypertensionvascular reactivity. Hypertension, vol.55, no.1, pp.172-179,2010.
    [148]F. R. Giachini, S. M. Zemse, F. S. Carneiro et al. Interleukin-10 attenuates vascular responses to endothelin-1 via effects onERKl/2-dependent pathway. American Journal of Physiology,vol. 296, no.2, pp. H489-H496,2009.
    [149]T. Matsumoto, K. Ishida, N. Nakayama et al. Involvement of NO and MEK/ERK pathwayin enhancement of endothelin-1-induced mesenteric arterycontraction in later-stage type 2 diabetic Goto-Kakizaki rat. American Journal of Physiology, vol.296, no.5, pp. H1388-H1397.2011
    [150]T. Kobayashi, T. Nogami, K. Taguchi, et al. Diabetic state, high plasma insulin and angiotensinll combine to augment endothelin-1-induced vasoconstrictionvia ETA receptors and ERK. British Journal of Pharmacology,vol.155, no.7, pp.974-983,2008.
    [151]O. O". Braun, D. Lu, N. Aroonsakool et al. Uridine triphosphate (UTP) induces profibrotic responses incardiac fibroblasts by activation of P2Y2 receptors. Journal of Molecular and Cellular Cardiology, vol.49, no.3, pp.362-369,2010.
    [152]Burnstock, G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol. Rev.200658:58-86.
    [153]Matharu MS, Hollingswurtb M. Purinoceptors nlediating relaxation and spasm in the rat gastric fundus[J].J Pharmacol,1992,106(2):395-403.
    [154]Rastaldo R.Paolocci N,Chiribiri A,et al. Cytochrome P-450 metabolite of arachidonic acid mediates bradykinin-induced negative inotropic effect.[J].Am J Physiol Heart Cire Physiol.2001;280(6):H2823-32.
    [155]李福恩,丁莉莉.内皮素的生物学功能[J].生命的化学(中国生物化学会通讯).1994(03)
    [156]李雪玲;胡锡衷;林赛梅:刘小晴;血液流变学、甲皱微循环、体外血栓形成联合监测在高血压病中的价值.中国心血管康复医学,1994,z1
    [157]刘春萍动脉顺应性及其影响因素.中国动脉硬化杂志2001年第9卷第3期
    [158]公茂莲;张红叶;扬军等.原发性高血压遗传模式研究.高血压杂志,1999 Mar 7(1)
    [159]雷寒.原发性高血压细胞膜离子转运学说与临床。心血管病学进展1989 10(3):29-31
    [160]钟海兰.血管内皮功能障碍与高血压.心血管病学进展2009年第30卷第1期
    [161]丁报春,李子瑜,肖伟文.肾素一血管紧张素系统.生理科学进展1979年第10卷第4期,318-329
    [162]党政华,肖军,孙蓉珍,白云霞.高血压的神经、精神症状.《医学综述》1995年第1卷第1期
    [163]Hill JS, Hayden MR, Frolich J et al. Genetic and environmental factors affecting the incidence of coronary artery disease in heterozygous familial hypercholesterolemia. Arterioscler Thromb. 1991;11:290-297.
    [164]Meredith IT, Yeung AC, Weidinger FF, et al. Role of impaired endothelium-dependent vasodilation in ischemic manifestations of coronary artery disease. Circulation.1993;87(suppl V):V-56-V-66.
    [165]Meredith IT, Yeung AC, Weidinger FF, Anderson TJ, Uehata A, Ryan TJ, Selwyn AP, Ganz P. Role of impaired endothelium-dependent vasodilation in ischemic manifestations of coronary artery disease. Circulation.1993;87(suppl V):V-56-V-66.
    [166]Gimbrone MA. Vascular endothelium:an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol.1995;75:67B-70B.
    [167]Gimbrone MA, Cybulsky MI, Kume N, et al. Vascular endothelium:an integrator of pathophysiological stimuli in atherogenesis. Ann NY Acad Sci.1995;748:122-131.
    [168]Nabel EG, Ganz P, Gordon JB, Alexander RW, et al. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation.1988;77:43-52.
    [169]Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med.1986;315:1046-1051.
    [170]Vita JA, Treasure CB, Nabel EG, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation.1990;81:491-497.
    [171]Gisclard V, Miller VM, Vanhoutte PM. Effect of 17-β estradiol on endothelium-dependent responses in the rabbit. J Pharmacol Exp Ther.1988;244:19-22.
    [172]Gilligan DM, Quyyumi AA, Cannon RO. Effects of physiological levels of estrogen on coronary vasomotor function in postmenopausal women. Circulation.1994;89:2545-2551.
    [173]Reis SE, Gloth ST, Blumenthal RS, et al. Ethinyl estradiol acutely attenuates abnormal coronary vasomotor responses to acetylcholine in postmenopausal women. Circulation. 1994;89:52-60.
    [174]Lieberman EH, Gerhard M, Yeung AC, et al. Estrogen improves coronary vasomotor responses to acetylcholine in postmenopausal women. Circulation.1993;88(suppl I):I-79.
    i [175] Williams JK, Adams MR, Herrington DM, et al. Short-term administration of estrogen and vascular responses of atherosclerotic coronary arteries. J Am Coll Cardiol.1992;20:452-457.
    [176]Rosselli M, Imthurn B, Keller PJ, et al. Circulating nitric oxide (nitrite/nitrate) levels in postmenopausal women substituted with 17β-estradiol and norethisterone acetate:a two-year follow-up study. Hypertension.1995;25:848-853.
    [177]Harrison DG, Ohara Y. Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis:implications for impaired vasomotion. Am J Cardiol. 1995;75:75B-81B.
    [178]Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest.1991;88:1785-1792.
    [179]Liao F, Andalibi A, Lusis AJ, et al. Generic control of the inflammatory response induced by oxidized lipids. Am J Cardiol.1995;75:65B-66B.
    [180]Steinberg D. Antioxidants in the prevention of human atherosclerosis. Circulation. 1992;85:2337-2344.
    [181]Sugioka JM, Shimosegawa Y, Nakano MM. Estrogens as natural antioxidants of membrane lipid peroxidation. FEBS Lett.1987;210:37-39.
    [182]Keaney JF, Shwaery GT, Xu A, et al.17β-estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation. 1994;89:2251-2259.
    [183]Sack MN, Rader DJ, Cannon RO. Estrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. Lancet.1994;343:269-270.
    [184]Jiang C, Sarrel PM, Lindsay DC, et al. Endothelium-independent relaxation of rabbit coronary artery by 17 beta-oestradiol in vitro. Br J Pharmacol.1991;104:1033-1037.
    [185]Jiang C, Sarrel PM, Poole-Wilson PA, et al. Acute effect of 17-β estradiol on rabbit coronary artery contractile responses to endothelin-1. Am J Physiol.1992;263:H271-H275.
    [186]Harder DR, Coulson PB. Estrogen receptors and effects of estrogen on membrane electrical properties of coronary vascular smooth muscle. J Cell Physiol.1979;100:375-382.
    [187]Fischer GM, Cherian K, Swain ML. Increased synthesis of aortic collagen and elastin in experimental atherosclerosis. Atherosclerosis.1981;39:463-467.
    [188]Fischer GM, Swain ML. Effects of estradiol and progesterone on the increased synthesis of collagen in atherosclerotic rabbit aortas. Atherosclerosis.1985;54:1770-1785.
    [189]Fischer GM. In vivo effects of estradiol on collagen and elastin dynamics in rat aorta. Endocrinology.1972;9:1227-1232.
    [190]Beldekas JC, Smith B, Gerstenfeld LC, et al. Effects of 17-β estradiol on the biosynthesis of collagen in cultured bovine aortic smooth muscle cells. Biochemistry.1981;20:2162-2167.
    [191]Okakomoto Aoki K. Development of a strain of spontaneously hypertensive rat. Jap Circ J 1963;27:282-293.
    [192]Aitman TJ, Gotoda T, Evans AL, et al. Syndrome X genes:Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet 1997;16(2):197-201.
    [193]Kren V, Pravenec M, Lu S, et al. Genetic isolation of a region of chromosome 8 that exerts major effects on blood pressure and cardiac mass in the spontaneously hypertensive rat. J Clin Invest 1997;99(4):577-581.
    [194]Kapuscinski M, Charchar F, Innes B, et al. Nerve growth factor gene and hypertension in spontaneously hypertensive rats. J Hy pertens 1996;14(2):191-197.
    [195]Koletsky S, Pavlicko KM, Rivera Velez JM. Renin angiotensin activity in hypertensive rats with a single ischemic kidney. Lab Invest 1971;24(1):41-44.],是重要的模拟高血压早期的模型[Brunner HR, Kirshman JD, Sealey JE, et al. Hypertension of renal origin:evidence for two different mechanisms. Science 1971;174(16):1344-1346.
    [196]Langheinrich M, Lee MA, Bohm M, et al. The hypertensive Ren 2transgenic rat TGR (mREN2)27 in hypertension research. Characteristicsand functional aspects. Am J Hypertens 1996;9:506-512.
    [197]Whitworth CE, Fleming S, Cumming AD, et al. Spontaneousdevelopment of malignant phase hypertension in transgenic Ren 2 rats. Kidney Int 1994;46:1528-1532.
    [198]Meneely GR,Ball COT. Experimental epidemiology of chronicsodium chloride toxicity and the protective effect of potassium chloride. Am J Med 1958;25:713.
    [199]Rapp JP. Dahl salt susceptible and salt resistant rats. Hypertension 1982;4:753-763.
    [200]Gomez-Sanchez EP, Zhou M, Gomez-Sanchez CE. Mineralocorticoids, salt and high blood pressure. Steroids 1996;61:184-188.
    [201]Lakhani NJ, Lepper ER, Sparreboom A, D et al. Determination of 2-methoxyestradiol in human plasma, using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom.2005;19(9):1176-82.
    [202]Schrag A. Entacapone in the treatment of Parkinson's disease. Lancet Neurol. 2005;4(6):366-70.
    [203]Kanasaki K, Palmsten K, Sugimoto H, et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature.2008;453(7198):1117-21.
    [204]Harrison MR, Hahn NM, Pili R, et al. A phase II study of 2-methoxyestradiol (2ME2) NanoCrystal?dispersion (NCD) in patients with taxane-refractory, metastaticcastrate-resistant prostate cancer (CRPC). Invest New Drugs.2011;29(6):1465?4.
    [205]Sweeney C, Liu G, Yiannoutsos C, et al. A phase II multicenter, randomized, double-blind, safetytrial assessing the pharmacokinetics, pharmacodynamics, and efficacyof oral 2-methoxyestradiol capsules in hormone-refractoryprostate cancer. Clin Cancer Res. 2005;11(18):6625-33.
    [206]Samaan SA,, Crawford MH. Estrogen and cardiovascular function after menopause. J Am Coll Cardiol,1995; 26:1403.
    [207]Denke MA. Effects of continuous combined hormone-replacement therapy on lipid levels in hypercholesterolemic postmenopausal women. Am J M ed,1995; 99:29.
    [208]Lafferty FW, Fiske ME. Postmenopausal estrogen replacement:a long-term cohort study. Am J Med,1994; 97:66.
    [209]Keaney JF Jr, Shwaery GT, Xu A, et al.17 beta-estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation,1994; 89:2251.
    [210]Sack MN, Rader DJ, Cannon RO 3rd. Oestrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. Lancet.1994 29;343(8892):269-70.
    [211]Karas RH, Patterson BL, Mendelsohn ME. Human vascular smooth muscle cells contain functional estrogen receptor. Circulation.1994;89(5):1943-50.
    [212]Losordo DW, Kearney M, Kim EA, et al. Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women. Circulation. 1994;89(4):1501-10.
    [213]Gilligan DM, Badar DM, Panza JA, et al. Acute vascular effects of estrogen in postmenopausal women. Circulation.1994;90(2):786-91.
    [214]Gilligan DM, Quyyumi AA, Cannon RO 3rd. Effects of physiological levels of estrogen on coronary vasomotor function in postmenopausal women. Circulation.1994;89(6):2545-51.
    [215]Collins P, Rosano GM, Sarrel PM, et al.17 beta-Estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation. 1995 1;92(1):24-30.
    [216]White RE, Darkow DJ, Lang JL. Estrogen relaxes coronary arteries by opening BKCa channels through a cGMP-dependent mechanism. Circ Res.1995;77(5):936-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700