固有免疫受体NOD2在心室重构中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     心室重构是指心室受到损伤时发生的结构和功能的改变,出现心肌细胞肥大、死亡、间质纤维化、心肌肥厚、心肌细胞膜离子通道、交感神经支配的变化等。许多心血管疾病如高血压、心肌梗死、心力衰竭、扩张型心肌病、心脏瓣膜病等都存在心室重构现象,另外在高同型半胱氨酸血症、动脉粥样硬化、糖尿病等其他疾病并发症中也存在心室重构现象。心室重构是多种因素共同作用所产生的形态学、分子生物学、病理生理学、电生理环境的变化,其机制主要包括炎症反应、血流动力学负荷、细胞因子生成和蛋白酶诱导的细胞外基质(extracellular matrix, ECM)降解。
     NOD样受体(NOD-like receptor, NLRs)是一类新型胞浆内的固有免疫模式识别受体,识别细胞内病原体相关分子模式(pathogen-associated molecular patterns, PAMPs)或内源性危险信号相关分子(dangers-associated molecular patterns, DAMPs),从而启动免疫应答,在自身免疫调节中起重要作用。到目前为止,共发现了22个NLR家族成员,其中最具代表性的是NOD1(nucleotide-binding oligomerization domain containing1)和NOD2(nucleotide-binding oligomerization domain containing2).有文献报道,NOD1激动剂iEDAP注射小鼠心脏,激活NF-κB (nuclear transcription factor κB)和TGF-β (transforming growth factor β)信号通路,诱导心肌细胞坏死和凋亡进而导致心脏功能异常。但有关NOD2在心脏中表达及在心室重构中的作用,迄今尚未见报道。为此,本课题选用高同型半胱氨酸血症(hyperhomocysteinemia, hHcys)及心肌梗死(myocardial Infarction, MI)两种不同程度的心室重构模型,探讨NOD2是否参与心室重构过程,并就NOD2调节心室重构过程的可能机制进行深入研究。
     研究方法
     第一部分:通过无叶酸饮食建立WT和CBS+/-小鼠高同型半胱氨酸血症模型,利用小动物超声心动图检测小鼠左心室内径及心功能,Western Blot、RT-PCR和免疫组化等方法检测NOD2在心肌组织中的表达情况。体外实验用不同浓度的L-Hcy刺激大鼠心肌细胞H9C2和平滑肌细胞(smooth muscle cell,SMC),Western Blot方法检测NOD2的蛋白表达水平。为探讨NOD2在高同型半胱氨酸血症心室重构中的机制,我们采用NOD2敲基因鼠建立高同型半胱氨酸血症模型,进一步利用小动物超声心动图检测小鼠左心室内径及心功能指标,观察NOD2对hHcys引起心室重构的影响;Masson染色观察小鼠纤维化程度;通过Western Blot方法检测心室重构标志物基质金属蛋白酶2(matrix metalloproteinase2,MMP-2)、基质金属蛋白酶9(matrix metalloproteinase9,MMP-9)及基质金属蛋白酶抑制剂1(tissue inhibitor of metalloproteinase1,TIMP-1)等指标的表达变化。
     第二部分:通过永久性结扎冠状动脉左前降支建立小鼠心肌梗死模型。在心梗后3、7、14和28天分别收集梗死区和非梗死区的心肌组织,用实时荧光定量PCR检测不同梗死时间后NOD2的mRNA表达水平,通过免疫组化染色和、Western Blot分析心梗NOD2的蛋白表达水平。为进一步明确NOD2在心梗左室重构中的作用,采用NOD2敲基因小鼠建立心肌梗死模型,小动物超声心动图检测心肌梗死的小鼠左心室内径及心功能。通过Masson和Tunel染色观察野生和NOD2-/-小鼠心梗后纤维化程度及细胞调亡情况,酶联免疫吸附法(enzyme-linked immunosorbent assay,ELISA)测定组织的促炎细胞因子水平,心肌组织裂解液运用Western Blot和明胶酶谱法检测MMP9、MMP2蛋白及活性变化,并用免疫组化染色观察心梗后炎性细胞浸润和心脏成纤维细胞(cardiac fibroblast,CF)转分化成心肌成纤维细胞情况。体外实验采用小鼠原代成纤维细胞探讨NOD2参与心室重构的分子机制,运用Western Blot等方法测定胞壁酰二肽(Muramyl Dipeptide,MDP)刺激成纤维细胞所产生的p38、细胞外信号调节激酶(Extracellular regulated proteinkinases1/2,ERK1/2)磷酸化水平及成纤维细胞缺氧4h复氧不同时间后NOD2和MMP9蛋白表达水平;ELISA检测MDP刺激成纤维细胞及成纤维细胞转染后缺氧4h复氧24h产生的炎性因子变化水平。
     结果
     第一部分:①NOD2随着血浆Hcy浓度的升高蛋白表达增加,在CBS+/-模型组中表达最强,其次是WT模型组。免疫组化和PCR结果同样证实,NOD2在CBS+/-模型组中的表达最强。②利用不同浓度的L-Hcy刺激大鼠心肌细胞H9C2,发现NOD2的表达成浓度依赖性上调,其中,L-Hcy浓度在25μmol/L时,NOD2表达最强;不同浓度的L-Hcy刺激SMC, NOD2的表达同样显著上调。③心室重构标志物MMP9在WT模型中表达显著升高,NOD2敲除后MMP9表达降低;COL1在WT模型中表达降低,而NOD2敲除后COL1表达升高。虽然NOD2能影响MMP9、 C0L1的蛋白表达,但是NOD2缺失未能减轻hHcys引起的心室重构。相比于WT对照组,WT模型组的左室舒张末期内径(LVIDd),左室收缩末期内径(LVIDs)增大,说明左室肥大;左室舒张末期后壁厚度(LVPWd)和左室收缩末期后壁厚度(LVPWs)降低则表明左室壁变薄。而NOD2敲基因鼠高同型半胱氨酸血症后的左室肥大和室壁变薄现象并没有改变,说明NOD2基因敲出后未能减轻hHcys引起的心室重构。
     第二部分:①首次证实,NOD2在心梗组织中表达升高。与假手术组相比,MI组非梗死区和梗死区NOD2mRNA表达水平明显升高,其中梗死区NOD2的mRNA表达变化水平最高,而且呈时间依赖性变化;Western Blot和免疫组化结果同样证实了心梗后NOD2表达升高。②NOD2缺失能减轻心梗后心肌功能失常和心肌重构的发生。通过超声心动图发现,NOD2-/-,心梗组心功能损伤明显改善;WT心梗后变化的左室直径和室壁厚度在NOD2"/-敲基因鼠模型中也有所减轻,心肌重构减弱;TUNEL和Masson染色显示在NOD2-/-心梗组,细胞凋亡和心肌纤维化程度明显降低。③我们进一步发现,NOD2缺失能降低心梗区炎性因子水平,炎性细胞的浸润及MMP-9的活性。心梗发生后,TGF-β、白介素1β(interleukin,IL-1p)、肿瘤坏死因子α(Tumor Necrosis Factor,TNF-α)、单核细胞趋化蛋白1(monocyte chemoattractant protein, MCP-1)等炎性因子水平显著升高,而NOD2缺失能降低这些炎性因子的水平。小鼠心肌梗死后MMP9的蛋白和活性都升高, NOD2缺失后减弱了MI导致的MMP9蛋白和活性水平的提高。炎性细胞浸润在NOD2-/-心梗组中表达也显著降低。④MDP诱导心肌成纤维细胞有丝分裂原激活蛋白激酶(Mitogenaetivated proteinkinase, MAPK)信号通路的激活和促进促炎介质的产生。我们利用NOD2激活剂MDP刺激心肌成纤维细胞,发现P38、ERK-1/2等激酶的磷酸化水平增加;IL-1β、TNF-α、TGF-β、MCP-1、IL-8、细胞间黏附因子1(Intercellular adhesion molecule,ICAM-1)等促炎介质表达水平显著升高。⑤NOD2沉默减弱缺氧诱导的MMP9表达。在原代培养的心肌成纤维细胞中,缺氧/复氧显著增加NOD2和MMP9的表达,NOD2基因沉默后,缺氧诱导的MMP9表达和促炎介质的表达受到抑制。
     结论
     1.本文首次探讨了NOD2在高同型半胱氨酸血症(hHcys)导致心室重构中的作用,发现NOD2在CBS+/-造模的hHcys小鼠心肌组织中蛋白及mRNA水平显著升高;利用NOD2敲基因鼠进一步研究发现, NOD2缺失虽能降低心室重构标志物MMP9的表达,但对高同型半胱氨酸血症诱导的心室重构没有改善作用。分析原因一是高同型半胱氨酸血症对心脏的损伤较小,只影响左室舒张内径和左室后壁厚度而对心脏收缩及舒张功能没有影响,因此NOD2缺失后的改善作用未能体现出来。二是NOD2敲除后可能衍生出别的代偿机制从而影响高同型半胱氨酸血症引起的心脏损伤,具体机制需进一步明确。
     2.建立冠状动脉左前降支结扎心肌梗死模型,研究NOD2是否参与心肌梗死导致的心室重构过程。我们证实,在心肌梗死区和非梗死区NOD2mRNA表达水平明显升高,其中梗死区NOD2的mRNA表达变化水平最高。利用NOD2敲基因鼠进一步研究发现,NOD2缺失能减轻心梗后心功能障碍和心肌重构的发生,细胞凋亡和心肌纤维化程度也明显降低。研究表明,NOD2通过调控MMP9蛋白及活性、炎性介质水平和炎性细胞浸润来介导心肌梗死后左室重构过程。体外采用小鼠心脏原代成纤维细胞,研究表明MDP诱导激活了心肌成纤维细胞MAPK通路,p38,ERK1/2磷酸化水平升高,并且释放大量炎性介质;心肌成纤维细胞缺氧再灌注NOD2和MMP-9水平明显升高,而NOD2基因沉默后,缺氧诱导的MMP9蛋白表达及炎性介质水平明显降低。
Objective
     Ventricular remodeling is the changes of structure and function in the incidence of heart damage, such as myocardial necrosis and apoptosis, cardiac hypertrophy, interstitial fibrosis, change in cardiac ion channels and sympathetic innervations. Many cardiovascular diseases such as hypertension, myocardial infarction, heart failure, dilated cardiomyopathy, valvular heart disease have the phenomenon of ventricular remodeling. In addition, hyperhomocysteinemia, atherosclerosis and diabetic complications also have the phenomenon of ventricular remodeling. Ventricular remodeling is the combined effects produced by a variety of morphological, molecular biology, pathophysiology changes, electrophysiological environment, its mechanisms including inflammation, hemodynamic load, neurohormonal activation, cytokine production and protease-induced extracellular matrix degradation.
     NOD-like receptors (NOD-like receptor, NLRs) are innate immune pattern recognition receptors which recognise intracellular pathogen-associated molecular patterns or endogenous danger signals related molecules, thereby initiating an immune response.NLRs plays an important role in the regulation of immune response. So far,22NLR family members are currently discovered, the most representative NLRs are NOD1and NOD2. It has been reported that activation of NOD1with the specific agonist iEDAP induces a time-and dose-dependent cardiac dysfunction that occurs concomitantly with cardiac fibrosis and apoptosis. The administration of iEDAP promotes the activation of the NF-κB and TGF-β pathways and induces apoptosis in the heart. But so far, the expression of NOD2and the role of NOD2involved in ventricular remodeling in the heart keeps unknown. Therefore, in the present study we selected two different exent ventricular remodeling model--yperhomocysteinemia and myocardial infarction to investigate whether NOD2is involved in ventricular remodeling and to explore the possible mechanisms by which NOD2regulates the ventricular remodeling.
     Methods
     Section one:Hyperhomocysteinemia model was established by WT and CBS+/" mouse non-folate diet, left ventricular internal diameter and cardiac function was acquired by echocardiography. Western Blot, RT-PCR and immunohistochemistry was done to evaluate the expression of NOD2in the myocardium. To investigate the mechanisms of cardiac dysfunction and ventricular remodeling caused by hHcys, we used NOD2gene knockout mouse to establish hyperhomocysteinemia model. Left ventricular internal diameter and cardiac function acquired by echocardiography was to observe whether there was a little amelioration in ventricuar remodeling in NOD2knockout mouse; Masson staining was to observe the degreement of fibrosis in mice; the protein level of matrix metalloproteinase MMP2, MMP9and matrix metalloproteinase inhibitor TIMP-1was detected by Western Blot.
     Section two:Mouse MI model was induced by permanent left anterior descending coronary artery ligation. Sham operated ones underwent the same procedure but ligation. Both infarct and remote myocardium from sham and post-MI3,7,14and28days were homogenized to evaluate mRNA expression of NOD2by quantitative real-time polymerase chain reaction(qPCR), and detect its protein level by Western Blot and immunohistochemistry post-MI28days. To further investigate the role of NOD2in post-MI LV remodeling process, NOD2gene knockout mouse were used to establish myocardial infarction model. Left ventricular internal diameter and cardiac function post-MI28days were acquired by echocardiography; Masson staining and Tunel staining were used to observe the degreement of fibrosis and apoptosis; the enzyme-linked immunosorbent assay (ELISA) measured tissue proinflammatory factor levels; the protein level and activity changes of matrix metalloproteinase MMP2, MMP9of cardiac tissue lysates were detected by Western Blot and gelatin zymography. The inflammatory cells infiltration after myocardial infarction and cardiac fibroblasts (cardiac fibroblast) trans-differentiation into cardiomyocytes fibroblasts were observed by immunohistochemical. In vitro, use mouse fibroblasts to investigate the molecular mechanisms of ventricular remodeling which NOD2was involved in.The phosphorylation levels of ERK1/2and p38in fibroblasts stimulated with MDP were detected by Western Blot which was also used to acquire NOD2and MMP9protein levels in cardiac fibroblasts under hypoxia/reoxygenation conditon; RT-PCR detected the transfection efficiency of NOD2; ELISA determined relative levels of proinflammtory mediators in cardiac fibroblasts with shRNA-NOD2transfection.
     Results
     Section one:First of all, NOD2expression was improved with increasing concentrations of Hcy. The level of NOD2in CBS+-/-model group was highest, and then WT model group. Immunohistochemistry and PCR results also confirmed that NOD2expression in CBS+-/-model group was the strongest.②NOD2expression was significantly increased in H9C2stimulated with different concentrations of L-Hcy. NOD2expression was the strongest when L-Hcy concentration was25μmol/L. The same result was found in SMC.③The expression of MMP9which was a ventricular remodeling marker was significantly increased in WT model group, while reduced in NOD2knockout model group; the expression of COL1was significantly decreased in WT model group, while increased in NOD2knockout model group. Although NOD2can affect the expression of MMP9, COL1, but failed to change hHcys-induced ventricular remodeling. Compared to WT controls group, LVIDd LVIDs increased in WT model group indicating left ventricular hypertrophy; LVPWd and LVPWs decreased indicating left ventricular wall thinning. NOD2gene knockout failed to alleviate the left ventricular hypertrophy and ventricular wall thinning.
     Section two:①NOD2expression was significantly increased in the cardiac infarcted area in post-MI mice. NOD2mRNA levels were significantly increased in the tissue from the cardiac infracted area in post-MI mice at different time points. The enhanced NOD2protein levels were further confirmed by Western blot and immunochemical.②NOD2deficiency exhibited improvements in cardiac dysfunction and remodeling after MI. Cardiac functions were examined by echocardiography at28days after MI.MI significantly decreased cardiac function in WT mice as evidenced by decreases in EF%, FS%, when compared with WT basal controls, which can be recovered in NOD2-/-mice. In NOD2-/-mice, the MI-induced LV enlargement and wall thinning were significantly improved. Furthermore, TUNEL staining and Masson trichrome staining indicated that NOD2deficiency protected against ischemia-induced cell death and cardiac fibrosis.③NOD2deficiency reduced the levels of proinflammatory mediators, inflammatory cell infiltration and MMP-9activity after MI. NOD2deficiency significantly reduced the levels of proinflammatory cytokines and chemokines including IL-1β, TGF-P, TNF-a and MCP-1in the cardiac infarcted area in mice after MI. Moreover, elevated MMP-9levels and activity in the cardiac tissues were blocked by NOD2deficiency after MI.The infiltration of inflammation cells and the expression of a-SMA was significantly reduced in NOD2-/-mice.④MDP induced activation of MAPK signaling pathways, production of proinflammatory mediators in primary cultured cardiac fibroblasts. MDP induced the activation of MAPKs as assessed by measuring the levels of phospho-specific ERK-1/2, p38MAPK. Also MDP enhanced the production of proinflammatory mediators in primary cultured cardiac fibroblasts.⑤Gene silencing of NOD2attenuated hypoxia-induced MMP-9expression.In primary cultured cardiac fibroblasts, hypoxia/reoxygenation significantly enhanced NOD2and MMP9enpression while hypoxia-induced MMP-9expression was markedly blocked by shRNA-NOD2. Additionly, hypoxia-induced the production of proinflammatory mediators was attenuated by gene silencing of NOD2.
     Conclusion
     1. We investigated for the first time the role of NOD2in ventricular remodeling caused by hHcys. In this study, we found that the mRNA and protein levels of NOD2significantly increasedin myocardial tissue of CBS+-/-hyperhomocysteinemia mouse. Further study observed that although NOD2deficiency reduced the levels of MMP expression which is a ventricular remodeling marker, but it had no improvement for hyperhomocysteinemia-induced ventricular remodeling.The possible reasons were that hyperhomocysteinemia induced less damage to heart, only had the effects on the left ventricular diastolic inner diameter and left ventricular posterior wall thickness and has no effect on systolic and diastolic function, thus the improving role of NOD2failed to be reflected. Secondly some other compensatory mechanisms may be involved in the development of hyperhomocysteinemia.
     2. We further explored whether NOD2participated in ventricular remodeling caused by mycardial infarction with the model of left anterior descending coronary artery ligation. We confirmed for the first time that mRNA levels of NOD2were significantly higher in the infarcted area and non-infarcted area, expecially in the infarcted area. Further study found that NOD2deficiency attenuated cardiac dysfunction and remodeling after myocardial infarction and protectd against ischemia-induced cell death, also cardiac fibrosis was significantly reduced in NOD2-/-mice. Studies had shown that NOD2mediated left ventricular remodeling after myocardial infarction by regulating the levels of MMP9protein and activity, inflammatory mediators production and inflammatory cell infiltration. In vitro studies had shown that NOD2agonist MDP induced the activation of MAPKs in cardiac fibroblasts as assessed by measuring the levels of phospho-specific ERK1/2p38MAPK. We also observed that MDP enhanced the production of proinflammatory mediators and hypoxia/reoxygenation significantly enhanced NOD2and MMP-9expression in primary cultured cardiac fibroblasts. After silencing NOD2gene, hypoxia-induced MMP9expression was markedly blocked and hypoxia-induced the production of proinflammatory mediators was attenuatd.
引文
[1]Tsikas D, Sandmann J, Rossa S, et al. Investigations of S-transnitrosylation reaction between low-and High-molecular-weight S-nitroso compounds and their thiols by high-performance liquid chromatography and gas chromatography-mass spectrometry. Anal Biochem.1999,270(2):231:241.
    [2]张艳梅.高同型半胱氨酸血症研究进展[J].实用全科医学,2007,5(7):646-647.
    [3]Steed MM, Tyagi SC. Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal.2011,15(7):1927-1943.
    [4]Zylberstein DE, Bengtsson C, et al. Serum homocysteine in relation to mortality and morbidity from coronary heart disease:a 24-year follow-up of the population study of women in Gothenburg. Circulation.2004,109:601-606.
    [5]Stubbs PJ, Al-Obaidi MK, Conroy RM, et al. Effect of plasma homocysteine concentration on early and late events in patients with acute coronary syndromes. Circulation.2000,102:605-610.
    [6]Herrmann W. The importance of hyperhomocysteinemia as a risk factor for diseases:an overview. Clin Chem Lab Med.2001,39(8):666-674.
    [7]Boushey CJ, Beresford SA, Omenn GS, et al. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA.1995,274(13):1049-1057.
    [8]Finch JM, Joseph J. Homocysteine, cardiovascular inflammation, and myocardial remodeling. Cardiovasc Hematol Disord-Drug Targets.2010,10(4):241-245.
    [9]McCully KS. Chemical pathology of homocysteine. IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation. Ann Clin Lab Sci.2009, 39(3):219-232.
    [10]Sipkens JA, Krijnen PA, Meischl C, et al. Homocysteine affects cardiomyocyte viability:concentration dependent efects on reversible flip flop apoptosis and necrosis. Apoptosis.2007,12(8):1407-1418.
    [11]Sipkens JA, Krijnen PA, Hahn NE, et 81. Homocysteine-induced eardiomyoce apoptosis and plasma membrane flip-flop are independent of Sadenosylhomocysteine:a crucial role for nuclear p47 (phox). Mol Cell Biochem.2011,358 (1/2):229-239.
    [12]Levrand S, Pacher P, Passe P, et al. Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite. Biochem Biophys Res Commum.2007,359(3):445-450.
    [13]Dong F, Zhang X, Li SY, et al. Possible involvement ofNADPH oxidase and JNK in homocysteine induced oxidative stress and apoptosis in human umbilical vein endothelial cells. Cardiovascular Toxicol..2005,5(1):9-20.
    [14]Lopez B, Gonzalez A, Diez J. Role of matrix metalloproteinases in hypertension-associated cardiac fibrosis. Curr Opin Nephrol Hypertens.2004, 13:197-204.
    [15]Li YY, Mctiernan CF, Feidman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res.2000,46:214-224.
    [16]王金凤,任立群,李广生,等.同型半胱氨酸对血管平滑肌细胞基质金属蛋白酶1活性的影响[J].中国动脉硬化杂志,2004,12(1):15-18.
    [17]王会芹,郭宏.叶酸、维生素B6和维生素B12对高同型半胱氨酸血症大鼠心室重构的影响[J].中国全科医学,2013,1(16):275-279.
    [18]Harada E, Nakagawa O, Yoshimura M, et al. Effect of interleukin-1β on cardiac hypertrophy and production of natriuretic peptides in rat cardiocyte culture.J Mol Cell Cardiol.1999,31 (11):1997-2006.
    [19]Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J Gastroenterol.. 2004,10(12):1699-1708.
    [20]Joseph J, Kennedy RH, Devi S, et al. Protective role of mast cells in homocysteine-induced cardiac remodeling. Am J Physiol Heart Circ Physiol.. 2005,288(5):H2541-H2545.
    [21]Lecat A, Piette J, Legrand-Poels S. The protein Nod2:an innate receptor more complex than previously assumed. Biochem Pharmacol.2010, 80(12):2021-2031.
    [22]Martinon F, Tschopp J. NLRs join in TLRs as innate sensors of pathogens. Trens Immunol.2005,26(8):447-454.
    [23]Ogura Y, lnohara N, Benlto A, et al. Nod2, a Nodl/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem.2001,276 (7): 4812-4818.
    [24]Riedl SJ, Li W, Chao Y, et al. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature.2005,434(7035):926-933.
    [25]Inohara N, Kosoki T, Lin J, et al. An induced proximity model for NF-kappa B activation in the Nod1/BICK and RIP signaling pathways. J Bial Chem.2000, 275 (36):27823-27831.
    [26]Laman JD, Schoneveld AH, Moll FL. et al. Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and iIs association with vulnerable plaques. Am J Cardiol.2002,90(2):119-123.
    [27]Galluzzo S1, Patti G, Dicuonzo G, Di Sciascio G, Tonini G, Ferraro E, Spoto C, Campanale R, Zoccoli A, Angeletti S. Association between NOD2/CARD15 polymorphisms and coronary artery disease:a case-control study. Hum Immunol. 2011,72(8):636-640.
    [28]El Mokhtari NE1, Ott SJ, Nebel A, Schafer A, Rosenstiel P, Forster M, Nothnagel M, Simon R, Schreiber S. Role of NOD2/CARD15 in coronary heart disease. BMC Genet. 2007 Nov 2;8:76.
    [29]Ross R. Atherosclerosis-an inflammatory disease. N. En91. JMed.1999,340: 115-126.
    [30]Fuster V. Mechanisms leading to myocardial infarction:insight from studies of vascular biology. Circulation.1994,90:2126-2146.
    [31]Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis:basic mechanisms, Oxidation, inflammation, and genetics. Circulation.1995,91:2488-2496.
    [32]Rosenberger D, Gargoum R, Tyagi N, et, al. Homocysteine enriched diet leads to prolonged QT interval and reduced left ventricular performance in telemetric monitored mice. Nutr Metab Cardiovasc.2011,21(7):492-498.
    [33]Vizzardi E, Bonadei I, Zanini G, et, al. Homocysteine and heart failure:an overview. Recent Pat Cardiovasc Drug Discov.2009,4(1):15-21.
    [34]Herrmann M, Taban-Shomal O, et, al. A review of homocysteine and heart failure. Eur J Heart Fail.2006,8(6):571-576.
    [35]Opitz B, Puschel A, Schmeck B, et al. Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. JBio Chem.2004,279(35):36426-36432.
    [36]Ferwerda G, Girardin SE, Kullberg BJ, et al. NOD2 and Toll-like receptors are nonredundant recognition systems of Mycobacteirum tuberculosis. PLoS Pathog.2005,1(3):279-285.
    [37]Kanazawa N, Okafuji I, Kambe N, et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor κB activation:common genetics etiology with Blau syndrome. Blood.2005,105(3):1195-1197.
    [38]Yazdanyar S, Nordestgaard BG. NOD2/CARD15 genotype, cardiovascular disease and cancer in 43,600 individuals from the general population.J Intern Med.2010,268(2):162-70.
    [39]Jahanyar J, Youker K A, Loebe M, Assad-Kottner, et al. Mast cell-derived cathepsing:a possible role in the adverse remodeling of the failing heart.J Surg Res.2007,140(2):199-203.
    [40]Finch JM, Joseph J. Homocysteine, cardiovascular inflammation, and myocardial remodeling. Cardiovasc Hematol Disord Drug Targets.2010,10(4):241-245.
    [41]Chen C, Halkos ME, Surowiec SM., et al. Effects of homocysteine on smooth muscle cell proliferation in both cell culture and artery perfusion culture models. J Surg Res.2000,88:26-33.
    [42]Wang G, Siow YL. Homocysteine stimulates nuclear factor kappaB activity and monocyte chemoattractant protein-1 expression in vascular smooth-muscle cells: a possible role for protein kinase C. Biochem.2000,3:817-26.
    [43]Woo DK, Dudrick SJ, Sumpio BE. Homocysteine stimulates MAP kinase in bovine aortic smooth muscle cells. Surgery.2000,128(1):59-66.
    [44]Levrand S1, Pacher P, Pesse B, Rolli J, Feihl F, Waeber B, Liaudet L. Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite. Biochem Biophys Res Commun.2007, 359(3):445-450.
    [45]Gao X, Xu XB, Pang J, Zhang C, Ding JM, Peng X, et al. NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardio. Physiol Res.2007,56:559-569.
    [46]Moshal KS, Tipparaju SM, Vacek TP, et al. Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol. 2008,295(2): H890-H897.
    [47]Moshal KS, Camel CK, Kartha GK, et al. Cardiac dys-synchronization and arrhythmia in hyperhomocysteinemia. Curr Neurovasc Res.2007,4(4): 289-294.
    [48]Moshal KS, Metreveli N, Frank I, Tyagi SC. Mitochondrial MMP activation, dysfunction and arrhythmogenesis in hyperhomocysteinemia. Curr Vasc Pharmacol.2008,6(2):84-92.
    [49]李小勇,马静萍.基质金属蛋白酶-9在高同型半胱氨酸大鼠中的表达及意义[J].中国医疗前言,2010,5(2):22-32.
    [50]Rosenberger D, Gargoum R., Tyagi N, Metreveli N, et, al. Homocysteine enriched diet leads to prolonged QT interval and reduced left ventricular performance in telemetric monitored mice. Nutr Metab Cardiovasc Dis.2011, 21(7):492-498.
    [1]孟淑玲,宋有诚.急性心肌梗死后左心室重构及其防治[J].中国心血管杂志,2002,7:212-214
    [2]Nian M1, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res.2004,94(12):1543-1553.
    [3]Sun Y. Myocardial repair/remodelling following infarction:roles of local factors. Cardiovasc Res.2009,81(3):482-490.
    [4]Lee CS, Tkacs NC. Current concepts of neurohormonal activation in heart failure: mediators and mechanisms. AACN Adv Crit Care.2008,19(4):364-385.
    [5]Zamilpa R, Lindsey ML. Extracellular matrix turnover and signaling during cardiac remodeling following MI:causes and consequences.J Mol Cell Cardiol. 2010,48(3):558-563.
    [6]张莉娜,袁艳荣,孙慧丽,等.Ang11、TGF-13、MMP-1及TMP-1与原发性高血压左心室肥厚的相关性研究[J].山东医药,2005,45(28):7-8.
    [7]LOPEZ B, GoNzALEz A, DIEZ. Role of Matrix Metalloproteinases in Hypertension—Associated Cardiac Fibrosis. Curr Op in Nephrol Hypertens. 2004,13(2):197-204.
    [8]Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res.2000,46(2):214-224.
    [9]ETOH T, JOFFS C, DESCHAMPS AM, et al. Myocardial and Interstitial Matrix MetaUoproteinase Activity after Acute Myocardial Infarction in Pigs. Am J Physiol Heart Circ Physiol. 2001,281(3):987-987.
    [10]ROTEN L, NEMOTO S, SIMSIC J, et al. Effects of Gene Deletion of the Tissue Inhibitor of the Matrix Metalloproteinase Type1(TIMP21)on Left Ventricular Geometry and Function in Mice. J Mol Cell Cardiol.2000,32:109-120.
    [11]宋丽绚,王洪霞,李剑,等.基质金属蛋白酶与左室重构[J].中国实用内科杂志,2003,23(8):505-506.
    [12]Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res.2012,110:159-173.
    [13]Hori M, Nishida K. Toll-like receptor signaling:Defensive or offensive for the heart?. Circ Res.2008,102:137-139.
    [14]杨水祥,胡大一.心力衰竭的新机制和新策略研究进展[J].中国心血管病研究,2005,3:403-405.
    [15]Kabe Y, Ando K, Hirao S, et al. Redox regulation of NF-kappa B activation: distinct redox regu lation between the cytoplasm and the nucleus. Antioxid Redox Signal.2005,7-395-403.
    [16]Lu L, Chen SS, Zhang JQ, et al. Activation of nuclear factor kappa B and its proinflammatory mediator cascade in the infarcted rat heart. Biochem Biophys Res Commun.2004,321:879-885.
    [17]Nichols TC. NF-kappa B and reperfusion injury. Drug News Perspect.2004, 17:99-104.
    [18]Jacobs M, Staufenberger S, Gergs U, et al. Tumor necrosis factor-alpha at acute myocardial infarction in rats and efects on cardiac fibroblasts.J Mol Cell Cardiol.1999,31:1949-1959.
    [19]Aukrust P, Ueland T, Lien E, et al. Cytokine network in congestive heart failure secondary toischemic or idiopathic cardiomyopthy. Am J Cardiol.1999,83:376-382.
    [20]Toshiyuki T, Toshihisa A, Tsutomu Y, et al. Serum C reactive protein elevation in left ventricular remodeling after acute myocardial infarction role of neurohormones and cytokines. International J Cardiol.2003,88:257-265.
    [21]Ohstuka T, Hamada M, Inoue K, et al. Relation of circulating interleukin 6 to left ventrieular remodeling in patients with reperfused anterior myocardial infarction. Clin Cardiol.2004,27:417-420.
    [22]Uehara K, Nomura M, Ozaki Y. High sensitivity C-reactive protein and left ventricular remodeling in patients with acute myocardial infarction. Heart Vessels. 2003,18:67-74.
    [23]Liaudet L, Rosenblatt-Velin N. Role of innate immunity in cardiac inflammation after myocardial infarction. Front Biosci.2013,5:86-104.
    [24]Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Nat Rev Cardiol.2011,8:292-300.
    [25]Chao W:Toll-like receptor signaling. A critical modulator of cell survival and ischemic injury in the heart. Am JPhysiol Heart Circ Physiol.2009,296:H1-12.
    [26]Libby P, Ridker PM, Hansson GK, Leducq Transatlantic Network on A. Inflammation in atherosclerosis:From pathophysiology to practice. J Am Coll Cardiol.2009,54:2129-2138.
    [27]Timmers L, Sluijter JP, van Keulen JK, Hoefer IE,et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res.2008,102:257-264.
    [28]Schroder K, Tschopp J. The inflammasomes. Cell.2010,140:821-832.
    [29]Vival J, Chaput C, Boneca IG, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol.2004,5 (11):1166-1174.
    [30]Ting JP, Duncan JA, Lei Y.How the noninflammasome NLRs function in the innate immune system. Science.2010,327:286-290.
    [31]Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases.Cell Signal.2004:16:769-79.
    [32]Maeda S, Hsu LC, Liu H, et al. Nod2 mutation in Crohn, s disease potentiates NF-κB activity and IL-1β processing.Science.2005,307(5):734-738.
    [33]Magalhaes JG, Sorbara MT, Girardin SE, Philpott DJ. What is new with NODs?. Curr Opin Immunol.2011,23:29-34.
    [34]Du P, Fan B, Han H, Zhen J, Shang J, Wang X, Li X, Shi W, Tang W, Bao C, Wang Z, Zhang Y, Zhang B, Wei X, Yi F. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney Int.2013,84:265-276.
    [35]Han H, Wang Y, Li X, Wang PA, Wei X, Liang W, Ding G, Yu X, Bao C, Zhang Y, Wang Z, Yi F. Novel role of NOD2 in mediating Ca2+ signaling:Evidence from NOD2-regulated podocyte TRPC6 channels in hyperhomocysteinemia. Hypertension.2013,62:506-511.
    [36]Kwon MY, Liu X, Lee SJ, et al. Nucleotide-binding oligomerization domain protein 2 deficiency enhances neointimal formation in response to vascular injury. Arterioscler Thromb Vasc Biol. 2011,31:2441-2447.
    [37]Shigeoka AA, Kambo A, Mathison JC, et al. NOD1 and NOD2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury. Immunol.2010,184:2297-2304.
    [38]Sandanger O, Ranheim T, Vinge LE, et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res.2013,99:164-174.
    [39]Frantz S, Ertl G, Bauersachs J. Mechanisms of disease:Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med.2007,4:444-454.
    [40]Frantz S, Kelly RA, Bourcier T. Role of TLR-2 in the activation of nuclear factor κB by oxidative stress in cardiac myocyte. JBiol Chem. 2001,276:5197-5203.
    [41]Kim YS1, Kwon JS, Cho YK, et, al. Curcumin reduces the cardiac ischemia-reperfusion injury:involvement of the toll-like receptor 2 in cardiomyocytes. Nutr Biochem.2012,23(11):1514-23
    [42]Selejan S, Poss J, et, al. Ischaemia-induced up-regulation of Toll-like receptor 2 in circulating monocytes in cardiogenic shock. Eur Heart J.2012, 33(9):1085-94.
    [43]Lu C1, Ren D, Wang X, Ha T, Liu L. et, al. Toll-like receptor 3 plays a role in myocardial infarction and ischemia/reperfusion injury. Biochim Biophys Acta. 2014; 1842(1):22-31.
    [44]Hua F, Ha T, Ma J, et, al. Protection against myocardial ischemia-reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J Immunol.2007,178:7317-7324.
    [45]Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature.2010, 464:1357-1361.
    [46]Nishio H, Kanno S, Onoyama S, et al. Nod1 ligands induce site-specific vascular inflammation. Arterioscler Thromb Vase Biol.2011,31:1093-1099.
    [47]Fernandez-Velasco M, Prieto P, Terron V,et al. NOD1 activation induces cardiac dysfunction and modulates cardiac fibrosis and cardiomyocyte apoptosis. PloS one.2012,7:45260.
    [48]Lindsey ML, Mann DL, Entman ML, Spinale FG. Extralcellular matrix remodeling following myocardial injury. Ann Med.2003; 35(5):316-326.
    [49]Zamilpa R, Lilldsey ML. Extralcellular matrix turnover signaling during cardiac remlodeling following MI:cause and consequences. J Mol Cell Cardiol.2010, 48(3):558-563.
    [50]王琦,柳兢,姚风臣.替米沙坦对心肌梗死大鼠心肌重构基质金属蛋白酶 表达水平的影响[J].山西医药杂志,2007(5):406-409.
    [51]ZHU Wenhui, DUAN Xingxing, ZHANG Mengxi, et al. EValuation of the myocardial systolic function and Ventricnlar remodeling of rats with experimental myocardial infarction by strain/strain rate imaging and MMP-9. Zhonghua Xin Xue Guan Bing Za Zhi. 2010,38(7):597-600.
    [52]YAMASHITA C, HAYASHI T, MORI T, et al. Eficacy of olmesartan and nifedipine on recurrent hypoxia—induced left ventricular remodeling in diabetic mice. Life Sci.2010,86 (9/10):322-330.
    [53]SHEN Xiangchun, YANG Lu, QIAN Zhiyu. Effects of crocetin on the matrix metalloproteinases in cardiac hypertrophy induced by norepinephrine in rats.J Asian Nat Prod Res.2006,8(3):201-208
    [54]ZHANG Wei, ZHONG Ming, YANG Guirong, et al. Matrix metalloproteinase-9/tissue inhibitors of metal loproteinase-1 expression and atrial structural remodeling in a dog model of atrial fibrillation:inhibition with angiotensin-converting enzyme. Cardiovasc Pathol.2008,17(6):399-409
    [55]杨永健,邓晶晶,张鑫,等.钙通道阻滞剂对缺血心肌基质金属蛋白酶和纤连蛋白的影响[J].中国药理学通报,2006,22(8):987-991.
    [56]Chapman RE, Scott AA, Deschamps AM, et al. Matrix metalloproteinase abundance in human myocardial fibroblasts:Effects of sustained pharmacologic matrix metalloproteinase inhibition. J Mol Cell Cardiol.2003,35:539-548.
    [57]Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP)-9:A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther.2013,139:32-40.
    [58]Konstantino Y, Nguyen TT, Wolk R, et al. Potential implications of matrix metalloproteinase-9 in assessment and treatment of coronary artery disease. Biomarkers.2009,14:118-129.
    [59]Bradley LM, Douglass MF, Chatterjee D, Akira S, Baaten BJ. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog.2012,8: 1002641.
    [60]Jackson L, Cady CT, Cambier JC. TLR4-mediated signaling induces MMP9-dependent cleavage of b cell surface cd23. J Immunol. 2009,183:2585-2592.
    [61]Ospelt C, Brentano F, Jungel A, et al. Expression, regulation, and signaling of the pattern-recognition receptor nucleotide-binding oligomerization domain 2 in rheumatoid arthritis. Arthritis Rheum.2009,60(2):355-363
    [62]Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res.2002,53:31-47.
    [63]王新凤.心肌成纤维细胞分泌生长因子在心肌重塑中的作用[J].国外医学心血管疾病分册,2002,29(2):73-75.
    [64]Frangogiannis NG. The mechanistic basis of infarct healing. Antioxid Redox Signal.2006,8(11-12):1907-1939.
    [65]Frangogiannis NG. The immune system and cardiac repair. Pharmacol Res. 2008,58(2):88-111.
    [66]Kwon JS, Kim YS, Cho AS, et al. The novel role of mast cells in the microenvironment of acute myocardial infarction. J Mol Cell Cardiol.2011, 50(5):814-825.
    [67]Levick SP, Melendez GC, Plante E, McLarty JL, et al. Cardiac mast cells:tlle centrepiece in adverse myocardial remodeling. Cardiovasc Res,2011, 89(1):12-19.
    [68]Lim AK, Tesch GH. Inflammation in diabetic nephropathy. Mediators Inflamm. 2012,:146-154.
    [69]ZebergM, Strutz F,Muller GA, et al. Role of fibroblast activation in inducing interstitial fibrosis. JNephrol.2000,13:111-120.
    [70]Sun Y, Weber KT.Angiotensin converting enzyme and myofibroblasts duing tissue repair in the rat heart. JMol Cell Cardiol.1996,28:851-858.
    [71]Katibi IA. Left ventricular hypertrophy and hypertension. Niger J M ed.2004,13 (1):8-17.
    [72]Zong J, Salim M, Zhou H, Bian ZY, et al. NOD2 deletion promotes cardiac hypertrophy and fibrosis induced by pressure overload. Lab Invest.2013, 93:1128-1136.
    [1]Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Curr Opin Immunol.2005,17:338-344.
    [2]Dixon MS, Golstein C, Thomas CM, van Der Biezen EA, Jones JD. Genetic complexity of pathogen perception by plants:the example of Rcr3, a tomato gene required specifically by Cf-2. Proc Natl Acad Sci USA.2000,97:8807-8814.
    [3]Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem.1999, 274:14560-14567.
    [4]Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/ Apaf-1 family member that is restricted to monocytes and activates NF-kappaB.J Biol Chem.2001,276:4812-8.
    [5]Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y, Prosper F, et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factorkappa B activation. J Biol Chem.2002,277:41701-5.
    [6]Ogura Y, Lala S, Xin W, Smith E, Dowds TA, Chen FF, et al. Expression of Nod2 in Paneth cells:a possible link to Crohn's ileitis. Gut. 2003,52:1591-7.
    [7]Inohara N, Ogura Y, Chen FF, Muto A, Nunez G. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem.2001,276:2551-4.
    [8]Chen G, Shaw MH, Kim YG, Nunez G. Nod-like receptors:role in innate immunity and inflammatory disease. Annu Rev Pathol.2009,4:365-98.
    [9]Yoneyama M, Fujita T. Structural mechanism of RNA recognition by the RIG-Ilike receptors. Immunity.2008,29:178-81.
    [10]Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem.2000,275:27823-31.
    [11]Nembrini C, Kisielow J, Shamshiev AT, Tortola L, Coyle AJ, Kopf M, et al. The kinase activity of Rip2 determines its stability and consequently Nodl-and Nod2-mediated immune responses. J Biol Chem.2009,284:19183-19188.
    [12]Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, et al. Host recognition of bacterial muramyl dipeptide mediated through Nod2. Implications for Crohn's disease. J Biol Chem.2003,278:5509-5512.
    [13]Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. JBiol Chem.2003,278:8869-72.
    [14]Cossart P, Sansonetti PJ. Bacterial invasion:the paradigms of enteroinvasive pathogens. Science.2004,304:242-8.
    [15]Cloud-Hansen KA, Peterson SB, Stabb EV, Goldman WE, McFall-Ngai MJ, Handelsman J. Breaching the great wall:peptidoglycan and microbial interactions. Nat Rev Microbiol.2006,4:710-716.
    [16]Nigro G, Fazio LL, Martino MC, Rossi G, Tattoli I, Liparoti V, et al. Muramylpeptide shedding modulates cell sensing of Shigella flexneri. Cell Microbiol.2008,10:682-95.
    [17]Lenz LL, Mohammadi S, Geissler A, Portnoy DA. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci USA.2003,100:12432-7.
    [18]Herskovits A A, Auerbuch V, Portnoy DA. Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system. PLoS Pathog. 2007,3:51-57.
    [19]IsmairMG, Vavricka SR, Kullak-Ublick GA, FriedM,Mengin-Lecreulx D, Girardin HE. hPepTl selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides. Can JPhysiol Pharmacol.2006,84:1313-9.
    [20]Marina-Garcia N, Franchi L, Kim YG, Hu Y, Smith DE, Boons GJ, et al. Clathrinand dynamin-dependent endocytic pathway regulates muramyl dipeptide internalization and Nod2 activation. J Immunol. 2009,182:4321-7.
    [21]Lee J, Tattoli I, Wojtal KA, Vavricka SR, Philpott DJ, Girardin HE. pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling. JBiol Chem.2009,284:23818-29.
    [22]Barnich N, Aguirre JE, Reinecker HC, Xavier R, Podolsky DK. Membrane recruitment of Nod2 in intestinal epithelial cells is essential for nuclear factor-kappa B activation in muramyl dipeptide recognition.J Cell Biol. 2005, 170:21-6.
    [23]McDonald C, Chen FF, Ollendorff V, Ogura Y, Marchetto S, Lecine P, et al. A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling. J Biol Chem.2005,280:40301-40309.
    [24]Kufer TA, Kremmer E, Banks DJ, Philpott DJ. Role for erbin in bacterial activation of Nod2. Infect Immun.2006,74:3115-3124.
    [25]Legrand-Poels S, Kustermans G, Bex F, Kremmer E, Kufer TA, Piette J. Modulation of Nod2-dependent NF-kappaB signaling by the actin cytoskeleton. J Cell Sci.2007,120:1299-1310.
    [26]Lecine P, Esmiol S, Metais JY, Nicoletti C, Nourry C, McDonald C, et al. The Nod2-RICK complex signals from the plasma membrane.J Biol Chem. 2007,282:15197-15207.
    [27]Eitel J, Krull M, Hocke AC, N'Guessan PD, Zahlten J, Schmeck B, et al. Beta-PIX and Rac1 GTPase mediate trafficking and negative regulation of Nod2. J Immunol. 2008,181:2664-2671.
    [28]Kufer TA, Kremmer E, Adam AC, Philpott DJ, Sansonetti PJ. The patternrecognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol. 2008,10:477-486.
    [29]Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell.2006,22:245-257.
    [30]Liew FY, Xu D, Brint EK, O'Neill LA. Negative regulation of toll-like receptormediated immune responses. Nat Rev Immunol.2005,5:446-458.
    [31]Skaug B, Jiang X, Chen ZJ. The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem.2009,78:769-96.
    [32]Abbott DW,Wilkins A, Asara JM, Cantley LC. The Crohn's disease protein, Nod2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol.2004,14:2217-27.
    [33]Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Nunez G, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J.2008,27:373-83.
    [34]Kim JY, Omori E, Matsumoto K, Nunez G, Ninomiya-Tsuji J. TAK1 is a central mediator of Nod2 signaling in epidermal cells. J Biol Chem. 2008,283:137-44.
    [35]Windheim M, Lang C, Peggie M, Plater LA, Cohen P. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem J.2007,404:179-90.
    [36]Abbott DW, Yang Y, Hutti JE, Madhavarapu S, Kelliher MA, Cantley LC. Coordinated regulation of Toll-like receptor and Nod2 signaling by K63-linked polyubiquitin chains. Mol Cell Bio.2007,27:6012-25.
    [37]Bertrand MJ, Doiron K, Labbe K, Korneluk RG, Barker PA, Saleh M. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors Nod1 and Nod2. Immunity.2009, 30:789-801.
    [38]Hsu YM, Zhang Y, You Y, Wang D, Li H, Duramad O, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol.2007,8:198-205.
    [39]Clark NM, Marinis JM, Cobb BA, Abbott DW.MEKK4 sequesters RIP2 to dictate Nod2 signal specificity. Curr Biol.2008,18:1402-8.
    [40]Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW. ITCH K63-ubiquitinates the Nod2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr Biol.2009,19:1255-1263.
    [41]Tattoli I, Travassos LH, Carneiro LA, Magalhaes JG, Girardin SE. The Nodosome:Nodl and Nod2 control bacterial infections and inflammation. Semin Immunopathol.2007,29:289-301.
    [42]Werts C, le Bourhis L, Liu J, Magalhaes JG, Carneiro LA, Fritz JH, et al. Nod1 and Nod2 induce CCL5/RANTES through the NF-kappaB pathway. Eur J Immunol. 2007,37:2499-508.
    [43]Yamamoto-Furusho JK, Barnich N, Xavier R, Hisamatsu T, Podolsky DK. Centaurin betal down-regulates nucleotide-binding oligomerization domains 1-and 2-dependent NF-kappaB activation. J Biol Chem.2006,281:36060-7.
    [44]Bielig H, Zurek B, Kutsch A, Menning M, Philpott DJ, Sansonetti PJ, et al. A function for AAMP in Nod2-mediated NF-kappaB activation. Mol Immunol. 2009,46:2647-54.
    [45]Barnich N, Hisamatsu T, Aguirre JE, Xavier R, Reinecker HC, Podolsky DK, et al.GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J Biol Chem.2005,280:19021-6.
    [46]Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol. 2009,10:1073-80.
    [47]Nakhaei P, Genin P, Civas A, Hiscott J. RIG-I-like receptors:sensing and responding to RNA virus infection. Semin Immunol.2009,21:215-22.
    [48]Moore CB, Bergstralh DT, Duncan JA, Lei Y, Morrison TE, Zimmermann AG, et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature.2008, 451:573-7.
    [49]Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature.2008,451:1069-75.
    [50]Hussey S, Travassos LH, Jones NL. Autophagy as an emerging dimension to adaptive and innate immunity. Semin Immunol.2009,21:233-41.
    [51]Virgin HW, Levine B. Autophagy genes in immunity. Nat Immunol.2009, 10:461-70.
    [52]Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol.2006, 7:715-23.
    [53]Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell.2009,137:773-83.
    [54]Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol.2010,11:55-62.
    [55]Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. Nod2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med.2010,16:90-7.
    [56]Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes:the 20-50oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev.2007,18:351-61.
    [57]Dugan JW, Albor A, David L, Fowlkes J, Blackledge MT, Martin TM, et al. Nucleotide oligomerization domain-2 interacts with 20-50-oligoadenylate synthetase type 2 and enhances RNase-L function in THP-1 cells. Mol Immunol. 2009,47:560-6.
    [58]Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell.2006,124:803-14.
    [59]Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NFkappa B. J Immunol.2004,172:2522-9.
    [60]Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S, et al. DUOX2-derived reactive oxygen species are effectors of Nod2-mediated antibacterial responses. J Cell ScL 2009,122:3522-30.
    [61]Tada H, Aiba S, Shibata K, Ohteki T, Takada H. Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect Immun.2005, 73:7967-76.
    [62]Park JH, Kim YG, Shaw M, Kanneganti TD, Fujimoto Y, Fukase K, et al. Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol.2007,179:514-21.
    [63]Fritz JH, Girardin SE, Fitting C, Werts C, Mengin-Lecreulx D, Caroff M, et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and Nod1-and Nod2-activating agonists. Eur J Immunol.2005, 35:2459-70.
    [64]Watanabe T, Kitani A, Murray PJ, Strober W. Nod2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol.2004, 5:800-8.
    [65]Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science.2005,307:731-4.
    [66]Kim YG, Park JH, Shaw MH, Franchi L, Inohara N, Nunez G. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity.2008,28:246-57.
    [67]Ferwerda G, Girardin SE, Kullberg BJ, Le Bourhis L, de Jong DJ, Langenberg DM, et al. Nod2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog.2005,1:279-85.
    [68]Leber JH, Crimmins GT, Raghavan S, Meyer-Morse NP, Cox JS, Portnoy DA, et al. Distinct TLR-and NLR-mediated transcriptional responses to an intracellular pathogen. PLoS Pathog.2008,4:6-13.
    [69]Gandotra S, Jang S, Murray PJ, Salgame P, Ehrt S. Nucleotide-binding oligomerization domain protein 2-deficient mice control infection with Mycobacterium tuberculosis. Infect Immun.2007,75:5127-34.
    [70]Divangahi M, Mostowy S, Coulombe F, Kozak R, Guillot L, Veyrier F, et al. Nod2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity.J Immunol.2008, 181:7157-65.
    [71]Raymond JB, Mahapatra S, Crick DC, Pavelka Jr MS. Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. JBiol Chem.2005,280:326-33.
    [72]Coulombe F, Divangahi M, Veyrier F, de Leseleuc L, Gleason JL, Yang Y, et al. Increased Nod2-mediated recognition of N-glycolyl muramyl dipeptide.J Exp Med.2009,206:1709-16.
    [73]Adam A, Ciorbaru R, Ellouz F, Petit JF, Lederer E. Adjuvant activity of monomeric bacterial cell wall peptidoglycans. Biochem Biophys Res Commun. 1974,56:561-7.
    [74]van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA, et al. Stimulation of the intracellular bacterial sensor Nod2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity.2007,27:660-9.
    [75]Magalhaes JG, Fritz JH, Le Bourhis L, Sellge G, Travassos LH, Selvanantham T, et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J Immunol 2008,181:7925-35.
    [76]Huzarski T, Lener M, Domagala W, Gronwald J, Byrski T, Kurzawski G, et al. The 3020insC allele of Nod2 predisposes to early-onset breast cancer. Breast Cancer Res Treat. 2005,89:91-3.
    [77]Forrest MS, Skibola CF, Lightfoot TJ, Bracci PM, Willett EV, Smith MT, et al. Polymorphisms in innate immunity genes and risk of non-Hodgkin lymphoma. Br J Haematol. 2006,134:180-3.
    [78]Lener MR, Oszutowska D, Castaneda J, et al. Prevalence of the Nod23020insC mutation in aggregations of breast and lung cancer. Breast Cancer Res Treat. 2006,95:141-5.
    [1]Bostom AG, Rosenberg IH, Silbershatz H, Jacques PF, Selhub J, D'Agostino RB, et al. Nonfasting plasma total homocysteine levels and stroke incidence in elderly persons:the Framingham Study. Ann Intern Med.1999,131:352-325.
    [2]Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels andmortality in patients with coronary artery disease. N Engl J Med.1997,337:230-236.
    [3]Homocysteine Trabetti E. MTHFR gene polymorphisms, and cardio-cerebrovascular risk. JAppl Genet.2008,49:267-282.
    [4]Rakhit DJ, Marwick TH, Armstrong KA, Johnson DW, Leano R, Isbel NM. Effect of aggressive risk factor modification on cardiac events and myocardial ischaemia in patients with chronic kidney disease. Heart.2006,92:1402-1408.
    [5]Rosenberger D, Moshal KS, Kartha GK, Tyagi N, Sen U, Lominadze D, et al. Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia.Arch Physiol Biochem Biochem.2006,112:219-227.
    [6]Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol.2007,8:221-233.
    [7]Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev.2007,87:1285-1342.
    [8]Retterstol L, Paus B, Bohn M, Bakken A, Erikssen J, Malinow MR, et al. Plasma total homocysteine levels and prognosis in patients with previous premature myocardial infarction:a 10-year follow-up study.J Intern Med.2003,253: 284-292.
    [9]Sacco RL, Adams R, Albers G, Alberts MJ, Benavente O, Furie K, et al. Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack:a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke:cosponsored by the Council on Cardiovascular Radiology and Intervention:the American Academy of Neurology affirms the value of this guideline. Circulation.2006, 113:409-490.
    [10]Yi F, Li PL. Mechanisms of homocysteine-induced glomerular injury and sclerosis. Am JNephrol.2008,28:254-264.
    [11]Brouillette J, Grandy SA, Jolicoeur P, Fiset C. Cardiac repolarization is prolonged in CD4C/HIV transgenic mice. JMol Cell Cardiol.2007,43:159-67.
    [12]Yi F, dos Santos EA, Xia M, Chen QZ, Li PL, Li N. Podocyte injury and glomerulosclerosis in hyperhomocysteinemic rats. Am J Nephrol. 2007,27:262-268.
    [13]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976,72:248-54.
    [14]Refsum H, Smith AD, Ueland PM, et al. Facts and recommendations about total homocysteine determinations:an expert opinion. Clin Chem.2004,50:3-32.
    [15]Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J, Weger M. DACH-LIGA Homocystein (German, Austrian and Swiss Homocysteine Society):Consensus Paper on the Rational Clinical Use of Homocysteine, Folic Acid and B-Vitamins in Cardiovascular and Thrombotic Diseases:Guidelines and Recommendations. Clin Chem Lab Med.2003,41:1392-1403.
    [16]Herrmann W. The importance of hyperhomocysteinemia as a risk factor for diseases:an overview. Clin Chem Lab Med.2001,39:666-74.
    [17]Blacher J, Demuth K, Guerin AP, et al. Association between plasma homocysteine concentrations and cardiac hypertrophy in end-stage renal disease. J Nephrol. 1999,12:248-55.
    [18]Poyrazoglu HM, Dusunsel R, Narin F, et al. Homocysteine and left ventricular hypertrophy in children with chronic renal failure. Pediatr Nephrol.2004, 19:193-8.
    [19]Ventura P, Panini R, Verlato C, Scarpetta G, Salvioli G. Hyperhomocysteinemia and related factors in 600 hospitalized elderly subjects. Metabolism.2001, 50:1466-71.
    [20]Joseph J, Washington A, Joseph L, et al. Hyperhomocysteinemia leads to adverse cardiac remodeling and dysfunction in hypertensive rats. Am J Physiol.2002, 283:H2567-H2574.
    [21]Remme WJ, Swedberg K. Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J.2001,22:1527-60.
    [22]Chen C, Halkos ME, Surowiec SM., et al. Effects of homocysteine on smooth muscle cell proliferation in both cell culture and artery perfusion culture models. J Surg Res.2000,88:26-33.
    [23]Rasmussen LM1, Hansen PR, Ledet T. Homocysteine and the production of collagens, proliferation and apoptosis in human arterial smooth muscle cells. APMIS.2004,112(9):598-604.
    [24]Sipkens JA, Krijnen PA, Meischl C, et al. Homocysteine affects cardiomyocyte viability:concentration dependent efects on reversible flip flop apoptosis and necrosis. Apoptosis.2007,12(8):1407-1418.
    [25]Sipkens JA, Krijnen PA, Hahn NE, et 81. Homocysteine-induced eardiomyoce apoptosis and plasma membrane flip-flop are independent of Sadenosylhomocysteine:a crucial role for nuclear p47 (phox). Mol Cell Biochem.2011,358(1/2):229-239.
    [26]Levrand S, Pacher P, Passe P, et al. Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite. Biochem Biophys Res Commum.2007,359(3):445-450.
    [27]Dong F, Zhang X, Li SY, et al. Possible involvement ofNADPH oxidase and JNK in homocysteine induced oxidative stress and apoptosis in human umbilical vein endothelial cells. Cardiovascular Toxicol.2005,5(1):9-20.
    [28]Levrand S1, Pacher P, Pesse B, Rolli J, Feihl F, Waeber B, Liaudet L. Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite. Biochem Biophys Res Commun.2007, 359(3):445-450.
    [29]Gao X, Xu XB, Pang J, Zhang C, Ding JM, Peng X, et al. NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardio. Physiol Res.2007,56:559-569.
    [30]Moshal KS, Tipparaju SM, Vacek TP, et al. Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol.2008,295(2): H890-H897.
    [31]Chapman RE, Scott AA, Deschamps AM, et al. Matrix metalloproteinase abundance in human myocardial fibroblasts:Effects of sustained pharmacologic matrix metalloproteinase inhibition. J Mol Cell Cardiol.2003,35:539-548.
    [32]Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP)-9:A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther.2013,139:32-40.
    [33]Moshal KS, Metreveli N, Frank I, Tyagi SC. Mitochondrial MMP activation, dysfunction and arrhythmogenesis in hyperhomocysteinemia. Curr Vasc Pharmacol.2008,6(2):84-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700