长距离富水砂层土压平衡盾构施工土体扰动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以广州地铁3号线矮岗至新机场南区间盾构施工为背景,结合现场试验监测结果和有限元数值模拟的比较分析,对长距离富水砂层土压平衡盾构施工对土体的扰动机理、扰动规律、控制方法进行了研究,得出如下主要结论:
     (1)盾构施工对土体的扰动是多种因素作用的结果,在盾构施工中,加强监测和信息反馈及时调整施工方案同时提高盾构操作人员的技术水平可有效减少盾构施工对土体的扰动
     (2)受扰动土体的竖向位移大于水平位移,盾构施工引起的地层损失是土体扰动的直接原因,调整注浆压力及时填充建筑间隙和避免蛇形掘进可有效减少地层损失。
     (3)地表沉降符合peck理论,纵向影响范围为切口前18m,切口后30m,横向影响范围为隧道轴心线两侧各3D的范围。
     (4)有限元数值模拟的结算结果和现场试验结果能够很好的吻合,这说明,有限元数值模拟是研究盾构施工土体扰动的有效工具,在预测盾构施工对土体的扰动方面具有很高的实用价值。
The background of the paper comes from the actual project Aigang-New Airport South interzone of Guangzhou subway line 3. By comparing the monitoring results of field tests and finite element numerical simulation, long-distance water-rich sand earth pressure balance shield construction generated Mechanism of soil disturbance, disturbance laws, control methods were studied. Reached the following conclusions:
     (1) The soil disturbance of the shield construction is the result of multiple factors, in shield construction, strengthen the monitoring and information feedback, adjustment of the construction program timely and increase the skill level of shield operators can effectively reduce the shield construction on soil disturbance.
     (2) Disturbed soil on the vertical displacement is greater than the horizontal displacement. Ground shield loss due to construction is the direct cause of soil disturbance. Adjust the injection pressure filled construction space timely and avoid the occurrence of snake-like tunneling can be effective in reducing formation damage.
     (3) Surface subsidence meet the peck theory.Longitudinal affected area is from 18m in front of the incision to 30m behind it, and horizontal affected area is about 3 times of diameter of shield on each side of the tunnel.
     (4) Finite element simulation results and field test the settlement results can match well, which shows numerical simulation as a tool for the study of shield construction caused soil disturbance works well, while its construction of the shield in prediction the disturbance of soil has a high practical value.
引文
[1]杨其新,王明年.地下工程施工与管理[M].西南交通大学出版社.2005:171-172
    [2]周文波.盾构法隧道施工技术及应用[M].北京,中国建筑工业出版社,2004.
    [3]易宏伟,孙钧.盾构施工对软粘土的扰动机理分析[J].同济大学学报.2000,28(3):277-281
    [4]刘建航,侯学渊.软土市政工程施工技术手册一对构筑物影响预测和防治.上海:上海市政工程管理局,1999
    [5]季亚平.考虑施工过程的盾构隧道地层位移与土压力研究[D].南京:河海大学.2004
    [6]张庆贺等.盾构推进引起土体扰动理论及试验研究[J].岩石力学与工程学报.1999,18(6):699-703
    [7]PECK R B. Deep excavations and tunnelling in soft ground[J]. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City:[s. n.],1969:225-290.
    [8]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [9]周文波.盾构法隧道施工技术及应用[M].北京,中国建筑工业出版社,2004.
    [10]Cording E J, Hansmire W H, Macpherson H H. etal. Displacement around tunnels in Soils[R]. Report Prepared for department of transportatio, Urbana:University of Illinois,1976.
    [11]Attewell, P. B.1978. Ground movement caused by tunnelling in soil. In Proceedings of the Conference in Large Ground Movements and Structures, Cardiff. Edited by J. D. Gedder. Pentish Press, London, pp.812-948.
    [12]O'Reilly,M. P. and New, B.M.Settlement above tunnels in the United Kingdom-their magnitude and prediction [A]. Proc. Tunnelling'82 Symposium [C]. London,Institution of Mining and Metallurgy,1982:173-181.
    [13]T Kimura, R J Mair. Centrifugal testing of model tunnels in soft clay[A]. Proe. of 10th Int. Conf. Soil Mechanics&Foundation Engineering[C], Stoeltholm, Balkema, 1981.
    [14]Gutter U, Stoffers U. Investigation of the deformation and collapse behaviour of circular lined tunnels in centrifuge model tests[A]. Centrifuge in Soil Meehanies[C]. Rotte-rdam:Balkema,1988:183-186.
    [15]Shinichiro Imamura, Toshiyuki Hagiwara, Kenji Mito. Settlement through above a model shield observed in a centrifuge [A]. Centrifuge98[C], Tokyo,1998:713-719.
    [16]Toshi Nomoto, Shinichiro Imamura, Toshiyuki Hagiwara, et al. Shield Tunnel Construction in Certrifuge, Journal of Geotechnical and Geoenvironmental Engineering, 1999125(4):289-300
    [17]Lee, K. M., and Rowe, R. K.1990a. Finite element modelling of the three-dimensional ground deformtions due to tunnelling in soft cohesive soils. Part Ⅰ. Methods of analysis. Computers and Geotechnics,1990,2(2):87-110.
    [18]Akagi, H., and Komiya, K.. Finite element analyses of the interaction of a pare of shield tunnels. Proc.14th ICSMFE.Rotterdam:Balkema 1997,3:1449-1452
    [19]况龙川.盾构隧道数值模拟及其受环境影响的安全问题研究[R].河海大学博士后研究 工作报告,2000.
    [20]刘洪洲,孙钧.软土隧道盾构推进中地面沉降影响因素的数值法研究[J].现代隧道技术,2001,38(6):24-28.
    [21]李强,曾得顺.盾构千斤项推力变化对地面变形的影响[J].地下空间,2002,22(1):12-15.
    [22]Manuel Melis, et al. Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension. Canadian Geotechnical Joumal,2002:39(6): 1273-1287.
    [23]王敏强,陈胜宏.盾构推进隧道结构三维非线性有限元仿真[J].岩石力学与工程学报,2002 21(2):228-232.
    [24]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [25]陈馈,洪开荣,吴学松.盾构施工技术[M].北京:人民交通出版社,2009.
    [26]张凤祥,傅德明,杨国祥,项兆池.盾构隧道施工手册[M].北京:人民交通出版社.2005:564-568
    [27]张文华.采用EPB盾构开挖隧道中时间与地面沉降的关系[J].铁道勘测与设计.1994
    [28]赖永标等.ANSYS11.0木木工程有限元分析典型范例[M].北京:电子工业出版社.2007:2-3
    [29]王伟等.双线盾构越江隧道合理间距优化与分析[J].岩石力学与工程学报.2006,25增(1):3311-3316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700