基于浮标观测资料的海气通量计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海气界面通量对海气相互作用、海气耦合模式、海洋与大气动力环境预报等具有非常重要的作用。
     本文采用三重循环拟合的方法,提出了一种获取超声风速仪和浮标坐标系之间角度偏移矩阵及观测风速平台晃动校正的方法,并以黄海北部连续14天的浮标观测资料为例,研究了晃动校正对湍流能谱密度、协谱函数、Ogive曲线及海气通量的影响,结果表明:晃动校正不仅对动量通量有很大的影响,对感热通量、潜热通量、海气交换(如:水汽通量和二氧化碳通量等)也有较大的影响。晃动校正后,涡相关法和块体法计算的通量(动量和感热通量)结果之间的相关系数显著提高,且不同高度上涡相关法计算的水汽和二氧化碳通量十分接近。
     基于黄海北部第一次连续14天的浮标观测资料,采用多尺度分解法确定了海气通量涡相关法计算中的截断时间尺度,并分析了该截断时间尺度的特征及其对感热通量计算的影响。研究表明:由多尺度分解法获得的湍通量截断时间尺度可将总通量中湍通量和中尺度通量分离开来,截断时间尺度随着湍流强度或水平风速的增加而增加,且感热通量的截断时间尺度大于动量通量的截断时间尺度;在弱湍流状态下,动量通量和感热通量的截断时间尺度主要分布在100s左右,湍通量和总通量之间差别较大;在湍流较强时,动量通量和感热通量的截断时间尺度主要分布在800s左右,湍通量和总通量之间差别较小;通过计算和分析不同截断时间尺度下感热通量的平均值和不确定性,可以看出截断时间尺度对感热通量的平均值的影响较小,但对感热通量的不确定性有很大的影响,这两种影响之间的差别会随着湍流强度的增加而减小。
     对黄海北部第二次定点浮标观测资料和美国国家环境预报中心公布的NCEP1、NCEP2再分析资料进行了比较和分析。结果表明:NCEP再分析资料中的海表气象参数是可信的,NCEP2与NCEP1相比要更接近于浮标观测值,而净辐射通量则是NCEP1更接近于浮标观测值;使用更合理的块体公式计算出的湍流热通量来代替NCEP数据库中已计算好的湍流热通量来驱动海洋模式是很有必要的;与浮标计算结果相比较,NCEP1的再计算净热通量低估了42%,而NCEP2的再计算净热通量高估了5%。
Air–sea fluxes play important roles on air-sea interactions, coupled ocean–atmosphere modeling, dynamic environment prediction of marine and atmosphere.
     In this paper, a flux system deployed on the buoy has been described which is capable of directly estimating the air-sea fluxes after removing the contamination in the signal due to the buoy motion. A triple loop fitting method has been demonstrated for determining the three angular offsets between measurement axes of the sonic anemometer and motion pack. The data collected during the experiment in the North Yellow Sea is used to discuss the effect of buoy motion on the turbulence spectra, frequency-weighted cospectral density function, Ogive curve and fluxes. Results show that the motion correction not only greatly improved the estimation of the momentum flux but also has large impact on calculated sensible heat flux, latent heat flux and gas exchange (such as water flux and CO2 flux). The correlation coefficients of fluxes calculated by the eddy correlation method and bulk aerodynamic method are greatly improved after motion correction. The water vapor and CO2 fluxes at two levels also become similar after motion correction.
     Based on a total of 14 days’data obtained from the 1st moored buoy observation located at the Yellow sea, the cutoff time scale (CTS) used in the calculations of the air-sea fluxes by eddy covariance method is determined by the multiresolution decomposition method, the behaviors of the CTS and its effect on the sensible heat flux are analyzed then. Results show that the cutoff time scale estimated by the multiresolution decomposition method can be used to separate the real contribution from turbulent and mesoscale fluxes to the total air-sea fluxes efficiently. The CTS increases with the turbulence intensity or the wind velocity and the CTS of the sensible heat flux is always longer than that of the momentum flux. When the turbulence intensity is less than 0.2 m/s, most of the CTS of momentum and sensible heat fluxes are around 100 s and the difference between the turbulent and total fluxes is large; when the turbulence intensity is larger than 0.3 m/s, most of the CTS are around 800 s and the turbulent flux is similar to the total flux. It is found that the CTS has small effect on the flux average value while large effect on the flux uncertainty when we calculate and analyze the average and uncertainty of sensible heat flux. The difference between the two effects will become smaller as the turbulence intensity increases.
     The NCEP (NCEP1 and NCEP2) reanalyzed marine meteorological parameters and sea surface heat fluxes are compared with the 2nd moored buoy observation in the north-western Yellow Sea. The analysis shows that: The NCEP reanalyzed marine meteorological parameters are credible over the Yellow Sea. The marine meteorological parameters and turbulent heat fluxes from NCEP2 are more close to that from the buoy while the net radiation flux computed from NCEP1 is more close to that from the buoy. A more appropriate bulk algorithm to recalculate surface heat fluxes is recommended. The NCEP1 recalculated net heat flux is underestimated by 42% while the NCEP2 recalculated net heat flux is overestimated by 5%.
引文
[1]陈锦年.冬春南海海气热量交换对长江中下游汛期降水的影响[J].海洋湖沼通报,1984,15-21.
    [2]陈锦年.黑潮区域海-气热量交换对青岛汛期降水的影响[J].海洋湖沼通报,1986,6-12.
    [3]陈锦年,张淮.南海海-气热量交换对大气环流及华南前汛期降水影响的分析[J].海洋湖沼通报,1987,3:28-33.
    [4]陈锦年.南海区域海面热量平衡特性及其对海温场的影响[J].海洋湖沼通报,1986,1,1-7.
    [5]陈锦年,王宏娜,吕心艳.南海海气热通量变化特征[J].水科学进展,2006,17(6).
    [6]陈锦年,伍玉梅,何宜军.中国近海海气热通量的反演[J].海洋学报,2006,28(4):.
    [15]王金良,宋金宝.关于涡相关海气通量计算的资料处理技术[J].海洋科学,2009,33:1-10.
    [7]陈陡,李诗明,吕乃平等.TOGA-COARE IOP期间的海气通量观测结果[J].地球物理学报,41997,0(6):753-762.
    [8]褚健婷,陈锦年,许兰英.海气界面热通量算法的研究及在中国近海的应用[J].海洋与湖沼,2006,37(6).
    [9]黄艳松等.海气通量涡相关法计算中的时间尺度分析[J].海洋科学.已接收
    [10]将国荣,何金海,王东晓等.南海夏季风爆发前后海-气界面热交换特征[J].气象学报,2004,62(2):189-199.
    [11]曲绍厚,王赛.西太平洋热带海域西风爆发过程湍流通量输送的某些特征[J].大气科学,1996,20(2):188-194.
    [12]曲绍厚,胡非,李亚秋.SCSMEX期间南海夏季风海气交换的主要特征[J].气候与环境研究,2000,5(4):441-444.
    [13]邵庆秋,周明煜.洋面动量、感热和潜热通量计算的研究[J].大气科学,1991,15(3):9-17
    [14]史剑等.利用浮标资料初步评估NCEP再分析湍通量[J].海洋预报,2007,2:74-82.爆发前后海-气通量交换系数研究[J].气象学报,2006,64(3):335-344.
    [20]姚华栋,任雪娟,马开玉.1998年南海季风试验期间海-气通量的估算[J].应用气象学报,2003,14(1):87-92.
    [21]张增海等.南海西南季风期NCEP2湍流热通量的质量分析[J].海洋学报,2006,2:29-38.
    [22]赵永平等.冬季东海黑潮海-气热量交换对长江中下游汛期降水的影响[J].海洋与湖沼,1983.
    [23]中国科学院海洋研究所气象组.西北太平洋海面热量平衡图集,北京:科学出版社,1979.
    [24]中国科学院海洋研究所气象组.北太平洋西部逐月海-气热量交换资料集.北京:科学出版社,1984.
    [25] Acevedo OC, Moraes OLL, Fitzjarrald DR, et al. Turbulent carbon dioxide in very stable conditions [J]. Boundary Layer Meteorol, 2007, 125:49-61.
    [26] Anctil F, Donelan MA, Drennan WM, Graber HC. Eddy-correlation measurements of air-sea fluxes from a discus buoy [J]. Atmos Oceanic Technol, 1994, 11: 1144-1150.
    [27] Anctil Francois, Donelan Mark A., Drennan William M. and Hans C. Graber. Eddy-correlation Measurements of air-sea fluxes from a discus buoy [J]. Atomos. Oceanic. Technol., 1994, 11: 1144-1150.
    [28] Bernardes M, Dias NL. The alignment of the mean wind and stress vectors in the unstable surface layer [J]. Boundary-Layer Meteorol 2010, 134:41-59.
    [29] Bradley EF, Coppin PA, Godfrey JS. Measurements of sensible and latent heat flux in the western equatorial pacific ocean [J]. Geophys Res, 1991, 96: 3375-3389.
    [30] Brooks IM. Spatially distributed measurements of platform motion for the correction of 1-5.
    [16]闫俊岳,姚华栋,王强等.西沙海-气通量观测资料初步分析.北京:气象出版社,1999,147-151.
    [17]阎俊岳.中国邻海海-气热量、水汽通量计算和分析[J].应用气象学报,1999,10(1):9-19.
    [18]闫俊岳,姚华栋,李江龙等.2000年南海季风爆发前后西沙海域海-气热量交换特征[J].海洋学报,2000,25(4):18-28.
    [19]闫俊岳,唐志毅,姚华栋等.南海西南季风ship-based turbulent fluxes [J]. 08, 25: 2007-2017.
    [31] Budyko, M.I, The heat balance of the earth’s surface Gidrometiorol, IED, Stpetorsbuog, Russia, 1956, 8:255. Atlas of the heat balance of the earth, Glabnaia Geofiz. Observ, 1963.
    [33] Budyko, M.I. Problems of studying the energy balance of the earth, WMO Phys. and Dyn. the North Atlantic. Mon. Weather Rev. 1976, 104, 1122-1140.
    [35] Campos JG, Acevedo OC, Tota J, et al. On the temporal scale of the turbulent exchange of 08JD011240. WMO/TD-1083, Potomac, MD, WCRP, pp 135–141.
    [38] Curry JA, Clayson CA, Rossow WB, Reeder R, Zhang YC, Webster PJ, Liu G, Sheu RS. High-resolution satellite-derived dataset of the surface fluxes of heat, freshwater, and 2, 016.
    [40] Donelan MA (1990) Air-sea interaction. In: LeMehaute B and Hanes D (eds) The sea: ocean nce, Vol. 9 Wiley, pp 239-292.
    [41] Donelan Mark A., William M. Drennan, Kristina B.Katsaros. The Air-Sea Momentum Flux ind Sea and Swell [J]. Journal of Physical Oceanography, 1997, 27:
    [42] Donlon CW, Minnet PJ, Gentemann C, Nightingale TJ, Barton IJ. Towards improved validation of satellite sea surface skin temperature measurements for climate research [J]. J Clim, 2002, 15: 353-369. pact of flow distortion corrections on turbulent Atmos Oceanic Technol, 20
    [32] Budyko, M.I, Climatol. 1974, 12-25.
    [34] Bunker. A.F., Computation of surface energy flux and annual air-sea interaction cycles ofcarbon dioxide and energy above a tropical rain forest in Amazonia [J]. Journal of Geophysical Research, 2009, 114: D08124. doi: 10.1029/20
    [36] Charnock, H., Wind stress on a water surface, Quart. J. Roy. Meteor. Soc., 1955, 81, 639-640.
    [37] Chelton DB (2001) Scatterometer—based assessment of surface wind field analyses from the European Centre medium—range weather forecasts. In: Proceedings of WCRP/SCOR workshop on intercomparison and validation of ocean–atmosphere flux fields. WCRP-115,momentum for the TOGA COARE IOP [J]. Bulletin of the American Meteorological Society, 1999, 80: 2059-2080.
    [39] DeCosmo J, Katsaros KB, Smith SD, Anderson RJ, Oost WA, Bumke K, Chadwick H. Air-sea exchange of water and sensible heat: The humidity exchange over the sea (HEXOS) results [J]. Geophys Res, 1996, 101:12, 001-1engineering sciein Conditions of W2087-2099.
    [43] Dupuis H, Guerin C, Hauser D, et al. Imuxes estimated by the inertial dissipation method during the FETCH experiment on R/V L’Atalante [J]. Geophys. Res, 2003, 198(c3): 12: 1-17.
    [44] Edson JB, Hinton AA, Prada KE, H ll CW. Direct covariance flux estimates from mobile platforms at sea [J]. Atmos Oceanic Technol, 1998, 15: 547-562. . Technol., 2004: 21, 1086-1094. OARE [J]. Geophys. Res, 1996, 101, 3747-3764. Measurem Using Realtime Spectral Computations [J]. Journal of Atmospheric and Oceanic Technology, 1990, 7, 425-453. r TOGA COARE [J]. Geophys Res, 1996, 101: 3747-3764. ent [J]. Journal of Geophysical Research-Oceans, 1996, 101: 3747-3764. al computations [J]. Atmos Oceanic Technol, 1990, 7:
    [51] Fairall CW ethods and turbulent fluxes at the air ocean interface [J]. Boundary-Layer Meteorol, 1986, 34: 287-301.
    [52] innigan JJ, Clement R, Leuning R, et al. A re-evaluation of long-term flux m ent r-sea fluxes and surface layer turbulence around a sea measurement on a ship by using a stable plarform rt GL, Measurements of the angle between the wind vector and wind stress vector n the surface layer over the north sea[J]. Geophys
    [56] Gemmrich Johannes R. and Farmer David M. Near-surface turbulence in the presence of reaking waves [J]. Phys.Oceanogr, 2004, 34, 1067-1086. flare JE, Faira
    [45] Eric A.D’Asaro. Air-sea heat flux measurements form nearly neutrally buoyant floats [J]. Atomos. Oceanic
    [46] Fairall C W, Bradley E E, D. P. Rogers, et al. Bulk parameterization of air-sea fluxes for GOGAC
    [47] Fairall C. W., J. B. Edson, S. E. Larsen, P. G. Mestayer. Inertial-Dissipation Air-Sea Fluxents: A Prototype System
    [48] Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS. Bulk parameterization of air-sea fluxes fo
    [49] Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS. Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experim
    [50] Fairall CW, Larsen SE, Mestayer PG. Inertial-dissipation air-sea flux measurements: A prototype system using real time spectr425-453. , Larsen SE. Inertial dissipation mF easuremtechniques PartⅠ:Averaging and coordinate rotation [J]. Boundary Layer Meteorol, 2003, 107: 1-48.
    [53] Friehe CA, Shaw WJ, Rogers DP, Davidson KL, Large WG, Stage SA, Crescenti GH, Khalsa SJS, Greenhut GK, Li F. Aisurface temperature front [J]. Geophys Res, 1991, 96: 8593-8609,
    [54] Fujitani T. Method of turbulent fluxsystem [J]. Papers in Meteorol and Geophys, 1985, 36: 157-170.
    [55] Geernaei Res, 1988, 93: 8215-8220. bmi BN, Rajagopal EN. Indian Ocean surface winds from NCMRWF analysis as -Earthand Planetary Sciences, 2003, 112: 61-77. Journal of Geophysical Research-Oceans, 2003,
    [59] raber Hans C., Eugen et al. ASIS-A New Air-Sea ance at Sea [J]. Journal of Atmospheric and dson JB, Miller SD. Wind stress vector over ocean RA. ECMWF and ERS-1 surface winds over the Arabian Edson JB, Bock EJ, Fairall CW. Progress on direct covariance measurements of ir-sea fluxes from nts, 10th Symp. T fusion, Portland, OR, Amer. Meteor. Soc., 1992, 281-284 . Shinoda, Assessment of warmpool surface fluxes from NCEP reanalyses. ), 1999, Boulder, CO. 7-14, WCRP-107, WMO/TD-940. WMO, Geneva, 255. .
    [57] Goswacompared to QuikSCAT and moored buoy winds [J]. Proceedings Of The Indian Academy Of Sciences
    [58] Goswami BN, Sengupta D. A note on the deficiency of NCEP/NCAR reanalysis surface winds over the equatorial Indian Ocean [J].108(C4): 3124. doi: 10.1029/2002JC001497. G e A. Terray and Mark A. Donelan Interaction Spar Buoy: Design and PerformOceanic Technology, 2000, 17(5): 708-720.
    [60] Grachev AA, Fairall CW, Hare JE, Ewaves [J]. Phys Ocean 2003, 33: 2408-2429.
    [61] Halpern D, Freilich MH, WellerSea during July 1995 [J]. Journal of Physical Oceanography, 1999, 29: 1619-1623.
    [62] Hare, JE,a ships and buoys. Prepri urbulent and Dif
    [63] Hendon, H., and TCOARE- 98: Proc. Conf. TOGA coupled Ocean-Atmosphere Response Experiment(COARE
    [64] H?jstrup J. A statistical data screening procedure [J]. Measuring Sci Technol 1993, 4: 153-157.
    [65] Howell J F, Mahrt L. Multiresolution flux decomposition [J]. Boundary Layer Meteorol, 1997, 83: 117-137.
    [66] Howell JF, Sun J. Surface-layer fluxes in stable conditions [J]. Boundary Layer Meteorol, 1999, 90: 495-520.
    [67] Josey SA. A comparison of ECMWF, NCEP-NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic [J]. Journal of Climate, 2001, 14: 1780-1789
    [68] Kaimal JC, Finnigan JJ. Atmospheric boundary layer flows [M]. U.K.: Oxford University Press, 1994, 289p.
    [69] Kalnay E, coauthors. The NCEP/NCAR 40-Year Reanalysis Project [J]. Bull Amer Meteor Soc, 1996, 77: 437-471.
    [70] Kanamitsu M, coauthors. Overview of NCEP/DOE reanalysis-2, Proceedings of the SecondMO/TD-No. hors. The NCEP-DOE AMIP-ⅡReanalysis (R-2) [J]. Bull Amer phere Response Experiment(COARE), Boulder,Co.7-14 July 1988, s in moderate to strong winds ull.1989, 23, NCAR, 36 PP uction manual of the eddy covariance 9-16,745. cean [J]. Atmos Oceanic Technol., 2008, 25: R reanalysis over the western boundary currents [J]. Journal of Climate 2002, odel products and climatological datasets [J]. Journal of Climate, WCRP International Conference on Reanalysis [C]. UK, 237 August 1999, W985,1.
    [71] Kanamitsu M, coautMeteor Soc, 2002, 83: 1631-1643.
    [72] Klinker,E,A.Y.Hou and G.H.White,1999:The legacy of COARE-98: proc. conf. on the TOG Acoupled Ocean-AtmosWCRP-107,WMO/TD 949,WMO,Geneva,95-104.
    [73] Large WG, Pond S. Open ocean momentum flux measurement[J]. Phys Oceanogr, 1981, 11:324-336.
    [74] Large WG, Pond S. Sensible and latent heat flux measurements over the ocean [J]. Phys Oceanogr 1982, 12:464-482.
    [75] Lenschow DH, Spyers-Duran P, Measurement techniques: Air motion sensing. RAF Research B
    [76] Liu WT, Katsaros KB, Businger JA. Bulk parameterizations of the air-sea exchange of heat and water vapor including the molecular constraints at the interface [J]. Atmos. Sci 1979, 36: 1722-1735.
    [77] Mauder, M., Foken, T., 2004. Documentation and instrsoftware package TK2. Universit?t Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 26, 44 pp. (Print: ISSN 1614-8916; Internet: ISSN 1614-8926).
    [78] McGillis WR, Edson JB, Hare JE, Fairall CW. Direct covariance air-sea co2 fluxes [J]. Geophys Res, 2001, 106: 16,72
    [79] Miller SD, Hristov TS, Edson JB, Friehe CA. Platform motion effects on measurements of turbulence and air-sea exchange over the open ocean [J]. Atmos Oceanic Technol, 2008, 25: 1683-1694.
    [80] Miller SD, Hristov TS, Edson JB, Friehe CA. Platform motion effects on measurements of turbulence and air-sea exchange over the open o1683-1694.
    [81] Moore GWK, Renfrew IA. An assessment of the surface turbulent heat fluxes from the NCEP-NCA15: 2020-2037.
    [82] Moyer KA, Weller RA. Observations of surface forcing from the subduction experiment: A comparison with global m1997, 10: 2725-2742.ucts and climatological datasets [J]. twork of the [M]. Wiley, New York ,1984,397pp. d on the R/V L’Atalante and an buoy [J]. Journal of geophysical ments of the turbulent ypothesis the ocean [J]. Atoms Sciences, 1971, 28, 901-917. ECMWF analyses and NCEP urface-waves on the open-ocean [J]. Geophys Res, 1994, 99: 22, 589-22, 596. d Meteorology, 2001, 40: ulence sensor measurements [J]. J.Atmos. Sci.,
    [83] Moyer, K. A. and R. A. Weller. Observation of surface forcing from the subduction experiment: a comparison with global model prodClmiate, 1997, 10, 2725-2742.
    [84] Nittls K., Tziavos C., Bozzano R. et al. The M3A multi-sensor buoy meMediterranean Sea[J]. Ocean Sci. Discuss., 2006, 2, 1399-1440.
    [85] Panofsky HA, Dutton JA. Atmospheric turbulence
    [86] Pedreros R, Dardier G, Dupuis H, Graber HC, Drennan WM, Weill A, Guérin C, Nacass P. Momentum and heat fluxes via the eddy correlation methoASIS buoy [J]. Geophys Res, 2003, 108, 3339, doi: 10.1029/2002JC001449
    [87] Pedreros R., Dardier G., Dupuis H. et al. Momentum and beat fluxes via the eddy correlation method on the R/V L’Atalante and an ASIS research, 2003, Vol.108 (11): 1-13.
    [88] Pond S, Phelps GT, Paquin JE, Mcbean G, Stewart RW. Measurefluxes of momentum, moisture and sensible heat over the ocean [J]. Atmos. Sci, 1971, 28: 901 -917.
    [89] Powell, D.C. and C.E. Elderkin. An investigation of the application of Taylor’s hto atmospheric boundary layer turbulence [J]. J. Atmos. Sci. , 1974,31:990-1002.
    [90] Pond, et al. Measurements of the turbulence fluxes of momentum, moisture and sensible heat over
    [91] Renfrew IA, Moore GWK, Guest PS, Bumke K. A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with reanalyses [J]. Journal of Physical Oceanography, 2002, 32: 383-400.
    [92] Rieder KF, Smith JA, Weller RA. Observed directional characteristics of the wind, wind stress, and s
    [93] Rouault M, Reason CJC, Lutjeharms JRE, Beljaars ACM. Underestimation of latent and sensible heat fluxes above the Agulhas Current in NCEP and ECMWF analyses [J]. Journal of Climate, 2003, 16: 776-782.
    [94] Sakai R K, Fitzjarrald D R, Moore K E, et al. Importance of low-frequency contributions to eddy fluxes observed over rough surfaces [J]. Journal of Applie2178-2192.
    [95] Schulz EW, Sanderson BG, Bradley EF. Motion correction for shipborne turb[J]. Atmos Oceanic Technol, 2005, 22:55-69.
    [96] Smedman AS, Ahogstrom U. Spectral gap in surface-layer5,467-15,472. NCEP/NCAR and ECMWF reanalysed fields ARE [J]. Boundary-Layer Meteorol, 1996, 81: rming of e meteorology and turbulent heat fluxes tern Comparison of NCEP turbulent heat fluxes with in situ observations over the ing Group on Air Sea Fluxes Rep. WCRP, 2000, pp1-303. flux measurements and energy budget analysis over the i E, Ishida H, Horiguchi M, Mitsuta Y. On-board direct measurements Sengupta, K and Bhat, GS and Ameenulla, S and Raju. 1975, 32: 340-350.
    [97] Smith SD. Coefficients for sea surface wind stress, heat flux and wind profiles as a function of wind speed and temperature [J]. Geophys Res, 1988, 93: 1
    [98] Smith, S.D. Wind stress and heat flux over the ocean in gale force wind [J]. Phys. Oceanog., 1980, 10, 709-726.
    [99] Smull BF and McPhaden MJ. Comparison of with TOGA TAO buoy observations over the tropical Pacific. In: Proceedings of first WCRP international conference on reanalyses, Geneva, Switzerland, World Meteorological Organization, 1998, pp 227–330.
    [100] Song X, Friehe CA, Hu D. Ship-board measurements and estimations of air-sea fluxes in the western tropical Pacific during TOGA-CO373-397.
    [101] Sparnocchia S, Schiano ME, Picco P, Bozzano R, Cappelletti A. The anomalous wasummer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean) [J].ANNALES GEOPHYSICAE, 2006, 24(2): 443-452.
    [102] Sun B, Yu L, Weller RA. Comparisons of surfacover the Atlantic: NWP model analyses versus moored buoy observations [J]. J Clim, 2003, 16: 679-695.
    [103] Sun J, Howell JF, Esbensen SK, et al. Scale dependence of air-sea fluxes over the wesequatorial pacific [J]. J. Atmos. Sci., 1996, 53(21): 2997-3012.
    [104] Swain D. south-eastern Arabian Sea [J]. METEOROLOGY AND ATMOSPHERIC PHYSICS, 2009, 104: 163-175.
    [105] Taylor P. K. Intercomparison and validation of ocean-atmosphere energy flux fields. Joint WCRP/SCOR Work
    [106] [104] Trevino, G, Andreas EL. On the Reynolds averaging of turbulence time series [J]. Boundary Layer Meteorol, 2008, 128: 303-311.
    [107] Tsukamoto O, Ishida H. Turbulentequatorial Pacific during TOGA-COARE IOP [J]. Meteorol Soc Japan 1995, 73: 557-568.
    [108] Tsukamoto O, Ohtakof turbulent fluxes over the open sea [J]. Meteorol Soc Japan, 1990, 68: 203-211.
    [109] Venkataramana, M andInertial-Dissipation flux measurements over south Bay of Bengal during BOBMEX-Pilots, 2000, 109(2): 239-247. 7, 14: 512-526. ation by mesoscale motions with very mean seasonal cycle of surface heat flux in the x, G, et al. Toward a better determination of turbulent air-sea der B. Evaluating transfer velociyu-wind speed nderson SP. Surface meteorology and air-sea fluxes in the western equatorial JC. Atmospheric forcing in the ies in Oceanography, 1998, 45B: 1961-1999. he average annual hea balance of the North Pacific Ocean and its relation to of sea surface fluxes using TOGA COARE and TAO data [J]. Journal of experiment [J]. Proceedings of the Indian Academy of Sciences Earth and Planetary Science
    [110] Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data [J]. J. Atmos. Oceanic Technol., 199
    [111] Vickers D, Mahrt L. The Cospectral Gap and Turbulent Flux Calculations [J]. J. Atmos. Oceanic. Tech., 2003, 20: 660-672.
    [112] Vickers D, Mahrt L. A solution for flux contaminweak turbulence [J]. Boundary-Layer Meteorol, 2006, 118: 431-447.
    [113] Wang W, McPhaden MJ. What is theequatorial Pacific? [J].Journal Of Geophysical Research-Oceans, 2001, 106: 837-857.
    [114] Weill, A, Eymard, L, Caniaufluxes from several experiments [J]. Climate 2003, 16(4): 600-618.
    [115] Weiss A, Kuss J, Peters G, Schneirelationship using a long-term series of direct eddy correlation CO2 flux measurements [J]. Mar Syst, 2007, 66: 130-139.
    [116] Weller RA, APacific warm pool during the TOGA coupled ocean-atmosphere response experiment [J]. Journal of Climate, 1996, 9: 1959-1999.
    [117] Weller RA, Baumgartner MF, Josey SA, Fisher AS, Kindle Arabian Sea during 1994-1995: observations and comparisons with climatology and models [J]. Deep-Searesearch Part II-Topical Stud
    [118] Wilczak J, Oncley S, Stage S. Sonic anemometer tilt correction algorithms [J]. Boundary-Layer Meteorol, 2001, 99: 127-150.
    [119] Wyrtki, K. Tocean circulation [J]. Geophys. Res. 1965, 70, 4547-4559.
    [120] Zeng X, Zhao M, Dickinson RE. Intercomparison of bulk aerodynamic algorithms for the computationClimate, 1998, 11: 2628-2644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700