瓜尔胶衍生物的制备及在造纸法再造烟叶中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造纸法再造烟叶是利用烟梗、烟末、烟叶碎片、废次烟叶等烟草废料作基本原料通过造纸工艺生产的烟草薄片,具有变废为宝、节省烟叶原料、降低卷烟成本等特点。再造烟叶浆料中含有30%以上包含细小纤维、烟末和填料的细小组分,由于造纸法再造烟叶生产对助剂的特殊要求(无毒无害易生化降解、不影响烟草燃烧气味),目前,造纸法再造烟叶在抄造过程中基本不添加任何助剂,这导致了大量细小组分的流失。瓜尔胶及其衍生物由于其独特的理化特征,在提高造纸法再造烟叶浆料细小组分的留着率和滤水性能,以及改善薄片的物理性能方面具有广阔的应用价值和应用前景。
     本文系统研究了阳离子瓜尔胶(CGG)、阳离子瓜尔胶丙烯酰胺接枝共聚物(CGG-g-PAM)在离子液体中的制备、表征及助留助滤性能,分析了造纸法再造烟叶浆料的特性,将CGG、CGG-g-PAM、商品阳离子瓜尔胶和阳离子羟丙基瓜尔胶对烟草浆的助留助滤效果进行了比较,进一步将一元与二元微粒助留助滤体系进行了比较,研发适合于造纸法再造烟叶湿部抄造的一剂多功能瓜尔胶衍生物助留助滤增强剂。
     采用微波辐射法合成了氯化1-烯丙基-3-甲基咪唑([AMIM]Cl)和氯化1-丁基-3-甲基咪唑([BMIM]Cl)两种离子液体。比较了连续辐射法和间歇辐射法对合成反应时间、产物得率及原料转化率的影响。结果表明微波间歇辐射法合成咪唑类离子液体不仅反应时间更短,咪唑的转化率和得率更加接近,反应效率更高,而且能够减轻反应过程中放热对产物颜色加深的负面影响,得到纯度更高的产品。红外光谱和13C-NMR表征证实了合成反应的发生。
     在离子液体中制备了阳离子瓜尔胶,考察了阳离子醚化剂用量、反应温度、碱化时间和反应时间对产物阳离子取代度(氮含量)和粘度的影响,确定了最佳反应条件。通过偏光显微镜的观察发现瓜尔胶在离子液体中反应时处于溶胀状态,是非均相反应。用FT-IR,13C-NMR表征CGG结构,证实了在瓜尔胶分子单元的C6位置发生了醚化反应,用SEM观察CGG的表面形态,TG分析表明CGG的热稳定性能稍好于瓜尔胶原粉。比较了几种不同的阳离子瓜尔胶的氮含量、粘度、流变性能和分子量及分子量分布,结果表明:以CTA为阳离子单体,在离子液体中合成的阳离子瓜尔胶具有较高的阳离子取代度(0.14)和粘度(904mPa·s),抗剪切性能较好,分子量分布较集中。
     创新性研究了过硫酸铵引发阳离子瓜尔胶和丙烯酰胺在离子液体中的接枝共聚反应,研究了单体与阳离子瓜尔胶的质量比、引发剂与阳离子瓜尔胶的质量比、反应温度和反应时间对接枝聚合参数的影响,确定了最佳合成条件。FT-IR,13C-NMR表征了CGG-g-PAM的结构,用SEM观察CGG-g-PAM的表面形态。热重分析表明CGG-g-PAM有两个失重峰,耐热性能优于瓜尔胶原粉。CGG-g-PAM水溶液表现出假塑性流体行为,但其粘度下降速率较慢,在相同剪切速率下,粘度较CGG和CPAM大。通过聚合反应动力学研究发现,温度对聚合反应速率有较大影响,在离子液体中反应的表观活化能为(ΔEappa)11.6KJ/mol,聚合反应速率随单体与CGG摩尔比的增加而下降,而聚合物的分子量增加,分子量分布变窄。
     通过对造纸法再造烟叶浆料的电荷特性研究发现,Zeta电位随着离子浓度、浆浓和打浆度的提高而增加,随pH的升高而降低;阳离子需求量随着pH、浆浓和打浆度的提高而增加,随离子浓度的升高而降低。阳离子瓜尔胶能够显著降低再造烟叶浆料体系的阳离子需求量并大幅提高Zeta电位。
     对烟草浆的纤维性能进行了分析,烟草浆原料经过机械磨浆后含有较多的纤维束、纤维团簇和烟末;显微镜图片显示烟草浆料中存在较多剥落的细小纤维和烟末。比较了在离子液体中合成的四种不同阳离子取代度的CGG对烟草浆细小组分的助留效果,结果表明阳离子取代度为0.14,粘度为904mPa·s的CGG-2对烟草浆的助留效果最好,CGG-2对细小组分单程留着率的效果优于商品CGG和溶剂法合成的CGG,而后两者的效果相当。
     阳离子瓜尔胶的DS对接枝共聚物助留性能的影响较小;CHPG对提高烟草浆的FPR有明显效果,CHPG的加入量从0增加到0.08%,FPR从40.1%提高到80.5%,提高了101%。对比了三种瓜尔胶衍生物对造纸法再造烟叶浆的助留助滤效果,结果表明CGG-2的效果稍好于CGG2-g-PAM和CHPG,以离子液体为反应介质合成的CGG-2在造纸法再造烟叶浆中具有最好的应用效果,但如果出于工业化的考虑,阳离子取代度为0.08的阳离子羟丙基瓜尔胶可以作为其替代品。用十八烷基三甲基溴化铵(STAB)对膨润土进行了有机改性,研究了CGG和膨润土组成的二元微粒助留体系对烟草浆的助留助滤效果,考察了剪切速率、pH值和电解质浓度对CGG/膨润土二元微粒助留体系的影响,结果表明膨润土与CGG组成的微粒助留助滤体系具有较好的抗剪切能力、较广的pH使用范围和较好的抗电解质性能。
Paper-making process reconstituted tobacco is use of tobacco peduncle, dust, brokentobacco pieces and tobacco waste as basic raw materials through paper-making processproduced tobacco sheet. Paper-making process reconstituted tobacco have the characteristicsof recycling waste materials, saving tobacco materials, reducing cigarette cost, etc. Thereconstituted tobacco pulp contains more than30%tiny fibers, tobacco dust and filler. As thereconstituted tobacco process special requires of additives(non-toxic and harmless, easybiochemical degradation, do not affect the tobacco smell of burning), currently, thereconstituted tobacco pulp does not add any additive in the manufacturing process. This leadsto large number of fines loss. Guar gum and its derivatives have broad application value andapplication prospect in increasing the retention and drainage performance of reconstitutedtobacco pulp fines, also it can improve the physical properties of the tobacco sheet because ofits unique physical and chemical characteristics.
     This thesis studied the preparation and characterization of cationic guar gum(CGG),cationic guar gum acrylamide graft copolymer(CGG-g-PAM) in ionic liquid. Their retentionand drainage aid performance on paper-making process reconstituted tobacco pulp were alsoresearched. First, analysis the properties of paper-making process reconstituted tobacco pulp;and then comparison the effects of retention and drainage aid of CGG, CGG-g-PAM,commodity cationic guar gum and cationic hydroxypropyl guar gum(CHPG) application onreconstituted tobacco pulp; at last, monobasic and binary of microparticle retention anddrainage aid systems were compared. Research and development multifunctional guar gumderivatives as retention and drainage aid and reinforcing agent suitable for wet end process ofpaper-making process reconstituted tobacco.
     Synthesized chlorinated1-allyl-3-methylimidazole([AMIM]Cl) and chlorinated1-butyl-3-methylimidazole([BMIM]Cl) two kinds of ionic liquids using microwave radiationmethod. Compared continuous microwave radiation method and intermittent microwaveradiation method on the influence of synthesis reaction time, product yield and raw materialconversion. The results showed that intermittent microwave radiation method could shortenthe reaction time in synthesis imidazoles ionic liquid. The conversion of imidazole was close to the yield and the reaction efficiency were higher than continuous microwave radiationmethod. It could reduce the negative effect on product color darken because of the reactionexothermic, so we could get high purity product. The infrared spectrum and the13C-NMRrepresentation confirmed the synthetic reaction.
     We prepared cationic guar gum in ionic liquids. Studied the effects of the cationicetherification agent dosage, reaction temperature, alkalization time and reaction time ondegree of substitution(nitrogen content) and the viscosity of CGG, then the optimum reactionconditions were determined. Through the polarizing microscope we found that guar gum wasin a swelling state when reacting in ionic liquids, obviously it was a homogeneous reaction.FT-IR and13C-NMR characterized CGG’s structure. It confirmed the etherification reactionhappened on C6position of guar gum molecular unit. SEM analysed the CGG surface formand TG analysis showed that the CGG performance slightly better than guar gum on thermalstability. Compared different kinds of cationic guar gum of nitrogen content, viscosity,rheological properties, molecular weight and molecular weight distribution, the resultsshowed that the cationic guar gum had higher cationic degree of substitution(0.14) andviscosity(904mpa·s) as CTA cationic monomer. The shear performance was better and themolecular weight distribution was more concentrated.
     Innovative studied ammonium persulfate initiated cationic guar gum and acrylamidegraft copolymerization in ionic liquid. Researched the effect of monomers and cationic guargum mass ratio, initiator and cationic guar gum mass ratio, reaction temperature and reactiontime on graft polymerization parameters, to determine the optimum synthesis conditions.FT-IR and13C-NMR characterized the structure of CGG-g-PAM. Surface morphology wasobserved by SEM. Thermal analysis showed that CGG-g-PAM had two peaks, so theheat-resistant property was better than guar gum. CGG-g-PAM aqueous solution showedpseudoplastic fluid behavior, but the viscosity decreased slower, and at the same shear rate,viscosity was higher than that of CGG and CPAM. Polymerization kinetics showed thattemperature had great influence on polymerization rate. The apparent activationenergy(ΔEapp
     a) was11.6KJ/mol in ionic liquids. The reaction rate of polymerizationdecreased with monomer and CGG mole ratio increasing. The polymer molecular weightincreased and the molecular weight distribution became narrow.
     The charge characteristics of paper-making process reconstituted tobacco pulp showedthat Zeta potential raised with the ion concentration, pulp consistency and beating degreeincreasing, while reduced with pH increasing. Cationic demand raised with pH, pulpconsistency and beating degree increasing, while reduced with ion concentration raising.Cationic guar gum could significantly reduce cationic demand of reconstituted tobacco pulpsystem and sharp increase Zeta potential.
     Analysis on fiber performance of tobacco pulp showed that tobacco pulp raw materialscontained many fiber, fiber clusters and tobacco powder after mechanical grind. Microscopyimage showed that tobacco slurry had many peeling fine and tobacco powder. Comparison offour different kinds of cation substitution degree of CGG synthesed in ionic liquid applicatedon tobacco pulp fines. The effect of retention aid showed that the CGG-2of cationsubstitution degree0.14, viscosity904mPa·s had best application effect on paper-makingprocess reconstituted tobacco pulp. The effect of fines first-pass retention which CGG-2applicated on paper-making process reconstituted tobacco pulp was better than merchandiseCGG and CGG synthesed in solvent, while the latter two had effect of considerable.
     The DS of cationic guar gum had small effect on retention aid properties of graftcopolymer. CHPG had obvious effect on improving FPR of tobacco pulp. With the CHPGcontent increasing from0to0.08%, FPR increased from40.1%to80.5%, improving101%.Comparison of three kinds of guar gum derivatives retention and drainage aid effects onpaper-making reconstituted tobacco pulp, the results showed that CGG-2had better effectthan CGG2-g-PAM and CHPG. CGG-2which synthesed in ionic liquid application onpaper-making reconstituted tobacco pulp had best effect, but if on the industrializationconsideration, cationic hydroxypropyl guar gum which cationic substituted degree was0.08could be used as its replacement.
     Organic modified bentonite with STAB, SEM, FT-IR, TG and XRD shown that theorganic modifier had been got into the layer of bentonite. We could decide the betterconditions of organic modifying by orthogonal experiment. Binary of microparticle retentionand drainage aid system which contained CGG and bentonite application on paper-makingreconstituted tobacco pulp was researched. We studied the effect of shear rate, pH and theconsistency of electrolyte on binary of microparticle retention and drainage aid system. The results indicated the binary of microparticle retention and drainage aid system had betterresisting shear capacity, wide-ranging of pH application scope and better resisting electrolyteresistance.
引文
[1]吕兰海,杨陟华,尤汉虎等.卷烟烟气及其主要有害成分诱发细胞基因突变的研究[J].环境与健康杂志,2004, v21(5):286-288
    [2]王瑞星主编.烟草化学[M].北京:中国农业出版社,2003
    [3]闫克玉,刘朝贤.卷烟烟气化学[M].郑州:郑州大学出版社,2002
    [4] Hoffman D, Hoffman I, El-bayoumy K. The less harmful cigratte: A controversial issue[J].Chem. Res. Toxicol.2001,14:767-790
    [5] Sharma Ramesh K, Wooten Jan B et al. Characterization of Char from the Pyrolysis ofTobacco[J]. J Agric Food Chem,2002,50(4):771-783
    [6] Jenkins B M, Baxter L L. Combustion Properties of Biomass[J]. Fuel ProcessingTechnology,1998:54(1-3):17-46
    [7]罗军.从农业生产的角度探讨降低卷烟烟气中焦油含量的可能性[J].中国烟草科学,1997,(1):36-37
    [8]于建军,章新军,毕庆文等.烤烟烟叶理化特性对烟气烟碱、CO、焦油量的影响[J].中国烟草科学,2003(3):5-8
    [9]夏炳乐,颜春雷,李敏莉.生物酶技术在烟草中的应用研究进展[J].烟草科技,2008,1:46-49
    [10]汪长国,戴亚,朱立军等.采收前添加微生物制剂对烟叶品质的影响[C].中国烟草学会工业专业委员会烟草化学学学术研讨会,2005:283-285
    [11]吴殿信,王兵,刘朝贤等.卷烟降焦技术方法[J].烟草科技,1999,(1):7-9
    [12]尼古丁.巴斯凯维奇.卷烟的燃烧速率及其控制办法[R].中国烟草学会第三届年会论文,北京,1997
    [13]许萍,宁敏,杨承华等.添加有机钾盐对卷烟焦油量等的影响[J].合肥工业大学学报(自然科学版),1999,22(3):8893
    [14] K.Torikai, S.Yoshida, H.Takahashi. Effects of temperature、atmosphere and PH on thegeneration of smoke compounds during tobacco pyrolysis[J]. Food and ChemicalToxicology.2004,42:1409-417
    [15]李丛民,杨雷玉.钼酸盐对卷烟燃烧氧化反应的催化作用[J].化学通报,2002,(3):201-204
    [16]吴宏伟,李丛民.某些盐类添加剂对降低卷烟焦油量的机理研究.烟草科技,2000,(11):8-9
    [17]阮小明,齐玉信.中式卷烟的发展优势浅析.中国烟草科学,2004,24(4):1-4
    [18] Vick.Baliga, Ramesh.Sharma, Donsld.Miser, et al. Physical characterization of pyrolyzedtobacco and tobacco components[J]. Journal of Analytical and Applied Pyrolysis,2003,66:191-215
    [19] Matyjaszewski K., Xia J. Atom transfer radical polymerization[J].Chem. Rev.,2001,101(9):2921-2990
    [20] Chong Y. K., Le T. P. T., Moad E. R., et al. A more versatile route to block copolymersand other polymers of complex architecture by living radical polymerization: The RAFTprocess[J]. Macromolecules,1999,32:2071-2074
    [21] Jagur-Grodzinski J. Preparation of functionalized polymers using living and controlledpolymerizations[J].Reactive&Functional Polymers,2001,49(1):1-54
    [22] Solomon, D.M., Rizzardo E., Cacioli P. Polymerization process and polymers producedthereby[P]. U.S. Patent4581429,1985
    [23] Georges M. K., Veregin R. P. N., Kazmaier P.M., Hamer G. K.. Narrow molecular weightresins by a free-radical polymerization process[J]. Macromolecules,1993,23\6(11):2987-2988
    [24] Fischer, H. The persistent radical effect in “living” radical polymerization[J].Macromolecules,1997,30(19):5666-5672
    [25] Devonport W, Michalak L, Malmstrom E,et al.''Living'' free-radical polymerizations inthe absence of initiators: Controlled autopolymerization[J]. Macromolecules,1997,30(7):1929-1934
    [26] Benoit D., Chaplinski V., Braslau R., et al. Development of a Universal Alkoxyamine for“Living” Free Radical Polymerizations[J]. J.Am. Chem. Soc.,1999,121(16):3904-3920
    [27] Alince B, Bednar F,van De Ven T G M. Deposition of calcium carbonate particles onfiber surfaces induced by cationic polyelectrolyte and bentonite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,190(1):71-80
    [28] Francois B, Daniel M, Bruno C, et al. A new microparticulate system to improveretention/drainage in fine paper manufacturing[J]. Appita journal.2005,58(1):47-51
    [29] Desharnais L,Daneault C,Chabot B M D. New microparticle retention programs for themanufacture of fine paper[J]. Association technique de l'industrie papetière.2004,58(1):19-24
    [30]陈莉.纸张生产中高效的微粒助留助滤体系[J].造纸化学品.2004,16(5):38-38
    [31]刘娜,刘温霞. CPAM/膨润土助留体系中改性膨润土的研究[J].纸和造纸.2005(2):64-67
    [32] Liu W,Ni Y.,xiao H. Cationic montmorillonite: Preparation and synergy with anionicpolymer in filler flocculation[J]. Journal of Pulp and Paper Science.2003,29(5):145-149
    [33]陈启杰.浅谈几种微粒助留体系[J].湖北造纸.2002(3):18-20
    [34]冯群策,杨淑蕙,郝晓秀.微粒助留技术的新进展[J].国际造纸.2003,22(2):9-11
    [35]王军利,陈夫山,刘忠.微粒助留体系的最新研究动态[J].中华纸业.2003,24(2):41-43
    [36]张菊先,吕建明,陈金山.阳离子微粒加阴离子聚合物留着系统:实验室和中试[J].国际造纸.2003,22(2):12-16
    [37]王松林,刘温霞.氢氧化镁铝胶体微粒与纤维和阴离子聚丙烯酰胺的吸附[J].中国造纸学报.2004,19(1):89-93
    [38]王松林,刘温霞.阳离子微粒氢氧化镁铝的合成及其微粒助留作用[J].中国造纸学报.2004,19(1):66-69
    [39]张瑞霞,刘英政.可改善新一代纸机留着性能的新型阳离子微粒留着系统[J].造纸化学品.2006,18(1):45-47
    [40]翟红周,章海涛.阳离子聚丙烯酰胺/膨润土/阴离子促进剂三元微粒助留系统探讨[J].中华纸业.2006,27(5):59-61
    [41] Beaudoin R, Dube G, Lupien B, et al. Increased retention and drainage and controllingstickies deposition with bentonite in combination with polyethylene oxide and a cofactor-amill experience[C].84th Annual Meeting-Technical Section, Canadian Pulp and PaperAssociation,1998
    [42]陈夫山,陈启杰,王高升.干法阳离子淀粉作电荷中和剂提高填料留着率[J].中国造纸学报.2003,18(2):126-128
    [43] El-shinawy N, El-mehbad N Y, El-gendy A A. Modified starch as a retention aid inpapermaking[J]. Polymer-Plastics Technology and Engineering.2006,45(1):1-7
    [44]刘全校,朱万亮,田居龙,等. CPAM/PEO/PFR三元助留助滤体系在双胶纸中的应用[J].黑龙江造纸.2002,30(3):29-30
    [45]孙蕴宝.用于造纸过程的微粒助留系统[J].国际造纸.2004,23(6):1-4
    [46]史长伟.膨润土的改性及其助留试验[J].中华纸业.2005,26(6):55-57
    [47]刘温霞,王松林,李建文.蒙脱石的结构形态及钠化方法与其微粒助留作用[J].中国造纸学报.2004,19(1):97-103
    [48]刘娜,刘温霞.不同属型膨润土改性及其助留作用[J].中国造纸.2003,22(9):26-28
    [49]沈静,刘温霞.不同改性方法对膨润土微粒助留效果的影响[J].纸和造纸.2004(4):65-66
    [50] Vanerek A, Alince B, Ven T G M. Delamination and flocculation efficiency ofsodium-activated kaolin and montmorillonite[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects.2006,273:193-201
    [51]王登玉,贾跃然,崔金久.膨润土及改性膨润土在造纸行业中的应用[J].辽宁化工.2006,35(2):96-98
    [52] Tyagi B, Chudasama C D, Jasra R V. Determination of structural modification in acidactivated montmorillonite clay by FT-IR spectroscopy[J]. Molecular and BiomolecularSpectroscopy.2006,26(3):273-278
    [53] T. Thimma Reddy, Shekharam Tammishetti. Free radical degradation ofguargum[J].Polymer Degradation and Stability,2004,86:455-459
    [54] Vandita B. Pai, Saad A. Khan. Gelation and rheology of xanthan/enzyme-modified guarblends[J]. Carbohydrate Polymers,2002,49(2):207-216
    [55] Q. Wang, P. R. Ellis, S. B. et al. The stability of guar gum in an aqueous system underacidic conditions[J].Food Hydrocolloids,2000,49(2):129-134
    [56] Bernard Launay, Gerard Cuvelier. Viscosity of locust bean, guar and xanthangumsolutions in the Newtonian domain: a critical examination of the log (ηsp)o-logc[η]omaster curves[J]. Carbohydrate Polymers,1997,34:385-395
    [57] Manjit Singh Chowdhary, Princeton Junction,N J. Cleaning compositions includingderivatized guar gum compositions including nonionic and cationic groups which demonstrateexcellent solution clarity properties[P]. US:5733854,1998,3
    [58]Michael H.Yeh, HamiltonNJ. Modified hydrophobic cationic thickening compositions[P].US:5473059,1995,5
    [59]Boonstra D J,Bakker A.Guar gum derivatives and process for preparation[P]. US:3912713,1975,10
    [60]Demartion R N. Polygalactomannan ether compositions [P]. US:4031305,1977,6
    [61] Reddy T. Thimma, Shekharam Tammishetti.Barium Chloride CrosslinkedCarboxymethyl Guar Gum Beads for Gastrointestinal Drug Delivery[J]. Journal of AppliedPolymer Science,2001,82:3084–3090
    [62] Du J.Z., Chen Y. M. Atom Transfer Radical Polymerization of a Reactive Monomer:3-(Trimethoxysilyl)propyl Methacrylate[J]. Macromolecules,2004(37):6322-6328
    [63] Senkal, B.F., Hizal G., Bicak N. Atom transfer radical polymerization throughN-chlorosulfonamides[J]. J Polym. Sci., Part A: Poly Chem,2001,39(16):2691-2965.
    [64] Liu B., Hu C. P. The reverse atom transfer radical polymerization of methyl methacrylatein the polar solvents[J]. Eur. Polym.,2001,37(10):2025-2030
    [65] Li P., Qiu K. Y. Living radical polymerization of methyl methacrylate catalyzed bycuprous N,N-diethyldithiocarbamate [J]. J. Polym. Sci., Part A:polym Chem,2002,40(12):2093-2097
    [66]Michael H.Yeh, Hamilton, N J Ian Willianm Cottrell et al.Derivatized guargumcomposition and process for making it[P]. US:5536825,1996,7
    [67] Michael H.Yeh,Hamilton N J. Guar gum composition and process for making it[P].US:5489674,1996,2
    [68] Ronald N,DeMartino. Cationic polygalactomannan compositions[P].US:4031307,1977-6
    [69]Chowdhary MS.Derivatized guar gum composition including nonionic andcationicgroups which demonstrate excellent solution clarity properties[P].US:5756720,1998,5
    [70]吉毅.瓜尔胶衍生物的合成[D].大连理工大学:大连理工大学硕士论文,2005
    [71]周建芳,张黎明, Perter S.Hui.两性瓜尔胶衍生物溶液的流变特征[J].物理化学学报,2003,19(11):1081-1084
    [72] Eric Aubay, Princeton(FR). Use of amphoteric polysaccharide for treating textilefiberarticles[P].US:2004/0067864A1,2004,8
    [73]Michael H.Yeh, Hamilton N J. Amphotericpolysaccharidecompositions[P]. US:5378830,1995,3
    [74] Chowdhary, Cottrell. Preparation of amphoteric guar gum derivatives having highdegreeof substitution[P]. Eur.Pat: EP0943627,1999
    [75]Martino G.T, Cottrell I.W.et al. Keratin treating cosmetic compositionscontainingamphoteric polysaccharide derivatives [P].US:6210689,1998,4
    [76] Bajpai, U. D. N, Jain, Alka. Grafting of polyacrylamide on to guar gum using potassiumpersulfate/ascorbic acid redox system[J]. Journal of Applied Polymer Science,1990,39(11):2187-204
    [77] Sawamoto M., Kamigaito M. Metal complex-mediated living radical polymerization:Features, scope, and precision polymer synthesis[J]. Journal Of Macromolecular Science PureAnd Applied Chemistry,1997, A34(10):1803-1814
    [78]王晓松,罗宁,应圣康. CuX/bpy催化体系中甲基丙烯酸甲酯的原子转移自由基聚合[J].功能高分子学报,1998,(1):1-8
    [79] Xia, J.H., Johnson, T., Gaynor S.G., et al. Atom transfer radical polymerization insupercritical carbon dioxide[J]. Macromolecules,1999,32(15):4802-4805
    [80] Beers, K.L., Boo, S., Gaynor, S.G., et al. Atom transfer radical polymerization of2-hydroxyethyl methacrylate[J]. Macromolecules,1999,32(18):5772-5776
    [81]万小龙,应圣康. Cu/2,2′-联吡啶/CCl4和CuCl2/2,2′-联吡啶/偶氮二异丁腈催化引发体系中的苯乙烯“活性”自由基乳液聚合研究[J].高分子学报,2000(1):27
    [82] Burguiere C., Chassenieux C., Charleux B. Characterization of aqueous micellarsolutionsof amphiphilic block copolymers of poly(acrylic acid)and polystyrene prepared via ATRP.toward the control of the number of particles inemulsion polymerization[J].Polymer,2003,44:509-518
    [83] Okubo M, Minami H, Jian Zhou. Preparation of block copolymer by atom transferradical seeded emulsion polymerization[J].Colloid Polym.Sci,2004,282:747-752
    [84] Xia, J H., Matyjaszewski, K. Homogeneous reverse atom transfer radical polymerizationof styrene initiated by peroxides[J]. Macromolecules,1999,32(16):5199-5202
    [85] Yamamoto, K; Tanaka, H; Sakaguchi, M, et al. Well-defined poly(methyl methacrylate)grafted to polyethylene with reverse atom transfer radical polymerization initiated byperoxides[J].Polymer,2003,44(25):7661-7669
    [86] Ziegler, M. J, Matyjaszewski, K.Atom transfer radical copolymerization of methylmethacrylate and n-butyl acrylate[J]. Macromolecules,2001,34(3):415-424
    [87] Takahashi, H., Ando, T., Kamigaito M., et al. RuH2(PPh3)(4): An active catalyst forliving radical polymerization of methyl methacrylate at or above room temperature[J].Macromolecules,1999,32(20):6461-6465
    [88]周弟,朱秀林,程振平,等.甲基丙烯酸异丁酯的低温原子转移自由基聚合[J].高分子材料科学与工程,2005,21(1):137-140
    [89]彭慧,程时远,范志强.原子转移自由基聚合体系中催化剂的脱除[J].化学与生物工程,2005,(1):21-24
    [90] Shen Y.Q, Tang H.D., Ding S.J. Catalyst separation in atom transfer radicalpolymerization[J]. Prog. Polym. Sci.,2004,(29):1053-1078
    [91] Patten T E, B Novak, M. Organotitanium(IV)-Catalyzed Cyclopolymerizations of1,2-Diisocyanates and Cyclocopolymerizations of Monoisocyanates with1,2-Diisocyanates[J].Macromolecules,1996,29(18):5882-5892
    [92]廖正福,沈家瑞.原子转移自由基聚合及其在共聚物分子设计中的应用[J].功能材料,2000,31(3):242
    [92] Taunk Kavita, Behari Kunj. Graft copolymerization of acrylic acid onto guar gum[J].Journal of Applied Polymer Science,2000,77(1):39-44
    [93] Peeyoosh Kant Pandey, Arti Srivastava, Jasaswini Tripathy. Graft copolymerization ofacrylic acid onto guar gum initiated by vanadium (V)–mercaptosuccinic acid redoxpair[J].Carbohydrate Polymers,2006,65:412-420
    [94] Chowdhury P, Samui S, KunduT. Graft polymerization of methyl methacrylate onto guargum with ceric ammonium sulfate/dextrose redox pair[J].Journal of Applied Polymer Science,2001,82(14):3520-3525
    [95] Peeyoosh K P, Arti S, Kunj B.graft co-polymerization of2-acrylamide-2-,methyl-1-propane sulphonic acid onto guar gum by the bromate/mandelicacid redox pair[J]. Designed Monomers and Polymers,2006,9(3):247-260
    [96] Trivedi J. H.etc. Graft copolymerization of sodium salt of partially carboxymethylatedguar gum with methyl methacrylate: An examination of the reaction variables[J].Journal ofApplied Polymer Science,2005,96(5):1855-1864
    [97] Trivedi Jignesh H.etc. Modification of sodium salt of partially carboxymethylated guargum by graft copolymerizationwith methyl acrylate[J].Polymers&Polymer Composites,2005,13(3):301-312
    [98] Ta W, Demirel T, Baumann E. Adsorption of organic pollutants on montmorillonitetreated with amines[J]. Journal of the Water Pollution Control Federation.1986,58(1):68-76.
    [99] Manjit Singh Chowdhary, Princeton Junction,N J. Cleaning compositions includingderivatized guar gum compositions including nonionic and cationic groups which demonstrateexcellent solution clarity properties[P]. US:5733854,1998,3
    [100] Michael H.Yeh, HamiltonNJ. Modified hydrophobic cationic thickeningcompositions[P]. US:5473059,1995,5
    [101] Derek Abson, Brooks D F. Wet-end Behavior Of Dry Strength Additives[J].Tappi J,1985,68(1):76-78
    [102] Orlando J.Rojas, Ronald D. Neuman.Adsorptionof polysaccharide wet-end additives inpapermaking systems[J].Colloids and surfaces A:physicochemical and engineering aspects,1999,155:419-432
    [103] Barua P. P, Rahman A, Mahanta, D. Control of wet end chemistry by organic polymers.Part XI. Cationic guar gum as wet end additive[J]. IPPTA,1996,8(4):19-22
    [104] Keith Edward Burnfield.Cationic starch/cationic galactomannan gum blends as strengthand drainge aids.US:6217709B1,2001,4
    [105] Herbert Hruschka, Kreuzlingen(CH).Paper making retention system of bentonite and acationic galactomannan[p].US:6270626B1,2001,7
    [106]王军利.阳离子瓜尔胶的制备及在造纸中的应用[D].天津科技大学:天津科技大学研究生学位论文,2001
    [107] Lee Ji Young, Lee Hak Lae, Youn. Adsorption analysis of cationic guar gum on fibers inclosed papermaking systems[R]. Preprint-Annual Meeting, Pulp and Paper TechnicalAssociation of Canada,90th, Montreal, QC, Canada, Jan.27-29,2004, Book B B67-B71
    [108] Lee Jiyoung, Lee Hak Lae, Youn, Hye Jung. Adsorption analysis of cationic guar gumon fibers in closed papermaking systems[J]. Tappi Journal,2005,4(10):15-19
    [109]秦丽娟,陈夫山,王高升.阳离子瓜尔胶半干法合成及其在造纸湿部的应用[J].中国造纸,2005,24(2):11-13
    [110]Linda M.Hlivka, Flemington George K.W.Pitch control composition and process forinhibiting pitch deposition[P].US:5618861,1997,4
    [111] Sybe H, Hielke T.et al. Production of oxidized guar galacto mannan and its applicationin the paper industry. ACS symposi um series964[J].Hemicelluloses: Science and Technology,2004,360
    [112] Harm Benninga.Cationic and anionic substituted polysaccharides and process forpreparing same[P].US:3467647,1969,9
    [113] Traser Guenter, Breunig Anton. Use and effectiveness of modified galactomannans inacidic and neutral paper manufacture[J]. Switz. Wochenblatt fuer Papierfabrikation,1983,111(9):311-17
    [114] Varadarajan P. V, Shaikh A. J, Lokhande H. T. A new guar gum derivative as a wet-endadditive for improving the mechanical properties of paper.[R] Trends in CarbohydrateChemistry, developed from a Carbohydrate Conference,9th, Lucknow, India, Nov.24-26,1993.Meeting Date1993,147-50
    [115] S.Sugden, H.Wilkins. Fusedmetalsandsalts[J]. Chem. Soc.1927,1291-1298
    [116]F.H.Hurley.USPatent4,446,331,1948:T.RJLWier,EH.Hurley.U.S.Patent4,446,339,1948;T.RJLWier.USPatent4,446,350,1948
    [117] Wilkes J S, Levisky J A, Wilson R A,etal.Dialkylimidazoliumchloroaluminatemelts:anew class of room-temperature ionic liquids for electrochemistry, speetroscopy andsynthesis.Inorganic Chemistry,1982,21:1263-1264
    [118] Pierre B, Ddias A P, Hydrophobic highly conductive ambient temperature moltensalts[J]. Inorg. Chem,1996,35:1186-1178
    [119] The proceedings of International Workshop on Ionic Liquids: Progress and Prospects,2004年2月,中国,兰州
    [120] K.R.Seddon,A.Stark,M.J.Torres,Influence of chloride,water,and organic solvents on thephysical properties of ionic liquids[J].Pure Appl.Chem.2000,72,2275-2287
    [121] Huddleston J G, Visser A E, Reichert W M, Willauer H D, Broker G A, Rogers R D.Characterization and comparison of hydrophilic and hydrophobic room temperature ionicliquids incorporating the imidazolium canon. Green Chemistry,2001,3,156164
    [122] H.LNgo,K.LeCopmpte,L.Hargens et a1.,Thermal properties of imidazolium ionicliquids, Therochem.Acta.2000,357-358,97-102
    [123] Swatloski RP, Spear SK, Holbrey JD, et al. Dissolution of cellose with ionic liquids[J]. JAm Chem Soc (2002)124:4974-4975
    [124] Zhang H, Wu J, Zhang J, He J.1-allyl-3-methylimidazolium chloride room temperatureionic liquid: a new and powerful non-derivatizing solvent for cellulose[J]. Macromolecules(2005)38:8272-8277
    [125] Qi Xu, John R Kennedy, Lijian Liu. An ionic liquid as reaction media in the ringopening graft polymerization of e-caprolactone onto starch granules[J]. CarbohydratePolymers72(2008)113-121
    [126] Rong-Lan Wu,Xiu-Li Wang,Fang Li,et al. Green composite films prepared fromcellulose, starch and lignin in room-temperature ionic liquid[J]. Bioresource Technology100(2009)2569-2574
    [127] Zhao-Tei Liu, Li-Hong Shen, Zhong-Wen Liu, et al.Acetylation of β-cyclodexrtin inionic liquid green solvent[J]. Mater Sci(2009)44:1812-1820
    [128] Hao Zhang, Jin Wu, Jun Zhang, Jiasong He.l-Allyl-3-methylimidazolium ChlorideRoom Temperature Ionic Liquid:A New and Powerful Nonderivatizing Solventfor Cellulose.Macromolecules2005,38,8272-8277
    [129] Jin Wu,Jun Zhang,Hao Zhang, Jiasong He, Qiang Remand Meili Guo. HomogeneousAcetylation of Cellulose in a New Ionic Liquid. Biomacromolecules2004,5,266-268
    [130] Thomas Heinze, Katrin Schwikal, Susann Barthel. Ionic Liquids as Reaction Medium inCellulose Functionalization. Macromol. Biosci.2005,5,520-525
    [131] Jari Kavakka,Alistair King. Tosylation and acylation of cellulose in1-allyl-3一methylimidaz-olium chloride. Cellulose (2008)15:481-488
    [132] Zhou QP, Wu J, Zhang J, He JS, Sun ZJ, Zhang ZG.Homogeneous synthesis ofhigh-amylose starch acetates and their ultrafine fibers prepared byelectrospinning. Acta polym sin,2007(7):685-688
    [133] Zhang Suojiang, Lu Xingmei. Ionic liquids: From Fundamentals toApplications.Beijing: Science Press2006.196-427
    [134] Atanu Biswas, R.L. Shogren, D.G. Stevenson, J.L. Willett, Pradip K. Bhowmik. Ionicliquids as solvents for biopolymers: Acylation of starch and zero protein. CarbohydratePolymers66(2006)546-550
    [135] Qi Xu, John F. Kennedy, Lijian Liu.An ionic liquid as reaction media in the ringopening graft polymerization of e-caprolactone onto starch granules.Carbohydrate Polymers72(2008):113-121
    [136] Barthel, S.; Heinze, T. Acylation and carbanilation of cellulose in ionic liquids. GreenChem.2006,8:301-306
    [137] Kerstin Schlufter, Hans-Peter Schmauder, Susann Dorn, Thomas Heinze.Efficient Homogeneous Chemical Modification of Bacterial Cellulose in theIonic Liquid1-N-Butyl-3-methylimidazolium Chloride. Macromol. Rapid Commun.2006,27:1670-1676
    [138] Jinming Zhang,Jin Wu,Yan Cao,Shengmei Sang,Jun Zhang,Jiasong He.Synthesis ofcellulose benzoates under homogeneous conditions in an ionic liquid[J]. Cellulose2009,16:299-308
    [139] BuckleyR P, SzwarcM. Methyl affinities of ethylene tetrafluoroethylene andtetrachloroethylene [J]. J. Am. Chem. Soc.,1956,78(21):5696-5697
    [140] Matyjaszewski K. Functional star, comb, brush, and (hyper)branched polymers byATRP[J]. Abstracts of Papers of the American Chemical Society,2000,221:205
    [141] Hawker C. J., Bosman A. W., Harth E. New polymer synthesis by nitroxide mediatedliving radical polymerizations[J]. Chemical Reviews,2001,101(12):3661-3688
    [142] Matyjaszewski K., Xia J. Atom transfer radical polymerization[J].Chem. Rev.,2001,101(9):2921-2990
    [143] Chong Y. K., Le T. P. T., Moad E. R., et al. A more versatile route to block copolymersand other polymers of complex architecture by living radical polymerization: The RAFTprocess[J]. Macromolecules,1999,32:2071-2074
    [144] Jagur-Grodzinski J. Preparation of functionalized polymers using living and controlledpolymerizations[J].Reactive&Functional Polymers,2001,49(1):1-54
    [145] Solomon, D.M., Rizzardo E., Cacioli P. Polymerization process and polymers producedthereby[P]. U.S. Patent4581429,1985
    [145] Georges M. K., Veregin R. P. N., Kazmaier P.M., Hamer G. K.. Narrow molecularweight resins by a free-radical polymerization process[J]. Macromolecules,1993,23\6(11):2987-2988
    [147] Fischer, H. The persistent radical effect in “living” radical polymerization[J].Macromolecules,1997,30(19):5666-5672
    [148] Devonport W, Michalak L, Malmstrom E,et al.''Living'' free-radical polymerizations inthe absence of initiators: Controlled autopolymerization[J]. Macromolecules,1997,30(7):1929-1934.
    [149] Benoit D., Chaplinski V., Braslau R., et al. Development of a Universal Alkoxyaminefor “Living” Free Radical Polymerizations[J]. J. Am. Chem. Soc.,1999,121(16):3904-3920.
    [150] Dao J., Benoit D., Hawker C. J. A versatile and efficient synthesis of alkoxyamine LFRinitiators via manganese based asymmetric epoxidation catalysts[J]. J. Polym. Sci.: PolymChem A,1998,36(12):2161-2167
    [151] Hawker C. J.“Living” free radical polymerization: A unique technique for thepreparation of controlled macromolecular architectures[J]. Acc. Chem. Res.,1997,30(9):373-382
    [152] Hawker C. J., Benoit D., Rivera F., et al. Versatile route to functionalized blockcopolymers by nitroxide-mediated "living" free-radical polymerization[J]. ACS Polym. Prepr.,Div. Polym. Chem.,1999,40(2):315
    [153] Benoit D., Harth E., Fox P., et al., Hawker C. J. Accurate structural control and blockformation in the living polymerization of1,3-dienes by nitroxide-mediated procedures[J].Macromolecules,2000,33(2):363-370
    [154] Listigovers N. A., Georges M.K, Odell P. G., et al. Narrow-polydispersity diblock andtriblock copolymers of alkyl acrylates by a “living” stable free radical polymerization[J].Macromolecules,1996,29(27):8992-8993
    [155] Keoshkerian B., Georges M., Quinlan M., et al. Polyacrylates and polydienes to highconversion by a stable free radical polymerization process: Use of reducing agents[J].Macromolecules,1998,31(21):7559-7561
    [156] Georges M. K., Hamer G. K., Listigovers N. A. Block Copolymer Synthesis by aNitroxide-Mediated Living Free Radical Polymerization Process[J]. Macromolecules,1998,31(25):9087-9089
    [157] Pradel J. L., Boutevin B., Ameduri B. J. Controlled radical polymerization of1,3-butadiene. II. Initiation by hydrogen peroxide and reversible termination by TEMPO[J].Polym. Sci., Part A, Polym Chem.2000,38(18):3293-3302
    [158] Burguiere C., Dourges M. A., Charleux B., et al. Synthesis and characterization ofunsaturated poly(styrene-b-n-butyl methacrylate) block copolymers using tempo-mediatedcontrolled radical polymerization[J]. Macromolecules,1999,32(12):3883-3890
    [159] Benoit D., Grimaldi S., Robin S., et al. Kinetics and mechanism of controlledfree-radical polymerization of styrene and n-butyl acrylate in the presence of an acyclicbeta-phosphonylated nitroxide[J]. J. Am. Chem. Soc.,2000,122(25):5929-5939
    [160] Lokaj J., Vlcek P., Kriz J. Synthesis of Polystyrene-Poly(2-(dimethylamino)ethylmethacrylate) Block Copolymers by Stable Free-Radical Polymerization[J]. Macromolecules,1997,30(24):7644-7646
    [161] Harth E., Hawker C. J., Fan W., et al. Chain end functionalization in nitroxide-mediated"Living" free radical polymerizations[J]. Macromolecules,2001,34(12):3856-3862
    [162] Bertin D., Destarac M., Boutevin B. In Polymer and Surfaces: A VersatileCombination[C].Hommel, D, Ed. Research Signpost: Trivandrum India,1998:47-75
    [163] Malmstrom E. E., Hawker C. J.. Macromolecular engineering via “living” freeradical polymerizations[J]. Macromol. Chem. Phys.,1998,199(6):923-935
    [164] Bosman A.W., Frechet M. J., Hawker C. J. High-throughput synthesis of nanoscalematerials: Structural optimization of functionalized one-step star polymers[J]. Polym. Mater.Sci. Eng.,2001,84:376
    [165] Stehling U.M., Mamstrom E. E., Waymouth, R. M., et al. Synthesis of poly(olefin) graftcopolymers by a combination of metallocene and "living" free radical polymerizationtechniques[J].Macromolecules,1998,31(13):4396-4398
    [166] Tsoukatos T., Pispas S., Hadjichritidis N. Complex macromolecular architectures bycombining TEMPO living free radical and anionic polymerization [J]. Macromolecules,2000,33(26):9504-9511
    [167] Weimer M. W., Scherman O. A., Sogah D. Y. Multifunctional Initiators ContainingOrthogonal Sites. One-Pot, One-Step Block Copolymerization by Simultaneous Free Radicaland Either Cationic Ring-Opening or Anionic Ring-OpeningPolymerization[J].Macromolecules,1998,31:8425
    [168] Grubbs R. B, Hawker C. J., Dao J.,et al, A tandem approach to graft and dendritic graftcopolymers based on ''living'' free radical polymerizations[J]. J. Angew. Chem. Int. Ed. Engl.,1997,36(3):270-272.
    [169] Letp M.G., Rizzardo E., Thang S. H. Polymerization with living characteristics[P]. PCTInt Appl. WO9801478Al.980115,1998
    [170] Mayadunne RTA, Rizzardo E., Chiefari J., et al. Living polymers by the use oftrithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABAtriblock copolymers by radical polymerization in two steps[J]. Macromolecules,33(2):243-245
    [171] Monteiro M.J., Sjoberg M., Vlist V. J., et al. Synthesis of butyl acrylate-styreneblockcopolymers in emulsion by reversible addition-fragmentation chain transfer: Effectofsurfactant migration upon film formation[J].Polym. Sci:Part A,2000,38(23)4206-4217
    [172] Monteiro M. J., Hodgson M., Brouwer H. D. The influence of RAFT on the ratesandmolecular weight distributions of styrene in seeded emulsion polymerizations[J]. J. Polym.Sci: PartA,2000,38(21):3864-3874
    [173] Brouwer H. D., Schellekens M. A. J., Klumperman B., et al. Controlled radicalcopolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-basedblock copolymers by reversible addition-fragmentation chain-transfer (RAFT)polymerization[J]. J. Polym Sci: Part A,2000(19),38:3596-3603
    [174] Brouwer H D, Tsavalas J. G., Schork F. J., et al. Living radical polymerization inminiemulsion using reversible addition-fragmentation chain transfer[J]. Macromclecules,2000,33(25):9239-9246
    [175] Bamer-Kowollik C., Quinn J. F., Morsley D. R., et al. Modeling the reversibleaddition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrenehomopolymerizations: Assessing rate coefficients for the addition-fragmentationequilibrium[J]. J Polym. Sci: Part A,2001,39(9):1353-1365
    [176] Zhang M., Ray W.H. Modeling of "living" free-radical polymerization with RAFTchemistry[J]. Ind Eng Chem Res,2001,40(20):4336-4352
    [177] Mitsukami Y., Hashidzume A., Yusa S., et al. Characterization of pH-dependentmicellization of polystyrene-based cationic block copolymers prepared by reversibleaddition-fragmentation chain transfer (RAFT) radical polymerization[J].T Polymer,2006,47(12):4333-4340
    [178] Bon, S.A.F., Morsley, S.R., Waterson, C., et al. Use of methyl2-(bromomethyl)acrylateas a chain-transfer agent to yield functionalized macromonomers via conventional and livingradical polymerizations[J]. Macromolecules,2000,33(16):5819-5824
    [179]王艳君,王玉霞,曹同玉.可逆加成—断裂链转移活性自由基聚合[J].高分子通报,2003,(3):57-63
    [180] Bajpai J, Shrivastava Ruma, Bajpai A K. Dynamic and equilibrium studies onadsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin.Colloids and Surfaces A: Physicochem. Eng. Aspects,2004,236:81-90
    [181] Rengaraj S, Kim Y, Joo C K, et al. Removal of copper from aqueous solution byaminated and protonated mesoporous aluminas: kinetics and equilibrium [J]. J. ColloidInterface Sci.,2004,273(1):14-21
    [182] Ho Y S. Removal of copper ions from aqueous solution by tree fern [J]. Water Res,2003,37(10):2323-2330
    [183] Panday K K, Prasad G, S ingh V N. Copper(II) removal from aqueous solutions by flyash[J]. Water Res.,1985,19:869-873
    [184] Cheung C W, Porter J F, Mckay G. Sorption kinetics for the removal of copper and zincfrom effluents using bone char [J]. Sep. Purif.Technol.,2000,19(1-2):55-64.
    [185] Chiron N, Guilet R, Deydier E. Adsorption of Cu(II) and Pb(II) onto a grafted silica:isotherms and kinetic models[J]. Water Res,2003,37(13):3079-3086
    [186] Ho Y S, Ng J C Y, McKay G., Removal of lead(II) from effluents by sorption on peatusing second-order kinetics[J]. Sep. Purif. Methods,2000,29(2):189-232
    [187] Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of thebatch biosorption of nickel(II) ions onto Chlorella vulgaris[J]. Process. Biochem.,2002,38(1):89-99
    [188] Sun Q, Yang L. The adsorption of basic dyes from aqueous solution on modifiedpeat-resin particle [J].Water Res,2003,37(7):1535-1544.
    [189] Lorenc-Grabowska E, Gryglewicz G. Adsorption of lignite-derived humic acids oncoal-based mesoporous activated carbons [J]. J. Colloid Interface Sci.,2005,284(2):416-423
    [190] Crini G.. Non-conventional low-cost adsorbents for dye removal: A review [J].Bioresource Technology,2006,97:1061-1085
    [191] Malik P. K., Saha S. K. Oxidation of direct dyes with hydrogen peroxide using ferrousion as catalyst [J].Separation and Purification Technology,2003,31(3):241-250
    [192] Ciardelli G., Corsi L., Marucci M. Membrane separation for waste water reuse in thetextile industry[J].Resources Conservation Recycling,2000,31(2):189-197
    [193] Walker G.M. Adsorption of dyes from aqueous solution-the effect of adsorption poresize distribution and dye aggregation[J].Chemcial EngineeringJournal.,2001,83:201-206
    [194]张颖,李光明,陈玲,等.活性炭再生技术的发展[J].化学世界,2001,42(8):441-444
    [195] Bulut Y., Aydin H. A kinetics and thermodynamics study of methylene blue adsorptionon wheat shells[J]. Desalination194(2006)259–267
    [196] De Meuse M.T., Ryan C.L. The Microwave Proeessing of Polymeric Materials[J].Advances in Polymer Technology,1993,12:197-203
    [197] Palit S R, Konar R S. Permanganate-oxalic acid as a redox initiator ofacrylonitrilepolymerization in aqueous media. III. Kinetics and degree of polymerization[J].Journal of Polymer Science,1964,2:1731-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700