改性微粒硅溶胶的研制及应用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首次在我国研究开发了适合于造纸使用的铝改性微粒硅溶胶与硼改性微粒硅溶胶,其助留助滤效果优于进口硅溶胶NP882,其中硼改性微粒硅溶胶的助留助滤效果优于铝改性微粒硅溶胶。改性前硅溶胶的最佳制备条件为:用碱量8%,熟化温度T_(12),熟化时间90min。铝盐改性的最佳条件为:改性程度A_3,改性温度为T_(24),反应时间为1小时左右。硼改性最佳B/Si摩尔比在0.08—0.1之间。
     选用超滤浓缩硼改性硅溶胶,其最佳条件为:室温下、截留分子量为1万的膜、操作压力为3.5kPa,硼改性硅溶胶浓度可浓缩到15%-16%左右。用阴离子及非离子的表面活性剂提高高浓度硅溶胶的稳定性,其中0.01%用量的DBS分散效果最佳,对硅溶胶的性能几乎没有影响,有利于实现产品商品化。
     系统研究了阳离子聚合物/改性硅溶胶微粒体系的特征应用工艺及其电化学性能,发现阳离子淀粉/改性硅溶胶微粒助留体系的抗剪切能力比阳离子淀粉一元助留体系的强,其中阳离子淀粉/硼改性硅溶胶微粒体系抗剪切能力比阳离子淀粉/铝改性硅溶胶微粒体系的强。改性硅溶胶微粒体系适用于废纸浆和草浆等细小组分含量高的浆料,对木浆和废纸浆的助留助滤效果的影响中,阳离子淀粉+CPAM/改性硅溶胶助留助滤体系助留助滤效果比阳离子淀粉/改性硅溶胶助留助滤体系和CPAM/改性硅溶胶助留助滤体系好;对草浆助留助滤效果的影响中,阳离子淀粉/改性硅溶胶微粒体系有良好的助留助滤效果。其中硼改性微粒硅溶胶的助留助滤效果优于铝改性微粒硅溶胶。
     阳离子淀粉/改性硅溶胶微粒助留助滤体系在pH值4—8时较为适用,在松香施胶体系中硫酸铝用量≤3%(较低)时也可适用;其体系抗电解质干扰能力强,白水中电解质含量低于100mM时,其体系可以采用封闭循环用水,减少水资源污染和浪费。
     用IR谱、~(29)Si-NMR、~(11)B-NMR和~(27)Al-NMR谱以及透射电镜对铝改性硅溶胶与硼改性硅溶胶进行了结构形态与特征的分析研究,首次提出了铝改性粒硅溶胶与硼改性硅溶胶微粒硅溶胶的结构和形态特征。
     通过几种絮聚模型-DDJ动态滤水仪法、结合激光粒度仪研究絮团大小的变化以及纸张匀度的比较,探讨了阳离子聚合物/改性硅溶胶微粒体系的絮聚过程与机理,为絮聚机理研究提供了一种新的思路和较简便的方法。阳离子聚合物/改性硅溶胶微粒体系的絮聚机理是,先加入阳离子聚合物,纤维与细小组分絮聚成大的絮聚体,受到高剪切力作用,初始絮聚体被打散成小碎块,为带负电荷的改性硅溶胶微粒暴露出更多的链圈和链尾。改性硅溶胶微粒就在这些吸附于不同纸料粒子上的链圈和链尾之间,靠静电中和以及与聚合物中非带电段的配合吸附作用,改性硅溶胶微粒粒径小只能使近距离的细小碎块桥联作用而发生重新絮聚,形成较初始絮聚体更小、更均一、致密的絮团网络。结果可以大幅度提高了细小纤维和填料的留着率,改善了纸料的滤水性,同时,又可获得良好的纸页匀度。
The preparation and their application in papermaking of aluminium modified silica sol (AMS) and boron modified silica sol (BMS) were first investigated in China. The retention and drainage efficiency of AMS and BMS were superior to that of imported silica sol NP882 and the retention and drainage efficiency of BMS was superior to that of AMS. The optimal conditions before modification were 8% alkali dosage, heat temperature T12 and heat time 90 minutes. And the optimal conditions of aluminium modification were modification degree A3, temperature T24 and reaction time about an hour. Or that of B/Si was 0.08-0.1.Ultrafiltration instrument was selected to condense BMS and its optimal conditions were 3.5kPa pressure with 10 million molecular weight membrane at room temperature. In order to improve the stability of high concentration silica sol, anion or no ion surface actives could be useful. 0.01% DBS was found to be the best dispersant and had almost no effect on silica sol which was in favor of its commerciality.Characteristic application process and electrochemistry performance of cationic polymers/modified silica sol (MS) were systemically studied, It was found that CS/MS microparticle retention and drainage aid system had better retention and drainage efficiency in the high shear condition than CS single retention aid system, meantime CS/BMS system was better than CS/AMS system. MS microparticle retention and drainage aid systems were applicable to pulp with high fines such as waste pulp and wheat straw pulp. Seen from the effects of MS microparticle retention and drainage aid systems on wood pulp and waste pulp, CS and CPAM/MS system had better retention and drainage efficiency than CS/MS system and CPAM/MS system. But CS/MS system had best retention and drainage efficiency in wheat straw pulp. In all pulp BMS had better retention and drainage effiency than AMS. CS/MS microparticle retention and drainage aid system was preferably applicable in pH value 4-8 and resin sizing systems with less than 3% aluminium sulfate. This system had good resist capability to electrolyte interfere so that cycle water with less than 100mM electrolyte could be used resulting in less water resource polluted and wasted.Flocculation mechanism of microparticle retention and drainage aid system was investigated with DDJ, Laser size instrument and paper formation which was a new ideal and simple method. The research results showed that in the addition of cationic polymer fibers and fines flocculated and broken up with high shear then more chain loops and tails were exposed and bridged by negative MS. Due to MS was microparticle and had high specific surface area and high negative charge density it made close fragments flocculated into smaller and more uniform and compact floc net so that it improved retention and drainage with excellent formation.
引文
1.朱勇强,张向丽,田振然,湿部化学与现代造纸工业.上海造纸,2002,33(4):38~45
    2.张光华,造纸湿部化学原理及其应用.中国轻工业出版社,1998,9
    3.陈根荣,世界造纸化学品市场最新动态[J].造纸化学品,2000,12(1):6~12
    4.陈根荣,湿部化学品在提高纸机车速中的作用[J].造纸化学品,2000,3:12
    5. Martin W. Beck. Wet end chemistry and paper machine stability[J]. Paper Technology. 1998, 39(4): 33~38
    6.花莉,陆赵情,王志杰.湿部化学品的发展状况.西南造纸,2002(6):14~16
    7.冯群策,杨淑蕙,郝晓秀.微粒助留技术的新发展.国际造纸2003,22(3):9~11
    8.劳嘉葆.微粒留着技术的进展.纸和造纸,2003,9(5):38~39
    9.王军利,陈夫山,刘忠.微粒助留系统的工厂应用及最新研究动态.上海造纸,2002,9(3):46~48
    10.陈夫山.两性助留助滤剂的研制及其湿部化学的研究.天津轻工业学院博士学位论文,1998
    11.曹邦威.现代高速宽幅纸机的发展概述.纸和造纸,2000(6):62-66
    12.吴大天、刘立成、陈泽民,无机盐工业,1989:(3):28。
    13.董耀雄,无机盐工业,1988;(6):5
    14.张光华.造纸化学品.化学工业出版社,2002
    15.王海毅.纸料中两性聚丙烯酰胺的助留助滤作用机理.天津轻工业学院博士学位论文,2001
    16.山田博,张运展,张瑞生译.造纸过程中的界面动电现象.轻工业出版社,1984
    17.胡惠仁,徐立新,懂荣业.造纸化学品.化学工业出版社,2002
    18.沈一丁编著,造纸化学品的制备和作用机理,中国轻工业出版社,1999年1月
    19. 樊惠明译, On-site Production of a Silica-based mieroparticulate Retention and Drainage Aid, World Pulp and Paper Vol. 18, No. 6(2000), 45-48
    20. Roger A. Crawford and George E. Alderfer, Silica Use and Theory, Tappi Short Course Notes(1990), 125-140
    21.戴志成等主编,硅化合物的生产与应用,成都科技大学出版社,1985年3月
    22.张旋,胡惠仁.季铵型CPAM组成的复式助留助滤系统对助留助滤作用的研究.国际造纸,2001,20(3):43-47
    23.叶小春.造纸系统中阴离子物质的积累与防治[J].造纸化学品,1999,(2):16
    24. Lydia Bley. Measuring the concemration of anionic trash-the PCD. Paper Technology, 1992, (4): 32~37
    25. Agne Swerin. Et al. Flocculation-microparticle Retention Aid Systems[J]. Paper Technolohy. 1992, 33(12): 28~29
    
    26.刘温霞.阳离子聚丙烯酰胺/膨润土助留助滤体系.造纸化学品,2000(3):18~21
    27. A. Swerin, G. Risinger and L. Odberg, Flocculation in suspensions of microcrystalline cellulose by microparticle retention aid systems, Journal of Pulp and Paper Science, 1997, 23(8): 374-380
    28. Craig W. Vaughan, A new approach to wet-end drainage, retention, and formation technology, TAPPI Journal, 1996, 79(7): 103-109
    29.刘温霞,硅铝类微粒子助留助滤体系,造纸化学品,2001(1),P21
    30.刘温霞、隆言泉、王启常、谢来苏,新型造纸助剂聚合硅酸硫酸铝的结构特征研究,中国造纸学报,Vol.14,1999:73-77
    31.刘温霞、王启常、邵春华、葛小光,淀粉/PASS对麦草浆的助留助滤作用,中华纸业,Vol.2,1999,62-65
    32.刘温霞,阳离子聚合物/聚铝类微粒助留助滤体系,纸和造纸,(6),2000,47-48
    33.戴红旗,徐祖梅,陈健.胶体氢氧化铝助留助滤性能探讨.上海造纸.2002,33(3):39~41
    34.陈夫山、谢来苏、胡惠仁、何秋实,变性淀粉及其与胶体SiO_2双组分系统对麦草浆助留助滤的研究,中华纸业,Vol.6,1998,49-51
    35. Agne Swerin et al. Silica based microparticulate retention aid systems. Paperi Ja Puu. 1995, 77(4) : 215-221
    36. Roger A. Crawlord and George E. Alderfer. Silica Use and Theory. Neutral/Alkaline Papermaking/TAPPI Short Course, 1990: 125-140
    37. Agne Swerin. Et al. Flocculation of Cellulosic Fibre Suspensions by Model Microparticulate Retention Aid Systems[J]. Nordic Pulp and Paper Research Journal. 1993, 8(4): 383~398
    38. Kjell Andersson, Erik Lindgren. Important properties of colloid silica in microparticulate systems. Nordic Pulp and Paper Research Journal. 1996, 11(1): 15-21.
    39. Bruno Cane. Starch and alumina/silica based compounds as micropartiele retention aid system. Nordic Pulp and Paper Research Journal. 1993, 8(1): 21-26
    40. Lars Wagberg, On the mechanism of flocculation by mieroparticle retention-aid systems, TAPPI, 79(6), 1996, P157-164
    41.刘温霞,聚合硅酸硫酸铝及其在造纸工业中的应用,[博士学位论文],天津:天津轻工业学院,1999
    42. R. I. S. Gill. Development in retention aid technology. Paper Technology, 1991, 32(8); 34-41
    43. Robert H. Moffett. On-site Production of a Silica-based microparticulate Retention and Drainage Aid. TAPPI. 1994, 77(12): 133-141.
    44. T. Q. Li and L. Odberg, Studies of flocculation in cellulose fibre suspensions by NM23、R imaging, JPP S, 23(8), 1997, P401-405
    
    45.林跃梅、许修斌,微粒子絮凝技术的作用机理及生产应用,造纸化学品,2000(1),P25
    46. R. K. Iler, The Effect of Surface Aluminosillicate Ions on the properties of Colloildal Silica, Journal of Colloid and Interface Science, Vol. 55, No. 1, April 1976, 25-34
    47. Chales C Payne. Preparation of large particle silica sols. U. S. patent 4304575, 1981
    48. Per J. Svending, Kungalv, Process for the production of paper, U. S. patent 4946557(1990)
    49.约翰逊.H.艾里克、拉斯逊.B.伏德玛,硅溶胶,生产硅溶胶的方法及硅溶胶的用途,CN.Patent No.10517(1991)
    50. Keiser, B. A. and Whitten, J. E. -Colloidal Borosilicates and their use in the production of Paper, PCT Pat. Appl. WO 9916708(1999)
    51. Joseph M. Rule, Cleveland, Ohio, Process of making stable silica sols and resulting composition, U. S. patent No. 2573743(1951)
    52. Rushere, John D., Polysilicate microgels as retention/drainage aida in papermaking, U. S. patent 4954220(1990)
    53. Langley, et al., Production of paper and paper board, U. S. patent 4913775(1990)
    54. Langley, et al., Production of paper and paper board, U. S. patent 4753710(1988)
    55. John D. Rushere, Retention and drainage aid for papermaking, U. S. patent 4798653(1989)
    56. Earl P. Moore, Jr., Wilmington Del., Stable positively charge alumina coated silica sols and their preparation by post-neutralization, U. S. patent 3719607(1973)
    57. Ralph K. Iler and Frederick J. Wolter, Wilmington, Del., Silica sol process, U. S. patent 2631134(1953)
    58. Henry S. Trail, Quincy, Mass., Method of manufacturing colloid inorganic oxide aquasols, U. S. patent 2573743(1951)
    59.吴本梅、沈金浩、陈泽民,离子交换与吸附,1988;4(3):207
    60.吴大天、刘立成、陈泽民,无机盐工业,1989:(3):28。
    61.董耀雄,无机盐工业,1988:(6):5
    62. Moore, Jr., et al. Process for preparing stable positively charged alumina coated silica sols and product thereof, U. S. patent 3956171(1976)
    63. John F. White, Medford, Mass., Method of production sols, U. S. patent 2285477(1942)
    64. L. H. Allen, Journal of Colloid and Interface Science, Vol. 35, 1971, 66-70
    65. Hendrik Bolt, Christiana Hundred, Aquasols of positively-charged coated silica particles and their production, U. S. patent 2892797(1961)
    66.公开特许公报,昭6186413
    67.公开特许公报,昭63285112
    68. J. C. Alfano, Use of Scanning Laser Microscopy to investigate microparticle flocculation performance, JPPS, 25(6), 1999, P 189-195
    69. Carman, P. C., Trans. Faraday Soc., 36, 964, (1940)
    70. Iler., R. K., Chemistry Of Silica, John Wiley & Sons, NewYork1979, P677.
    
    71. Lars Wagberg, Et al. On the mechanism of flocculation by microparficle retention aid systems[J]. TAPPI. 1996, 79(6): 157~164
    72. J. C. Alfano, P. W. Carter and J. E. Whitten. Use of scanning laser microscopy to investigate microparticle flocculation performance. Journal of pulp and paper science. 1999, 25(6): 189~195
    73. T. Asselman and G. Garnier. The Floeculation Mechanism of Mieropartieulate Retention Aid Systems[J]. Journal of Pulp and Paper Science. 2001, 27(8): 273~278
    74.北京师范大学、华中师范大学、南京师范大学无机化学教研室编,无机化学下册,高等教育出版社,1981年12月
    75.孟庆珍、胡鼎文、程泉寿、孔翻荣,无机化学,北京师范大学出版社,1988年8月
    76.陈荣三、张树成、黄孟健、钱可萍编,无机及分析化学,高等教育出版社,1978年2月
    77.万其进、张传越,硅溶胶的开发及其应用,湖北师范学院学报,Vol.14,No.3,1994,86 -92
    78.李巧玲.硅溶胶的酸对其稳定性的影响.湖南化工,1998,28(6):38-37
    79.李建中、曲其昌,专用硅溶胶制备技术研究,石化技术与应用,1999(17):208-225
    80.潘鹤林、陈平、方图南、王相田,新型硅溶胶的研制,现代化工,1997(1):25-28
    81. By R. K. Iler and R. L. Dalton, Degree of hydration of particles of colloidal silica in aqueous solution, Journal of Colloid and Surface Science, 1956, 60(6): 955-957
    82. George W. Sears, Determination of Specific Surface Area of Colloidal Silica by titration with Sodium Hydroxide, Analytical Chemistry, 1956, 28(12): 1981-1983
    83.王兴业.硅溶胶中二氧化硅粒径及比表面积测定.材料工程.1997(5):34~36
    84. H. Xiao, R. Pelton and A. hamielec, Retention mechanisms for two component systems based on phenolic resins and PEO or new PEO-copolymer retention aids, Journal of Pulp and Paper Science, 1996, 22(12) 475-485
    85.方永浩、杨南如,铝改性硅溶胶胶粒结构随pH值的变化,硅酸盐学报,Vol.23,No.3,1995,301-307
    86.方永浩、杨南如,铝改性硅溶胶胶粒组成与结构关系研究,硅酸盐学报,Vol.23,No.2,1995,184-189
    87. Du Pont EL and Company. Stable aluminosilicate aqcuasols having uniform particles and their preparation. Bergna HE. B 01J13/00. US Pat 4217240, 1980
    88. Eka Noble AB. Manufacture of cellulosic fiber products with improved retention using anionic inorganic particles and cation carbohydrates. Johansson K, Johansson HE, Kloefver S. D21H 17/68, Eur Pat Appl 490425, 1992
    89. Engelhardt G and Michel D. High-resolution solid-state NMR of silicate and zeolites. New York: John Wiley&Sons, 1987: 143-150.
    90.Farmer V C.矿物的红外光谱。第一版(中译本),应育浦,汪寿松,李春庚等译。北 京:科学出版社,1982:292.
    91
    
    91. Bell G, Bensted J, Glasser F P. Characterization of hydrothermally-treated calcium silicate and oil well cement hydration productions. Advance Cement Research, 1989, 2(6): 61.
    92.中本一雄著,无机和配位化合物和拉曼光谱,第一版,北京:化学工业出版社,1986:231
    93. Theo P. M. Beelen, Weidong Shi, etc, Scanning transmission X-ray microscopy: A new method for the investigation of aggregation in silica, Journal of Colliod and Interface Science, 1997(185): 217-227
    94.山田博,张运展,张瑞生译.造纸过程中的界面动电现象.轻工业出版社,1984
    95.胡惠仁,徐立新,懂荣业.造纸化学品.化学工业出版社,2002
    96. Juntai Liu. New aspect of the microparticle retention mechanism. Paper Technology, 1999, 40(4): 41
    97. Cherie Ovenden, huning Xiao and Nicholas Wiseman. Retention aid systems of cationic icroparticles and anionic polymer: experiments and pilot machine trials. TAPPI. 2000, 83(3): 80-85.
    98.张红杰、胡惠仁,关于微粒助留技术作用机理的新解释,造纸化学品,(1),2002,9 -11
    99. Dr Juntai Liu. New aspect of the microparticle retention mechanism, Paper Technology, 1999, 40(4): 41-43
    100.陆赵情,张美云.助留助滤系统基本理论和最新研究进展.西南造纸,2003(1):15-17
    101.宋海农,杨崎峰,黄显南,郭凯。多元微粒子助留助滤技术.西南造纸,2001,3:8~11
    102. Alfano, J. C., Carter, EW. and Gerli, A., Characterization of the flocculation Dynamica in a papermaking system by non-imaging reflectance scanning laser microseopy(SLM), Nord. Journal of Pulp Paper Research, 1998, 13(2): 159
    103. Alessandra Geril, Bruce A. Keiser and Paul I. Surya, The use of focused beam reflectance measurement in the development of a new nanosize particle, Appita Journal, 2001, 54(1): 36-40
    104. Preiksehat, EK. and Preikschat, E., Apparayus and method for particle analysis, U. S. Patent 4871251(1989)
    105. William E. Scott. Wet end chemistry, Atlanta, GA. TAPPI PRESS, 1996, 33-44
    106.杜海涛、顾仁梅,一种新的造纸机湿部控制方法——粒子表面电荷测定法,中国造纸,1998(6):64—68
    107. M. R. St. John and T. M. Gallagher, Evaluation of the charge state of papermachine systems using the charge titration method TAPPI papermakers comference, Nashville, Tennessee, April 5-8, 1992
    108. Penny. A. Patton and Barbara J. Hippie, Understanding and optimizing wet end chemistry through particle characterizations. TAPPI papermakers conference, 1992, 5-12, 479
    
    109. William G. Wallace. Practical application of charge analysis in papermaking, TAPPI papermakers conference, 1992, 445-456
    110.胡芳、谢来苏,利用胶体滴定对纸浆悬浮液进行电荷分析,中国造纸,2002(3):12 -16
    111. Penny A. David TL. Charge analisis: Powerful tools in wet end optimization, TAPPI J, 1993, 76(8): 107
    112. Ojala T. Charge measurements of different fumish using polyelectrolyte titriation with a streaming current detector, Pros 1993 Papermakers conference, TAPPI PRESS, 613
    113. Charles RV., On-line cationic demand measurement for wet end papermaking, Pros. 1997 Engineering & Papermakers conference, TAPPI PRESS, 287
    114. Halabisky DD. Surface charge measurement of the headbox furnish by titration, Paper Presented at the TAPPI Short Course on Drainage and Retention, Minneapolis Minn, 1976, October: 11 -13
    115.陈玉蕉等,胶体滴定方法及其研究进展,造纸化学品,2001(1):13-16
    116.何北海等,纸浆悬浮液胶体滴定比率的初步研究,中国造纸学报,1999(14) ;75— 81
    117.文飚等,新闻纸厂白水封闭循环的研究(□),中国造纸学报,2001(3):11—13
    118.何林华等,助留剂及电荷平衡对新闻纸留着率的影响,中国造纸,2001(1):22—23
    119.夏新兴,新型微粒助留助滤剂的研发和应用机理研究,南京林业大学博士学位论文,2003
    120.陈蕴智,聚合氯化铝的特性及其在造纸湿部的应用,天津轻工业学院博士学位论文,1999
    121.任承霞,草浆黑液的超滤纯化和草类碱木质素的氧化降解研究,南京林业大学博士学位论文,2001
    123.江华,超滤及冷冻浓缩技术在低聚木糖制备中的应用,南京林业大学博士学位论文,2001
    124.R.劳顿巴赫、R.阿尔布雷希特编著,膜分离方法—超滤和渗透,化学工业出版社,1991,4—5
    125.刘茉娥编著,膜分离技术,化学工业出版社,1998
    126.王雪松编著,膜分离技术及其应用,科学出版社,1994
    127.杨南如、岳文海编著,无机非金属材料图谱手册,武汉工业大学出版社。
    128. Healy, T. W and La Mer, V. K., The adsorption-flocculation reactions of a Polymer with an aqueous colloidal dispersion. Physical Chemistry, 1962, 66: 1835-1838.
    129. R. S. Seth, Fibre quality factors in papermaking—Ⅰ, The importance of fibre length and strength, Materials Research Society Symposium Proceeding, Vol. 197, 1990.
    130.隆言泉主编,造纸原理与工程,中国轻工业出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700