开关磁阻风力发电系统建模与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源问题和环境问题的日益突出,作为一种清洁的可再生能源,风力发电越来越受到人们的重视,同时,风力发电技术也成为各国学者竞相研究的热点。
     本文主要围绕开关磁阻电机(Switched Reluctance Motor,简称SRM)在风力发电领域中的应用,展开了较为全面的从理论研究到仿真分析的探索。
     首先,本文结合大量的文献资料,全面总结和分析当前风力发电及风力发电技术的发展现状和前景。提出开关磁阻电机适于风力发电的几大优势,进一步明确开发开关磁阻电机风力发电系统的意义。
     其次,对开关磁阻发电机系统(Switched Reluctance Generator System,简称SRG)的结构及工作原理进行阐述。介绍了SRG的两种工作模式,对SRG自励建压特性进行理论分析:讨论了SRG的各种数学模型;系统、深入地研究了SRG发电运行的控制方式;对开关磁阻风力发电系统的结构及控制方案进行探讨。
     其三,建立了SRG系统的数学模型,在此基础上用Matlab/Simulink仿真软件建立了SRG系统的非线性仿真模型,对SRG采用电流斩波控制方式;通过仿真,验证了SRG非线性模型的正确性,验证了在不同风力驱动下SRG能输出稳定电压,实现变速恒频风力发电,为风力发电提供有效的手段和工具。
     其四,提出了基于模糊自适应PID控制的SRG输出电压优化策略。针对常规PID控制的SRG输出电压性能差的缺点,在Matlab/Simulink中建立基于模糊自适应PID控制的SRG动态仿真模型。仿真结果证明:基于模糊自适应PID控制的SRG输出电压超调减小,输出电压平稳,在驱动转矩变化时,输出电压波动减小,由此提高了系统鲁棒性,得到更好的发电性能。
     其五,提出了基于电容滤波器优化的SRG输出电压脉动抑制的方法。该方法整个系统简单可靠,容易实现,在SRG速度变化大时电压脉动抑制效果也很好。仿真结果获得了一些有用的结论。
Now, energy sources consume increasing daily and environment empoison being serious gradually, wind power, as renewable, no pollution source energy source, is paid great attention by more and more countries.The technologies also become research hotspot of many countries's scholar.
     This paper mainly focuses on the application of switched reluctance generator in wind generation, and has done all-around study, from theory research to simulation analysis.
     Firstly, this paper summarized and analyzed the present and the prospective of wind generation and relative techniques based on a large number of referenced materials, presented the several advantages of SRG wind generation system, and further made the significance of developing this kind of system clear.
     Secondly, the basic theory of SRG is deeply studied in detailed. Two operation modes of SRG were pointed out, all the mathematic models of SR generator were discussed, and three control methods of SRG were pointed out. In addition, this part studied the structure, the idea of tracing and control scheme of the switched reluctance generator wind power, generation system.
     Thirdly, analyze the mathematical model of SRG and establish the nonlinear simulation model of SRG in Matlab / Simulink; Use current chopping control to the SRG; Through simulation, verify the correctness of SRG’s nonlinear model and also prove that the output voltage can be stable when wind drive is not constant, these achieve vscf wind power and also provide the effective means and tools for wind power.
     Fourthly,propose the optimization strategy of SRG’s output voltage based on fuzzy adaptive PID control. For the shortcomings of the poor performance of SRG’s output voltage which is base on traditional PID control,establish the dynamic simulation model of SRG which is based on fuzzy adaptive PID control in Matlab/Simulink; The simulation results verify that the SRG’s voltage overshoot is reduced and the SRG’s output voltage is more stable, which is based on fuzzy adaptive PID control ,and when the drive torque changes, the output voltage fluctuation of the SRG is also reduced .This control method improves the robustness of the system and gets better power generation performance.
     Fifthly, propose the method of SRG’s output voltage Pulse inhibition which is based on capacitor filter optimization.Using this method,the system is simple and reliable,and is als easy to be achieved. The effect of the SRG’S output voltage pulse inhibition is also very good when speed has large change.The simulation results obtain some useful conclusions.
引文
[1]杨秀嫒,梁贵书.风力发电的发展及其市场前景[J].电网技术,2003,27(7):78-79.
    [2]雷亚洲,Gordon Lightbody.国外风力发电导则及动态模型简介[J].电网技术,2005,25(12):27-31.
    [3]郭金东,赵栋利,林资旭,等.兆瓦级变速恒频风力发电机组控制系统[J] .中国电机工程学报,2007,27(6):1-6.
    [4] Jan aka B,Ekan ayake,Lee Holdsworth,et a1.Dynamic modeling of doubly fed induction generator wind turbines[J].IEEE Trans on Power Systems,2003,18(2):803—809.
    [5]卞松江,吕晓美,相会杰等.交流励磁变速恒频风力发电系统控制策略的仿真研究[J] .中国电机工程学报,2005,25(16):57-62.
    [6]刘闯,刘迪吉,朱学忠,曹志亮.一种无位置传感器的开关磁阻发电机控制策略的研究[J] .中国电机工程学报,2002,22(6):71-74.
    [7]王宏华,许宏.开关型磁阻电动机调速系统的发展及现状[J].电气传动,2001(5):3-8.
    [8]王宏华,开关型磁阻电动机调速控制技术[M] .北京:机械工业出版社.1999.8.
    [9]葛宝明,王祥珩,苏鹏声,蒋静坪.开关磁阻电动机控制策略综述[J].电气传动,2001(2):8-13.
    [10] Jones S R.drager B T.Sensorless swithed reluctance starter/generator performance[J].IEEE Industry Applications Magazine, 1997,8(6):5-10.
    [11]李晶,王伟胜,宋家骅.变频恒速风力发电机组建模与仿真[J].电网技术,2003,27(9):l4-l7.
    [12]李东东,陈陈.风力发电机组动态模型研究[J] .中国电机工程学报,2005,25(3):115-119.
    [13] CIM Reference Model Committee, Purdue University. A reference model of computer integrated manufacturing from the viewpoint of industrial automation[J]. Int. J. Computer Integrated Manufacturing, 1989, 2(2): 114-127.
    [14] Chai T Y, Ding J L, Zhao D Y, et al. Integrated automation system of minerals processing and its application[C]. Czech Republic:16th IFAC World Congress, 2005.
    [15]郎斌斌,穆钢,严干贵.联网风电机组风速-功率特性曲线的研究[J].电网技术,2008,32(12):70-74.
    [16]毛良明,经亚枝,樊小明,张焕春.反串线圈法间接位置检测技术在开关磁阻发电机系统中的应用研究[J].中国电机工程学报,2000,20(10):27-30.
    [17] Lopez G G,kjaer P C,et al.A new sensorless method for swithed reluctance motor drive[J].IEEE on 1A,1998,34(4):832-839.
    [18] TORREY, D.A. Switched reluctance generator and their control[J]. IEE Trans on Industrial Electronics, 2002,49(1): 225-229.
    [19] I. Husain, A. Radun, J. Nairus. Fault analysis and excitation requirements for switched reluctance generators[J]. IEEE Trans. Energy Conv, 2002,17(1): 67–72.
    [20]朱学忠.开关磁阻发电机理论研究与实践[J].中国矿业大学学报.2000,11(3) :101-105.
    [21]张慧.开关磁阻发电机系统的研究[D].浙江:浙江大学.2003.
    [22] Houseman L A, Schubert J H, Hart J R, et al. Plant star 2000: a plant-wide control platform for minerals processing[J]. Minerals Engineering, 2001, 14(6): 593-600.
    [23]柴天佑,李小平,周晓杰,等.基于三层结构的金矿企业现代集成制造系统[J].控制工程.2003,10(1): 18-22.
    [24]易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,1999.9.
    [25] Wang W, Li H X, Zhang J T. A hybrid approach for supervisory control of furnace temperature[J]. Control Engineering Practice, 2003,(11): 1325-1334.
    [26] Yan A J, Wu F H, Chai T Y. Fault diagnosis expert system using neural networks for roasting process[C]. Czech Republic: 16th IFAC World Congress, 2005.
    [27]严爱军,岳恒,赵大勇,等.一类复杂工业过程的智能预报模型及其应用[J].控制与决策, 2005, 20(7): 794-797.
    [28]严爱军,柴天佑.竖炉燃烧室温度的智能控制方法及应用[J].控制工程, 2005, 12(4): 305-309.
    [29]陈新,郑洪涛,蒋静坪,基于MATLAB的开关磁阻电动机非线性模型仿真[J] .电气传动,2002(6).
    [30] Hiroki Ishikawa,Daohong Wang,and Haruo Waitoh, A new Switched Reluctance Motor Drive Circuit for Torque Ripple Reduction [J].IEEE PCC-Osaka 2002,pp.683-688,2002.
    [31] M. Rodrigues, P. J. Costa Branco, and W. Suemitsu,Fuzzy Logic Torque Ripple Reduction by Turn-Off Angle Compensation for Switched Reluctance Motors[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 3, JUNE 2001,pp.711-715.
    [32] Wang Gen ping,Yi Ling zhi. The cycloconverter based on fuzzy controller for lift[J]. JOURNL OF COAL SCIENCE ENGINEERING,2005. (22): 95-98.
    [33] F. Soares and P.J. Costa Branco, Simulation of a 6/4 Switched Reluctance Motor Based on Matlab/Simulink Environment[J]. IEEE Trans.2001. (37)3: 989-1000.
    [34]陈新,郑洪涛,蒋静坪,基于MATLAB的开关磁阻电动机非线性模型仿真[J] .电气传动,2002(6):30-35.
    [35]腾德红,开关磁阻电动机调速系统非线性动态模型仿真及模糊控制设计研究[J].河海大学,2003(3):15-18.
    [36] Scott A Bortoff,Rashid R Kohan,Ruth Milman.Adaptive Control of Variable Reluctance Motors:a Spline Function Approach[J].IEEE Trans. Industrial Electronics,1998,45,(3):433-444.
    [37]李国勇,谢克明.控制系统数字仿真与CAD[M].北京:电子工业出版社,2004.9.
    [38]吴建华.开关磁阻电动机设计与应用[M].北京:机械工业出版社,2000.6.
    [39]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
    [40]章卫国,杨向忠.模糊控制理论与应用[M].西北工业大学出版社.1999.
    [41]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社.1998.9.
    [42] R. Pena, R. C′ardenas, G. M. Asher, and J. C. Clare . Vector controlled induction machines for stand-alone wind energy applications[C]. Conf. Rec. IEEE-IAS Annu. Meeting, 2000, 10(3): 1409-1415.
    [43] B. Fahimi, A. Emadi, and R. B. Sepe. A switched reluctance machine-based starter/alternator for more electric cars [J]. IEEE Trans. Energy Conversion (S0885-8969), 2004, 19(1): 116-124.
    [44] T D. A. Torrey. Switched reluctance generators and their control[J]. IEEE Trans. Ind. Electron (S0278-0046), 2002, 49(1): 3-13.
    [45] I. Kioskeridis,C. Mademlis. Optimal efficiency control of switched reluctance generators[J]. IEEE Trans. Power Electron (S0885-8993), 2006, 21(4): 1062-1072.
    [46] Y. Sozer , D. A. Torrey. Closed loop control of excitation parameters for high speed switched-reluctance generators[J]. IEEE Trans. Power Electron (S0885-8993), 2004, 19(2): 355-362.
    [47] Dixon, S. and Fahimi, B. Enhancement of output electric power in switched reluctance generators[C] .Electric Machines and Drives Conference, IEMDCapos, 2003:849-856.
    [48] K. Liu, M. Stiebler.Voltage control of a switched reluctance generator by means of fuzzy logic approach[C] .in Proc. 6th Int. Conf. Optim. Elect. Electron Equip. 1998, 443-446.
    [49] D. B. Wicklund and D. S. Zinger. Voltage feedback signal conditioning in switched reluctance generation systems[C] .Proc. IEEE Appl. Power Electron. Conf. Expo, 2000, 376-380.
    [50] Bian Songjiang,Lv Xiaomei,Xiang Huijie,et a1.Modeling and simulation of AC excited VSCF in wind power systems [J].Proceedings of the CSEE,2005,25(16):57-62.
    [51]张慧,潘再平.SRG励磁模式的理论分析与仿真[J].太阳能学报,2004, 25(2):162-170.
    [52] Yuan-Chih Chang and Chang-Ming Liaw, Member, IEEE. On the Design of Power Circuit and Control Scheme for Switched Reluctance Generator[J]. IEEE Trans. Power Electron (S0885-8993), 2006, 21(4): 1062-1072.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700