煤矿探测机器人姿态控制与局部路径规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
救援机器人已经成为灾难救援的重要设备,但大多数救援机器人仍依赖操作人员遥控。本课题研究团队提出了由运载机器人和探测机器人构建的煤矿救援机器人系统,旨在实现救援机器人系统的自主导航与智能控制。本文针对煤矿探测机器人在煤矿井下事故现场未知环境中的姿态控制与局部路径规划进行了深入研究。
     首先分析了事故后的煤矿井下环境,结合煤矿探测机器人任务需求,提出了煤矿探测机器人三层分布式模块化控制结构。导航控制体系的核心决策规划系统采用分布式递阶结构,各个功能分布式模块按照机器人的行为决策过程递阶分布,各模块间按照反应式的行为准则相互协调配合,完成探测机器人的决策与控制过程。该系统具有较好的自主性、实时性与开放性,能够满足机器人在复杂环境下自主控制的需求。
     提出将煤矿探测机器人的并联肢体履带式运动机构通过运动学等效变形,消除非完整约束条件,进而分析等效并联机器人位姿运动学的方法。采用这种方法将探测机器人运动机构等效成4—PPSR并联机器人,并利用旋量理论对等效并联机器人动平台的姿态进行运动学建模。分析了在运动学模型基础上的机器人静态稳定性,得出了基于几何分析的投影稳定锥静态稳定性判定原理;通过对倾覆过程的重力势能变化分析,得到了机器人动态稳定性和运行速度关系,对这两种稳定性的分析为煤矿探测机器人运行姿态稳定性控制提供了重要依据。针对煤矿探测机器人的驱动行为、姿态控制行为、越障行为和路径规划行为等四种基本行为的协调问题,提出了基于专家逻辑系统的反应式煤矿探测机器人行为协调器。分析了煤矿探测机器人在井下行驶时针对不同路面环境的驱动、姿态控制及越障的行为模式,重点对运行过程中的机器人姿态控制进行了研究,提出了基于模糊控制算法的煤矿探测机器人反应式姿态控制方法,并验证了该方法对复杂地面环境有良好的适应性。
     针对未知环境中煤矿探测机器人局部路径规划问题,提出了方向寻优人工势场滚动窗口局部路径规划算法。这种方法摒弃了传统人工势场法将全局环境仅归结为单一势场力的处理思想,针对煤矿探测机器人对障碍物检测的特点,提出在机器人全部可行驶方向中搜索合力最大的最优行驶方向的改进人工势场方法,并结合滚动窗口思想,提出了机器人反应式路径规划算法。针对反应式路径规划方法存在的规划陷阱问题,提出了煤矿探测机器人的慎思式局部路径规划算法。慎思规划过程需要对机器人游历场景建立局部环境地图,为此本文提出了探测机器人游历场景栅格拓扑地图的建立方法,并利用提出的主动生长元栅格拓扑地图Voronoi图分析算法对该地图进行可行路径分析,可生成Voronoi节点和边构成的无碰路径网络,利用Floyd最短路搜索方法找到逃逸目标节点和全局目标节点之间的最短路径。融合两种路径规划算法,提出了煤矿探测机器人的反应——慎思式的混合局部路径规划算法。实验表明该算法不仅有效解决机器人路径规划过程中的规划陷阱问题,而且对煤矿井下未知复杂环境具有良好的适应性。
     以课题组研发的煤矿探测机器人本体和控制系统为平台,以本文提出的姿态控制算法和局部路径规划算法为基础,借助于VC++,开发了机器人软件系统,分别在实验室和模拟实验巷道进行了行驶实验,结果证明本文提出的煤矿探测机器人路径规划算法和开发的控制系统能够保证机器人在未知环境中进行环境理解和路径规划,并在非结构化路面条件下保持良好的行驶姿态。
Rescue robot has become an important mean in the process of disaster succoring, but most rescue robots still rely on remote operation for motion control. Our research team of Xi'an University of Science & Technology proposed that the coal mine rescue robot robot was composed of carrier robot and detection robot, and the coal mine rescue robot could autonomous navigation and work. In this paper, the posture control technology and local path planning of coal mine detection robot in unknown environment are in-depth researched.
     In this paper, with analyzing the environment of coal mine accident and the mission of coal mine detection robot, the robot control system was designed. The distributed modularized architecture with three-layer was used for the control system, and the distributed hierarchical architecture was used for decision control system as the core of the robot control system. The principle of the control system was taken as the basis for building the mine robot control system experiment platform system. The control system can meet the requirements of detection capability in the coal mine of coal mine detection robot, and it has satisfactory performance in autonomy, openness and real-time.
     The motion mechanism of coal mine detection robot was designed as tracked robot with 4- parallel tracked limbs. The method was presented that the pose of equivalent robot which the non-holonomic constraints between parallel limbs of the detection robot and ground were eliminated through equivalent transformation of the motion mechanism was analyzed. By implementing this method, the detecting robot was equivalent into a 4-PPSR parallel robot, and the posture kinematic model of the moving platform in parallel robot was analyzed with the use of motion screw theory. With analyzing the static stability on the basis of the robot kinematics model and dynamic stability based on the changing analysis of potential energy, therefore, two conclusions were got respectively, one was static stability decision theorem based on projection stabilization cone through geometric analysis; another was the relationship between the speed and dynamitic stability, which was the important theory basis for keeping stable motion while the coal mine detection robot was driving. On the coordination for four basis behaviors of coal mine detection robot, driving behavior, attitude adjustment behavior, obstacle crossing behavior and path planning behavior, a reactive behavior coordinator system based on expert logic system for mine rescue robot was proposed. In the paper, the behavior pattern was analyzed of which in different road condition when robot was driving underground in coal mine. Among them, the attitude adjustment behavior on the operation of robot driving was emphasized researched. Therefore, based on the fuzzy control algorithm, the coal mine detection robot reactive behavior control for the attitude adjustment method was proposed, and with the experiment, it was testified that the control method was good adaptable for the complexity underground environment.
     In this paper, a local path planning method closer to the human mind, direction optimizing artificial potential field based on the rolling windows was proposed, which was for robot’s path planning behavior of detecting mines in an unknown environment. The method used in classical artificial potential field algorithm which boils down the global information to a single field force was abandoned in the improved artificial potential field. The improved artificial potential field can resolve the best direction which field force is biggest among all driving direction for robot. The improved artificial potential field combining with the rolling windows path planning, the reaction local path planning method was presented. While the reactive path planning behavior of the robot could not achieve at the global target because of absence of global information, it will cause the non decision-making status and planning pitfalls and other issues probably. Therefore, the center average method was proposed of recalculate the maximum force to solve the non decision-making status. Foe solving the planning pitfall issues, it was required to deliberative planning and make judgments on the current situation. The deliberative planning process should analyze the travailed scenes based on the local grid-topological map which was analyzed through active growth Voronoi graph to generate the collision-free paths network consisting of Voronoi edges and nodes. The shortest escape path between escape target node and global goal node can be got through the Floyd shortest path searching method. The reaction- deliberating mixed local path planning method of coal mine detection robot was proposed, which was constituted by reactive path planning behavior and deliberative style planning process. By experiment, it was testified that the method can solve the obstacle avoidance problem effectively in the process of planning the trap and could be adapted to the complexity of coal unknown environment.
     Based on the theoretical research of this paper, the coal mine detection robot control system based on the study achievements of this paper was developed used in experimental robot which was developed by our research team through VC++. The experiments were operated in the laboratory environment and the simulated roadway environment with experimental robot, which indicated that the coal mine detection robot could achieve the understanding environment and path planning in an unknown environment, and could maintain the good posture in the condition of unconstructed roads. Above all, it is indicated the research of this paper provided with practicality and availability in the unknown complex environment.
引文
[1]王越超.我国危险作业机器人研究开发取得新进展[J].机器人技术与应用, 2005 (6): 11-14,18
    [2]钱善华,葛世荣,王永胜等.救灾机器人的研究现状与煤矿救灾的应用[J].机器人, 2006, 28 (3): 350-354
    [3] Hirose S, Fukushima E F. Development of mobile robots for rescue operations [J]. Advanced Robotics, 2002, 16 (6): 509-512
    [4] Hirose S. Snake, walking and group robots for super mechanic-system [C]. IEEE International Conference on Systems, Man and Cybernetics, Tokyo, Japan, 1999: 129-133
    [5]国家安全生产监督管理总局.煤矿安全生产“十一五”规划[S]. 2006: 6
    [6]杨宜勇,李宏梅.解决矿难问题的建议[J].科学决策, 2005 (5): 9-11
    [7]李学来,胡敬东.煤矿应急救援技术的现状及应用现状[J].煤炭工程, 2005 (4): 62-64
    [8] Juan Wei, Hong wei Ma. Study on mine rescue robot system [C]. Proceedings Second International Conference, Intelligent Robotics and Applications, Singapore, 2009: 1065-1072
    [9]刘海波,顾国昌,张国印.智能机器人体系结构分类研究[J].哈尔滨工程大学学报, 2003, 24 (6): 664-668
    [10] G N Saridis. Toward the realization of intelligent controls [J]. Proceedings of the IEEE, 1979, 67 (4): 1115-1133
    [11] Nilsson N. Shakey the robot [R]. AI Center, SRI International, 1984.
    [12] Brooks R A. Robust layered control system for a mobile robot [J]. IEEE Journal of Robotics and Automation, 1986, 2 (1): 14-23
    [13] Brooks R A. Behavior-based humanoid robotics [C]. Proceedings of the 1996 IEEE International Conference on Intelligent Robots & Systems, Osaka, Japan, 1996, 1: 1-8
    [14] Simmons R. An architecture for coordinating planning, sensing, and action [C]. Proceedings of workshop on innovative approaches to planning, scheduling and control. San Diego, USA, 1990: 675-681
    [15] Bonasso R. Integrating reaction plans and layered competences through synchronous control [C]. Proceedings of the 12th International Joint Conference on Artificial Intelligence. Sydney, Australia, 1991, 2: 1225-1231
    [16] Connell J S: A hybrid architecture applied to robot navigation [C]. Proceedings IEEEConference on Robotics and Automation, Nice, France, 1992, 3: 2719-2724
    [17] Wendell H C. Unmanned ground vehicle demo II: demonstration A [C]. Proceedings of SPIE mobile robot IX, Boston, USA, 1994: 180-191
    [18] Fleury S, Herrb M, Chatila R. Genom: a tool for the specification and the implementation of operating modules in a distributed robot architecture [C]. Proceedings of the IEEE International Conference on Intelligent Robots & Systems, Grenoble, France , 1997: 842-848
    [19]朱淼良张新晖王寻羽等.基于自组织结构的自主智能机器人集成系统[J],软件学报, 2000, 11 (3): 368-371
    [20] Kolp M. Organizational multi-agent architectures: a mobile robot example [C]. Proceedings of the 1st international joint conference on Autonomous agents and multiagent systems. Bologna, Italy, 2002: 94-95
    [21] Zou Xiao-Bing, Cai Zi-Xing, Yu Jin-Xia. Design of an architecture based on heterogeneous agent for mobile robot [J]. Journal of Central South University (Science and Technology), 2005, 36 (5): 733-738
    [22] Elfes A. Using occupancy grids for mobile robot perception and navigation [J], Computer, 1989, 22 (6): 46-57
    [23] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots [J]. International Journal of Robotics Research, 1986, 5 (1): 90-98
    [24] Zhang Y, Webber R. Dynamic world modeling for a mobile robot among moving objects [J]. Robotics, 1996, 14 (5): 553-560.
    [25] Sehultz A, Adams W, Yamanehi B, et a1.. Unifying detection, localization, navigation and planning through a common representation [C]. Proceedings of IEEE International Conference on Robotics and Automation, Deltoid, USA, 1999: 2651-2658
    [26] Stephen S, David L, Jim L. Local and global localization for mobile robots using visual landmarks [C], Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, USA, 2001: 735-738
    [27] Austin D J, McCarragher B J. Geometric constraint identification and mapping for mobile robots [J]. Robotics and Autonomous Systems, 2001, 35 (2): 59-76
    [28] Stephen S, David L, Jim L. Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks. International journal of robotics research, 2002, 21 (8): 735-738
    [29] Thrun S, Gutmann J S, Fox D, et al.. Integrating topological and metric maps for mobile robot navigation: a statistical approach [C]. Proceedings of the 1998 Nationalconferences on artificial intelligence, Madison, USA, 1998: 21-71
    [30] Kuipers B, Byun Y T. A robot detection and mapping strategy based on a semantic hierarchy of spatial representations [J]. Robotics and Autonomous Systems, 1991, 8(1-2): 47-63
    [31] Choset H, Konuksven I, Burdick J W. Sensor based planning for a planar Rod robot [C]. Proceedings of the 1996 IEEE nternational Conference on Multisensor Fusion and Integration for Intelligent Systems. Albuquerque, USA, 1996: 3584-3591
    [32] Ulrich I, Nourbakhsh I. Appearance-based place recognition for topological localization [C]. Proceedings of IEEE international conference on robotics and automation, San Francisco, USA, 2000: 1023-1029
    [33] Yamauchi B. Langley P. Place recognition in dynamic environments [J]. Journal of Robotic Systems, 1997, 14 (2):107-120
    [34] Thrun S, Burgard W, Fox D. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping [C]. Proceedings of IEEE International Conference on Robotics and Automation, 2000: 321-328
    [35]卿慧玲,蔡自兴.移动机器人激光雷达数据的三维可视化方法[J].吉林大学学报(信息科学版), 2004, 22 (4): 411-414
    [36] Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics [A]. Autonomous robot vehicles. London: Springer-Verlag Press, 1990: 167-193
    [37] Jose G, Eduardo N. Optimization of simultaneous localization and map building algorithm for real time implementation [J]. IEEE Transaction on Robotics and Automation, 2001, 17 (3): 242-257
    [38] Howard A, Matark M J, Sukhatme G S. Localization for mobile robot teams using maximum likelihood estimation [C]. Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 2002,1: 434-439
    [39] Fox D, Burgard W, Dellaert F, et al. Monte Carlo localization for mobile robots [C]. Proceedings of the IEEE International Conference on Robotics and Automation, USA, 1999: 1322-1328.
    [40] Fox D, Burgard W, Thrun S. Markov localization formobile robots in dynamic environments [J]. Journal of Artificial Intelligence Research, 1999, 11 (3): 391-427
    [41]任爱爱,孙永荣,马涛.移动机器人DGPS/DR组合导航技术研究[J].机械与电子, 2009 (3): 58-61
    [42]郑之增,葛世荣,侯园.基于PCI04的煤矿救灾机器人控制系统[J].煤矿机械, 2009, 30 (4): 119-122
    [43]陈勇,桂卫华,阳春华.深海采矿移动机器人的定位方法研究[J].系统仿真学报, 2008, 20 (23): 6486-6489
    [44] Jiang Z P, Nijmeijer H. A recursive technique for tracking control of non holonomic systems in chained form [J]. IEEE Transactions on Automatic Control, 1999, 44(2): 265-279
    [45] Wang D, Xu G. Full-state tracking and internal dynamics of nonholonomic wheeled mobile robots [J]. IEEE/ASME Transactions on Mechatronics, 2003, 8 (2): 203-214
    [46] Caracciolo L, Luca A D, Iannitti S. Trajectory tracking control of a four-wheel differentially driven mobile robot [C]. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, USA, 1999, 4: 2632-2638
    [47] Craig J. Introduction to Robotics Mechanics and Control (2nd Editing) [M]. NJ, USA: Addison & Wesley Publishing, 1989: 62-134
    [48] Muir P F, Neumann C P. Kinematic modeling of wheeled mobile robots [J]. Journal of Robotic Systems, 1987 (2): 281-340
    [49] Chakraborty N, Ghosal A. Dynamic modeling and simulation of a wheeled mobile robot for traversing uneven terrain without slip [J]. Journal of Mechanical Design, 2005, 127 (5): 901-909
    [50] Meghdari A, Karimi R, Pishkenari H N et al.. An effective approach for dynamic analysis of rovers [J]. Robotics, 2005, 23 (6): 771-780
    [51] Cela A, Hamam Y, Carriere A. Robust fuzzy logic controller for trajectory tracking of robotic systems [C]. 1995 IEEE International Conference on Systems, Man and Cybernetics, Vancouver, Canada, 1995: 835-840
    [52] Sung-Hoe Kim, Chong-Kug Park, Harashima F. Adaptive fuzzy controller design for trajectory tracking of a 2-DOF wheeled mobile robot using genetic algorithm [C]. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada, 1998, 3: 1584-1589
    [53] Fierro R, Lewis F L. Control of a nonholonomic mobile robot using neural networks [J]. IEEE Transactions on Neural Networks, 1998,9 (4): 589-600
    [54] Shibata T, Fukuda T. Intelligent motion planning by genetic algorithm with fuzzy critic [C]. IEEE International Symposium on Intelligent Control, Chicago, USA, 1993: 565-570
    [55]徐正飞,杨汝清,陆际联等.移动机器人自主越障反应控制行为组合方法[J],上海交通大学学报, 2006,40 (3):451-455
    [56]程玉虎,易建强,赵冬斌.机器人行为协调机制研究进展[J].机器人, 2004, 26 (3):187-192
    [57] Maes P, Brooks R A. Learning to coordinate behaviors [A]. Proceedings of the 8th International Conference on Artificial Intelligence, AAAI Press/MIT Press 1990: 796-802
    [58] Payon D W, Rosenblatt J K. Plan guided reaction [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(6):1370-1382.
    [59] Rosenblatt J K. DAMN: a distributed architecture for mobile navigation [J]. Journal of Experimental and Theoretical Artificial Intelligence, 1997, 9(2-3): 339-360
    [60] Yen J, Pfluger N. A fuzzy logic based extension to Payton and Rosenblatt’s command for mobile robot navigation [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25(6): 971-978.
    [61] Beon H B. A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25(6):464-477
    [62] Cliff D, Harvey I, Husbands P. Detections in evolutionary robotics [J]. Adaptive Behavior, 1993, 2(1):73-110
    [63]蔡自兴,周翔,李枚毅.基于功能/行为集成的自主式移动机器人进化控制体系结构[J].机器人, 2000, 22 (3): 169-175
    [64] Kirkpatrick S, Gelatt Jr C D, Vecchi P. Optimization by simulated annealing [J]. Science, 1983, 220: 671-680
    [65] Yang S, Meng M. Real-time collision-free path planning of robotmanipulators using neural network approaches [J]. Autonomous Robots, 2000, 9 (1): 27-39
    [66] Khatib O. Motion and force control of robot manipulators[C]. Proceedings of 1986 IEEE International Conference on Robotics and Automation, San Francisco, USA 1986, 3: 1381-1386
    [67] Park M G, Jeon J H, Leem C. Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing [J]. IEEE International Symposium on Industrial Electronics, 2001, 3: 1530-1535
    [68]王会丽,傅卫平,方宗德.基于改进的势场函数的移动机器人路径规划[J].机床与液压, 2002 (6): 67-71
    [69]樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划[J].控制理论与应用, 2005, 22 (5): 703-707
    [70] Bornstein J, Koren Y. Real-time obstacle avoidance for fast mobile robots [J]. IEEE Transactions on Systems, Man, and Cybernetics, 19 (5): 1179-1187
    [71] Juidette H, Youlal H.Fuzzy dynamic path planning using genetic algorithms [J]. Electronics Letters, 2000, 36 (4):374-376
    [72] Tsoukalas L H, Uhrig R E. Fuzzy and Neural Approaches in Engineering [M]. New York: John Wiley & Sons Inc., 1996: 176-230
    [73]李贻斌,李彩虹,刘鲁源.不确定环境下移动机器人路径规划算法研究[J].杭州电子科技大学学报, 2005, 25 (2): 10-13
    [74] LaValle S M, Kuffner J. Rapidly-exploring random trees: Progress and prospects [C]. International Workshop on Algorithmic Foundations of Robotics, Dartmouth college, USA, 2000: 293-308
    [75] Holland J H. Genetic algorithms and the optimal allocations of trails [J]. SIAM Journal of Computing, 1973, 2 (2): 88-105
    [76]张文志,吕恬生.基于改进的遗传算法和模糊逻辑控制的移动机器人导航[J].机器人, 2003, 25 (1): 1-6
    [77] Brooks R A, Lozano P T. A subdivision algorithm in configuration space for find path with rotation [C]. 8th International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, 1983: 799-806
    [78] Canny J F. A Voronoi method for the piano-movers problem [C]. Proceedings of IEEE International Conference on Robotics and Automation, St. Lonis, MO, 1985: 530-535
    [79] Choset H, Burdick J, Sensor based planning. II. Incremental construction of the generalized Voronoi graph [C].Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995, 2: 1649-1655
    [80] Nagatani K L, Iwai Y, Tanaka Y. Sensor-based navigation for car-like mobile robots based on a generalized Voronoi graph [J]. Advanced Robotics, 2005, 17 (5): 385-401
    [81]石为人,王楷.基于Floyd算法的移动机器人最短路径规划研究[J].仪器仪表学报, 2009, 30 (10): 2088-2092
    [82] Anthony S. Optimal and efficient path planning for partially-known environments [C]. Proceedings of the International Conference on Robotics and Automation, San Diego, USA , 1994: 3310-3317
    [83]张纯刚,席裕庚.动态未知环境中移动机器人的滚动路径规划[J].机器人, 2002, 24(1): 71-76
    [84] Hassan H, Simo J, Crespo A. Flexible real-time mobile robotic architecture based on behavioural models [J]. Engineering Applications of Artificial Intelligence, 2001, 14 (5): 685-702
    [85]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法[M],北京:科学出版社, 2009: 10-366
    [86] Kian Hsiang Low, Wee Kheng Leow1, Ang M H. A hybrid mobile robot architecture with integrated planning and control [C]. Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, New York, USA, 2002: 219-226
    [87]周心权,吴兵,徐景德.煤矿井下瓦斯爆炸的基本特性[J].中国煤炭, 2002, 28(9): 8-11
    [88]魏娟,贾广利,马宏伟.煤矿救援机器人虚拟样机仿真分析[J].机械科学与技术, 2008, 27 (11): 1369-1373
    [89] Maja J M. Behavior-based robotics as a tool for synthesis of artificial behavior and analysis of natural behavior [J]. Trends in Cognitive Science,1998 (2): 82-87
    [90] Olthof A, Sutton J E. In search of the cognitive map: Can rats learn an abstract pattern of rewarded arms on the radial maze [J]. Journal of Experimental Psychology: Animal Behavior Processes, 1999, 25: 352-362
    [91] Richard M M,李泽湘,S Shankar Sastry,机器人操作的数学导论[M].北京:机械工业出版社, 1998: 11-229
    [92] McGhee R B, Frank A, On the Stability Properties of Quadruped Creeping Gaits [J]. Mathematical Bioscience, 1968 (3): 331-351
    [93] Jana K, Ruzena B. Discrete event systems for autonomous mobile agents [J]. Robotics and Autonomous Systems, 1994, 12 (3-4): 187-198
    [94] Rosenblatt J K, Thorpe C E. Combining multiple goals in a behavior-based architecture [C]. Proceedings of International Conference on Intelligent Robots and Systems, Pittsburgh, USA, 1995: 136-141
    [95] Payon D W, Rosenblatt J K. Plan guided reaction [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20 (6): 1370-1382
    [96]庄严,徐晓东,王伟.移动机器人几何-拓扑混合地图的构建及自定位研究[J].控制与决策, 2005 (7): 815-822
    [97] Franz A. Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure [J]. ACM Computing Surveys, 1991, 23 (3): 345-405
    [98]李成名,空间关系描述的Voronoi原理与方法[M],西安:西安地图出版社, 2000: 79-86
    [99] Chen Jun, Li Chengming, Li Zhilin. GOLD christopher a voronoi-based 9-intersection model for spatial relations [J]. International Journal of Geographical Information Science, 2001, 15 (3): 201-220
    [100]陈军,赵仁亮,乔朝飞.基于Voronoi图的GIS空间分析研究[J].武汉大学学报(信息科学版), 2003, 28 (5): 32-37
    [101]马林兵.非均质栅格Voronoi图生成方法研究[J],地理与地理信息科学, 2009, 25 (5): 39-42
    [102] Dijkstra E. A note on two problems with graphs [J]. Numer Math, 1959 (1): 269 - 271
    [103] Floyd R W. Algorithm 97: Shortest path [J]. Communications of the ACM, 1962,5: 344 - 345
    [104]靳保,付宜利,王树国等.未知环境下机器人实时模糊路径规划方法[J].哈尔滨工业大学学报, 2007, 37 (5): 1315-1317, 1399
    [105]肖潇,方勇纯,贺锋等.未知环境下移动机器人自主搜索技术研究[J].机器人, 2007, 29(2): 224-229
    [106]李彩虹,李贻斌,范晨.移动机器人动态避障算法[J].山东大学学报(工学版), 2007, 37 (5): 60-64
    [107]高云峰,黄海.复杂环境下基于势场原理的路径规划方法[J].机器人, 2004, 26 (3): 114-118
    [108] Woo Jeong, Kim Young Joong, Lee Jeong On, et al. Localization of mobile robot using particle filter[C].2006 SICE-ICASE International Joint Conference, 2006: 3031-3034
    [109] Jean B M, Xinhan Huang, Min Wang. Fuzzy motion planning among dynamic obstacles using artificial potential fields for robot manipulators [J]. Robotics and Autonomous Systems, 2000, 32 (3): 61-72
    [110] Barany E, Glass K, Colbaugh R. Control of uncertain nonholonomic mechanical systems using differential flatness [C]. Proceedings of American Control Conference, Philadelphia, USA, 1998: 917-921
    [111]李学来,胡敬东.煤矿应急救援技术的现状及应用现状[J].煤炭工程, 2005 (4): 62-64
    [112]赵洪广,王爱国.当前我国煤矿安全事故原因浅析[J].煤炭经济研究, 2005 (1): 72-73
    [113]叶平,孙汉旭.旋量理论与矢量积法相结合求解雅可比矩阵[J].机械科学与技术, 2004, 24 (3): 353-356
    [114]韩崇昭,朱洪艳,段战胜.多信源信息融合[M].北京:清华大学出版社, 2006: 474-487
    [115] Selekwa M F, Collins E G Jr.. Centralized Fuzzy Behavior Control for Robot Navigation [C]. IEEE International Symposium on Intelligent Control, Proceedings, Houston, USA, 2003: 602-607
    [116] Park Chanhun, Park Kyoungtaik. Design and kinematics analysis of dual arm robot manipulator for precision assembly [C]. Proceedings of the 6th IEEE International Conference on Industrial Informatics, Daejeon, Korea, 2008: 430-435
    [117]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题[J].控制与决策, 2002, 17(4): 385-390
    [118]郑宏,王景川,陈卫东.基于地图的移动机器人自定位与导航系统[J].机器人, 2007, 29 (4): 397-402
    [119]吴忻生,郭丙华,胡跃明.基于传感器的非完整移动机器人运动规划[J].控制理论与应用, 2002, 19 (6): 945-948
    [120]刘金国,王越超,李斌.灾难救援机器人研究现状、关键性能及展望[J].机械工程学报, 2006, 42 (12): 1-12
    [121] RenéZ, P Lépinay. Fast Mobil Robots in Unstructured Environments [J]. Robotics, 2006, 26 (2): 245-257
    [122] Zhang Chungang, Xi Yugeng. Sub-optimality analysis of mobile robot rolling path planning [J]. Science in China (Series F), 2003, 46 (2): 118-128
    [123]章小兵,宋爱国,唐鸿儒.基于实时滚动亚目标的遥控移动机器局部路径规划方法[J].东南大学学报(自然科学版), 2006, 36 (1): 58-63
    [124]王耀南,余洪山.未知环境下移动机器人同步地图创建与定位研究进展[J].控制理论与应用, 2008, 25 (1): 57-66
    [125] Gu Y L, Loh N K. Dynamic modeling and control by utilizing an imaginary robot model [J]. IEEE Journal of Robotics and Automation, 1988, 4 (5): 532-540
    [126]张克,邵长胜,强文义.基于面向Agent技术的任务规划系统研究[J].高技术通迅, 2002 (5): 82-86
    [127] Petru R, Petriu E M, Whalen T E, et al. Behavior-Based Neuro-Fuzzy Controller for Mobile Robot Navigation [J], IEEE Transactions on Instrumentation and Measurement, 2003, 52 (4): 1125-1140
    [128] Kuroda Y, Kurosawa T, Tsuchiya A, et al, Accurate Localization in Combination with Planet Observation and Dead Reckoning for Lunar Rover [C]. Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, USA, 2004: 2092-2097
    [129] Dong Hun Kim, Sei Chi Shin. Local path planning using a new artificial potential function composition and its analytical design guidelines [J]. Advanced Robotics, 2006, 24 (1): 115-135
    [130] Sridharan M, Kuhlmann G, Stone P. Practical vision-based Monte Carlo localization ona legged robot [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain ,2005: 3366-3371
    [131] Chae Heesung, Yu Wonpil, Lee Jaeyeong et al. Robot localization sensor for development of wireless location sensing network [C]. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006: 37-42
    [132]李磊,叶涛,谭民等.移动机器人技术研究现状与未来[J].机器人, 2002, 24 (5): 47-48
    [133]张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报, 2005, 17 (2): 439-443
    [134]戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程, 2005, 12(3): 198-202
    [135] Shang Jianzhong, Luo Zirong,Li Shengyi. Research on the Mobility Evaluation and Innovation of Wheeled Space Rover [J]. Chinese Journal of Mechanical Engineering, 2006, 19 (2): 193-196
    [136]舒仲周,张继业,曹登庆.运动稳定性[M].北京:中国铁道出版社, 2001: 25-30
    [137]王耀南.机器人智能控制工程[M].北京:科学出版社, 2004: 46-155
    [138]陈卫东,顾冬雷,席裕庚.基于多模式交互的多移动机器人分布式合作系统[J].自动化学报, 2004, 30 (5): 671-678
    [139]龚振邦.机器人机械设计[M].北京:电子工业出版社, 1995: 224-295
    [140]李圣怡.多传感器信息融合理论及在智能制造系统中的应用[M].长沙:国防科技大学出版社, 1998: 225-240
    [141] Niku S B .机器人学导论[M].北京:电子工业出版社, 2004: 98-112
    [142]王灏,毛宗源.机器人的智能控制方法[M].北京:国防工业出版社, 2001: 56-128
    [143]梁轲,陈雄.移动机器人在未知狭窄环境中的路径规划[J].机器人, 2005, 27 (1): 52-58
    [144] Li Yibin, Li Caihong, Song Rui. A new hybrid algorithm of dynamic obstacle avoidance based on dynamic rolling planning and RBFNN [C]. 2007 IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2007: 2064-2068
    [145]肖本贤,张松灿,刘海霞等.基于动力学系统的非完整移动机器人的跟踪控制[J].系统仿真学报, 2006, 18 (3): 1263-1266
    [146]王韬,杨汝清,顿向明等.自主越障时关节轮式移动机器人的姿态设定[J].上海交通大学学报, 2001, 35 (1):59-63
    [147] Martens J D, Newman W S. Stabilization of a mobile robot climbing stairs [C]. Proceedings of IEEE International Conference on Robotics and Automation, San Diego,USA, 1994: 2501-2507
    [148] Mine Safety and Health Administration (MSHA). Mine rescue robot [EB/OL]. [2009-03-04]. http://www.msha.gov/sagomine/robot.asp
    [149] China Institute of Technology. Hibiscus, the New Rescue Robot [EB/OL]. [2009-03-04]. http://www.techfresh.net/hibiscus-the-new-rescue-robot
    [150]贾鹏,黄玉美,樊炳辉.一种基于行为的移动机器人仲裁系统的设计[J].传感器与微系统, 2008, 27 (3): 89-91
    [151]信建国,李小凡,王忠.履带腿式非结构环境移动机器人特性分析[J].机器人, 2004, 26 (1): 35-39
    [152] Krotkov E, Simmons R. Perception, planning and control for autonomous walking with the ambler planetary rover [J]. The International Journal of Robotics Research, 1996, 15 (2): 155-180
    [153] Sreenivasan S V, Wilcox B H. Stability and traction control of an actively actuated micro-rover [J]. Journal of Robotic Systems, Vol.,1994 ,11 (6):487-502
    [154]张明状,庄严,王伟.移动机器人即时环境探索与地图库构建[J].东南大学学报(自然科学版), 2009, 39 (9): 111-115
    [155] Moorehead S J, Smimons R. Autonomous detection using multiple source of information [C]. Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation. Monterey, USA, 1997: 146-151
    [156]罗荣华,洪炳铭.基于信息融合的同时定位与地图创建研究[J]哈尔滨工业大学学报, 2004, 36 (5): 566-569
    [157] Castellanos J A, Neira J, Tardos J D. Multi-sensor fusion for simultaneous loealization and map building [J]. IEEE Transactions on Robotics and Automation. 2001, 17 (6): 908-914
    [158] KwonT B,Song J B. Real time building of a thinning-based to Pologieal map [J] .Intelligent Service Robotics, 2008 (1): 211-220
    [159]武二永,项志宇,沈敏一.大规模环境下基于激光雷达的机器人SLAM算法[J].浙江大学学报(工学版), 2007, 41 (12): 1982-1986
    [160] Cang Ye, Borenstein J. Characterization of a 2-D laser Scanner for Mobile Robot Obstacle Negotiation [C]. Proceedings of the IEEE Conference on Robotics and Automation, Washington DC, USA, 2002, 3: 2512-2518
    [161]叶涛,陈尔奎,杨国胜等.全局环境未知时机器人导航和避障的一种新方法[J].机器人, 2003, 25 (6):516-520
    [162]杨明,王宏,何克忠等.基于激光雷达的移动机器人环境建模与避障[J].清华大学学报(自然科学版), 2000, 40 (7): 112-116
    [163]曲继方.机构创新原理[M].北京:科学出版社, 2001: 89-102
    [164]陈学东,孙翊,贾文川.多足步行机器人运动规划与控制[M].武汉:华中科技大学出版社出版, 2006: 75-127
    [165]舒仲周,张继业,曹登庆.运动稳定性[M].北京:中国铁道出版社, 2001: 102-140
    [166]张玉茹,李继婷,李剑锋.机器人灵巧手--建模、规划与仿真[M].北京:机械工业出版社, 2007: 36-159
    [167] Angelts J,宋伟刚.机器人机械系统原理理论、方法和算法[M],北京:机械工业出版社, 2004: 32-160
    [168] Munkres J R,熊金城.拓扑学(第二版) [M],北京:机械工业出版社, 2006: 58-202
    [169] West D B,李建中,骆吉洲.图论导引[M],北京:机械工业出版社, 2007: 117-135
    [170] Cai Zixing, Peng Zhihong. Cooperative coevoluationary adaptive genetic algorithm in path planning of cooperative multi-mobile robot system [J]. Intelligent & Robotic System, 2002, 33 (1): 61-67
    [171] Zhang Chungang, Xi Yugeng. Robot Rolling Path Planning Based on Locally Detected Information [J]. ACTA Automatic Sinica, No.1, 2003, 20 (1): 39-44
    [172]张乐杰,杨国胜,侯增广等,基于融合和人工势场的自主移动机器人路径规划研究[J].山东大学学报(工学版), 2007, 35 (3): 28-31
    [173] Zhang Chungang, Xi Yugeng. Robot Rolling Path Planning Based on Locally Detected Information [J]. ACTA Automatic Sinica, 2003, 20(1): 39-44
    [174] Nasser S, Javid T. Genetic Algorithm in Robot path planning problem in crisp and fuzzified Environments [J]. Robot, 2004, 9 (3): 175-180
    [175]郑敏捷,蔡自兴,邹小兵.一种混合结构的移动机器人导航控制策略[J].机器人, 2006, 28 (3): 164-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700